1
|
Tachibana SI, Kawai S, Katakai Y, Takahashi H, Nakade T, Yasutomi Y, Horii T, Tanabe K. Contrasting infection susceptibility of the Japanese macaques and cynomolgus macaques to closely related malaria parasites, Plasmodium vivax and Plasmodium cynomolgi. Parasitol Int 2015; 64:274-81. [DOI: 10.1016/j.parint.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 11/24/2022]
|
2
|
Cavanagh DR, Kocken CHM, White JH, Cowan GJM, Samuel K, Dubbeld MA, der Wel AVV, Thomas AW, McBride JS, Arnot DE. Antibody responses to a novel Plasmodium falciparum merozoite surface protein vaccine correlate with protection against experimental malaria infection in Aotus monkeys. PLoS One 2014; 9:e83704. [PMID: 24421900 PMCID: PMC3885447 DOI: 10.1371/journal.pone.0083704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022] Open
Abstract
The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.
Collapse
Affiliation(s)
- David R. Cavanagh
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Clemens H. M. Kocken
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - John H. White
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Kay Samuel
- Scottish National Blood Transfusion Service, Cell Therapy Group, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. Dubbeld
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | | | - Alan W. Thomas
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - Jana S. McBride
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - David E. Arnot
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Bailey J, Taylor K. The SCHER Report on Non-human Primate Research —Biased and Deeply Flawed. Altern Lab Anim 2009; 37:427-35. [DOI: 10.1177/026119290903700412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The European Commission's Scientific Committee on Health and Environmental Risks (SCHER) recently issued an Opinion on the need for non-human primate (NHP) use in biomedical research, and the possibilities of replacing NHP use with alternatives, as part of the Directive 86/609/EEC revision process. Here, we summarise our recent complaint to the European Ombudsman about SCHER's Opinion and the entire consultation process. It is our opinion that the Working Group almost entirely failed to address its remit, and that the Group was unbalanced and contained insufficient expertise. The Opinion presumed the validity of NHP research with inadequate supporting evidence, and ignored substantial evidence against the need for NHP research and examples of valid alternatives that could replace the use of NHPs. Because the European Commission and others might base their approach to NHP research directly on the inquiry's findings during the revision of Directive 86/609/EEC, the implications of a flawed analysis of the efficacy of NHP research are extremely serious, both for animal welfare and for human health and safety. The conduct of the SCHER inquiry, and its published Opinion, should therefore be of major and widespread concern, and should not be given any political, scientific or legislative credibility.
Collapse
Affiliation(s)
- Jarrod Bailey
- British Union for the Abolition of Vivisection, London, UK
| | - Katy Taylor
- British Union for the Abolition of Vivisection, London, UK
| |
Collapse
|
4
|
Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, Lambert L, Furuya T, Bouttenot R, Doll M, Nawaz F, Mu J, Jiang L, Miller LH, Wellems TE. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe 2008; 4:40-51. [PMID: 18621009 DOI: 10.1016/j.chom.2008.06.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/28/2008] [Accepted: 05/05/2008] [Indexed: 11/17/2022]
Abstract
Some human malaria Plasmodium falciparum parasites, but not others, also cause disease in Aotus monkeys. To identify the basis for this variation, we crossed two clones that differ in Aotus nancymaae virulence and mapped inherited traits of infectivity to erythrocyte invasion by linkage analysis. A major pathway of invasion was linked to polymorphisms in a putative erythrocyte binding protein, PfRH5, found in the apical region of merozoites. Polymorphisms of PfRH5 from the A. nancymaae-virulent parent transformed the nonvirulent parent to a virulent parasite. Conversely, replacements that removed these polymorphisms from PfRH5 converted a virulent progeny clone to a nonvirulent parasite. Further, a proteolytic fragment of PfRH5 from the infective parasites bound to A. nancymaae erythrocytes. Our results also suggest that PfRH5 is a parasite ligand for human infection, and that amino acid substitutions can cause its binding domain to recognize different human erythrocyte surface receptors.
Collapse
Affiliation(s)
- Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-8132, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jiang G, Charoenvit Y, Moreno A, Baraceros MF, Banania G, Richie N, Abot S, Ganeshan H, Fallarme V, Patterson NB, Geall A, Weiss WR, Strobert E, Caro-Aquilar I, Lanar DE, Saul A, Martin LB, Gowda K, Morrissette CR, Kaslow DC, Carucci DJ, Galinski MR, Doolan DL. Induction of multi-antigen multi-stage immune responses against Plasmodium falciparum in rhesus monkeys, in the absence of antigen interference, with heterologous DNA prime/poxvirus boost immunization. Malar J 2007; 6:135. [PMID: 17925026 PMCID: PMC2147027 DOI: 10.1186/1475-2875-6-135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 10/09/2007] [Indexed: 12/04/2022] Open
Abstract
The present study has evaluated the immunogenicity of single or multiple Plasmodium falciparum (Pf) antigens administered in a DNA prime/poxvirus boost regimen with or without the poloxamer CRL1005 in rhesus monkeys. Animals were primed with PfCSP plasmid DNA or a mixture of PfCSP, PfSSP2/TRAP, PfLSA1, PfAMA1 and PfMSP1-42 (CSLAM) DNA vaccines in PBS or formulated with CRL1005, and subsequently boosted with ALVAC-Pf7, a canarypox virus expressing the CSLAM antigens. Cell-mediated immune responses were evaluated by IFN-γ ELIspot and intracellular cytokine staining, using recombinant proteins and overlapping synthetic peptides. Antigen-specific and parasite-specific antibody responses were evaluated by ELISA and IFAT, respectively. Immune responses to all components of the multi-antigen mixture were demonstrated following immunization with either DNA/PBS or DNA/CRL1005, and no antigen interference was observed in animals receiving CSLAM as compared to PfCSP alone. These data support the down-selection of the CSLAM antigen combination. CRL1005 formulation had no apparent effect on vaccine-induced T cell or antibody responses, either before or after viral boost. In high responder monkeys, CD4+IL-2+ responses were more predominant than CD8+ T cell responses. Furthermore, CD8+ IFN-γ responses were detected only in the presence of detectable CD4+ T cell responses. Overall, this study demonstrates the potential for multivalent Pf vaccines based on rational antigen selection and combination, and suggests that further formulation development to increase the immunogenicity of DNA encoded antigens is warranted.
Collapse
Affiliation(s)
- George Jiang
- Malaria Program, Naval Medical Research Center, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bermúdez A, Reyes C, Guzmán F, Vanegas M, Rosas J, Amador R, Rodríguez R, Patarroyo MA, Patarroyo ME. Synthetic vaccine update: Applying lessons learned from recent SPf66 malarial vaccine physicochemical, structural and immunological characterization. Vaccine 2007; 25:4487-501. [PMID: 17403557 DOI: 10.1016/j.vaccine.2007.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/07/2007] [Indexed: 11/17/2022]
Abstract
The SPf66 synthetic malaria vaccine, developed and obtained almost 2 decades ago, represents the first approach towards developing a multi-antigenic, multi-stage synthetic malarial vaccine composed of subunits derived from different Plasmodium falciparum stage proteins. It is shown here that batches 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15 and 16 produced from a few milligrams to kilogram amounts and used in assays on monkeys and humans showed high reproducibility in physicochemical analysis. (1)H NMR two-dimensional studies also revealed high similarity, even in non-oxidized batches. Reproducibility was also high, especially in preclinical studies carried out on Aotus, clinical trials Phase I, IIa and IIb and field-studies carried out in La Tola, Rio Rosario (Colombia), Majadas (Venezuela), La Te (Ecuador), Ifakara (Tanzania) in which there was high antibody titer production, having similar population distribution when done with different batches. These results provide great support for peptide-synthesized vaccines containing minimal epitopes from protection-inducing antigens which have several advantages, such as low cost, safety, reproducibility, stability, being straightforwardly scaled-up from milligram to kilogram amounts; make them the vaccines of choice for the future in a worldwide attempt to scourge diseases such as malaria.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- Aotidae
- Child
- Child, Preschool
- Chromatography, High Pressure Liquid
- Clinical Trials as Topic
- Female
- Humans
- Infant
- Magnetic Resonance Spectroscopy
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/adverse effects
- Malaria Vaccines/chemistry
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Male
- Molecular Sequence Data
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/adverse effects
- Protozoan Proteins/chemistry
- Protozoan Proteins/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Reproducibility of Results
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Adriana Bermúdez
- Nuclear Magnetic Resonance Department, Fundación Instituto de Inmunología de Colombia, Bogota, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stoute JA, Gombe J, Withers MR, Siangla J, McKinney D, Onyango M, Cummings JF, Milman J, Tucker K, Soisson L, Stewart VA, Lyon JA, Angov E, Leach A, Cohen J, Kester KE, Ockenhouse CF, Holland CA, Diggs CL, Wittes J, Heppner DG. Phase 1 randomized double-blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya. Vaccine 2007; 25:176-84. [PMID: 16388879 DOI: 10.1016/j.vaccine.2005.11.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 10/29/2005] [Accepted: 11/18/2005] [Indexed: 11/22/2022]
Abstract
We report the first trial of candidate malaria vaccine antigen FMP1, a 42kDa fragment from the C-terminus of merozoite surface protein-1 (MSP-1) from the 3D7 strain of Plasmodium falciparum, in an endemic area. Forty adult male and female residents of western Kenya were enrolled to receive 3 doses of either FMP1/AS02A or Imovax rabies vaccine by intra-deltoid injection on a 0, 1, 2 month schedule. Thirty-seven volunteers received all three immunizations and 38 completed the 12-month evaluation period. Slightly more recipients of the FMP1/AS02A vaccine experienced any instance of pain at 24 h post-immunization than in the Imovax group (95% versus 65%), but otherwise the two vaccines were equally safe and well-tolerated. Baseline antibody levels were high in both groups and were boosted in the FMP1/AS02A group. Longitudinal models revealed a highly significant difference between groups for both the average post-baseline antibody responses to MSP-1(42) (F1,335=13.16; P<0.001) and the Day 90 responses to MSP-1(42) (F1,335=16.69; P<0.001). The FMP1/AS02A vaccine is safe and immunogenic in adults and should progress to safety testing in children at greatest risk of malaria.
Collapse
Affiliation(s)
- José A Stoute
- US Army Medical Research Unit and the Kenya Medical Research Institute, Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine 2006; 25:1567-80. [PMID: 17045367 DOI: 10.1016/j.vaccine.2006.09.074] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 09/25/2006] [Indexed: 11/18/2022]
Abstract
The last several years have seen significant progress in the development of vaccines against malaria. Most recently, proof-of-concept of vaccine-induced protection from malaria infection and disease was demonstrated in African children. Pursued by various groups and on many fronts, several other candidate vaccines are in early clinical trials. Yet, despite the optimism and promise, an effective malaria vaccine is not yet available, in part because of the lack of understanding of the types of immune responses needed for protection, added to the difficulty of identifying, selecting and producing the appropriate protective antigens from a parasite with a genome of well over five thousand genes and to the frequent need to enhance the immunogenicity of purified antigens through the use of novel adjuvants or delivery systems. Insufficient clinical trial capacity and normative research functions such as local ethical committee reviews also contribute to slow down the development process. This article attempts to summarize the state of the art of malaria vaccine development.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, 39 rue Seignemartin, FR-69008 Lyon, France.
| | | | | | | |
Collapse
|
9
|
Darko CA, Angov E, Collins WE, Bergmann-Leitner ES, Girouard AS, Hitt SL, McBride JS, Diggs CL, Holder AA, Long CA, Barnwell JW, Lyon JA. The clinical-grade 42-kilodalton fragment of merozoite surface protein 1 of Plasmodium falciparum strain FVO expressed in Escherichia coli protects Aotus nancymai against challenge with homologous erythrocytic-stage parasites. Infect Immun 2005; 73:287-97. [PMID: 15618165 PMCID: PMC538964 DOI: 10.1128/iai.73.1.287-297.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 42-kDa fragment from the C terminus of major merozoite surface protein 1 (MSP1) is among the leading malaria vaccine candidates that target infection by asexual erythrocytic-stage malaria parasites. The MSP1(42) gene fragment from the Vietnam-Oak Knoll (FVO) strain of Plasmodium falciparum was expressed as a soluble protein in Escherichia coli and purified according to good manufacturing practices. This clinical-grade recombinant protein retained some important elements of correct structure, as it was reactive with several functional, conformation-dependent monoclonal antibodies raised against P. falciparum malaria parasites, it induced antibodies (Abs) that were reactive to parasites in immunofluorescent Ab tests, and it induced strong growth and invasion inhibitory antisera in New Zealand White rabbits. The antigen quality was further evaluated by vaccinating Aotus nancymai monkeys and challenging them with homologous P. falciparum FVO erythrocytic-stage malaria parasites. The trial included two control groups, one vaccinated with the sexual-stage-specific antigen of Plasmodium vivax, Pvs25, as a negative control, and the other vaccinated with baculovirus-expressed MSP1(42) (FVO) as a positive control. Enzyme-linked immunosorbent assay (ELISA) Ab titers induced by E. coli MSP1(42) were significantly higher than those induced by the baculovirus-expressed antigen. None of the six monkeys that were vaccinated with the E. coli MSP1(42) antigen required treatment for uncontrolled parasitemia, but two required treatment for anemia. Protective immunity in these monkeys correlated with the ELISA Ab titer against the p19 fragment and the epidermal growth factor (EGF)-like domain 2 fragment of MSP1(42), but not the MSP1(42) protein itself or the EGF-like domain 1 fragment. Soluble MSP1(42) (FVO) expressed in E. coli offers excellent promise as a component of a vaccine against erythrocytic-stage falciparum malaria.
Collapse
Affiliation(s)
- Christian A Darko
- Department of Immunology, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Carvalho LJM, Oliveira SG, Theisen M, Alves FA, Andrade MCR, Zanini GM, Brígido MCO, Oeuvray C, Póvoa MM, Muniz JAPC, Druilhe P, Daniel-Ribeiro CT. Immunization of Saimiri sciureus monkeys with Plasmodium falciparum merozoite surface protein-3 and glutamate-rich protein suggests that protection is related to antibody levels. Scand J Immunol 2004; 59:363-72. [PMID: 15049780 DOI: 10.1111/j.0300-9475.2004.01409.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The immunogenicity and protective efficacy of various antigen-adjuvant formulations derived either from the merozoite-surface protein-3 (MSP-3) or the glutamate-rich protein (GLURP) of Plasmodium falciparum were evaluated in Saimiri sciureus monkeys. These proteins were selected for immunogenicity studies based primarily on their capacity of inducing an antibody-dependent cellular inhibition effect on parasite growth. Some of the S. sciureus monkeys immunized with MSP-3(212-380)-AS02 or GLURP(27-500)-alum were able to fully or partially control parasitaemia upon an experimental P. falciparum [Falciparum Uganda Palo Alto (FUP-SP) strain] blood-stage infection, and this protection was related to the prechallenge antibody titres induced. The data are indicative that MSP-3 and GLURP can induce protective immunity against an experimental P. falciparum infection using adjuvants that are acceptable for human use and this should trigger further studies with those new antigens.
Collapse
Affiliation(s)
- L J M Carvalho
- Laboratory of Malaria Research, Department of Immunology, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mahanty S, Saul A, Miller LH. Progress in the development of recombinant and synthetic blood-stage malaria vaccines. J Exp Biol 2003; 206:3781-8. [PMID: 14506213 DOI: 10.1242/jeb.00646] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe use of asexual blood-stage proteins as malaria vaccines is strongly supported by experimental data directly implicating antibodies induced by these antigens in parasite clearance and protection from re-challenge. The selection of blood-stage antigens is based on their ability to interfere with the pathogenesis of clinical malaria by reducing parasitemias. These vaccines could complement other vaccines aimed at preventing infection, such as those targeted at pre-erythrocytic or mosquito stages of the parasite. Asexual blood-stage vaccines may reduce disease by blockade of red blood cell invasion, inhibition of parasite growth in red cells or interference in cytoadherence of infected red cells. Clearance of blood-stage parasites is dependent primarily on antibody-mediated mechanisms, but CD4 T cells may also play an important role in help for B cells and probably have a direct effector function in the clearance of blood-stage parasites. Since asexual blood-stage parasites reside within erythrocytes, they are accessible to immune clearance mechanisms only for a short time, which imposes special requirements on vaccines. For example, immunity that induces high titers of antibody will be required. Antigenic variation and extensive polymorphism of malarial proteins also needs to be addressed. Several recombinant antigens derived from blood-stage proteins have moved beyond basic research and are now poised for phase I trials in endemic countries. In this review we discuss the state of asexual blood-stage vaccines, focusing on recombinant antigens from Plasmodium falciparum. The significance of polymorphism and antigenic variation, the relevance of parasite immune evasion mechanisms, the need for reliable measures of successful intervention and new adjuvants are reviewed. Results from trials of asexual blood stage vaccine that support the continued effort to develop these antigens as key ingredients of multicomponent,multistage malaria vaccines are documented.
Collapse
Affiliation(s)
- Siddhartha Mahanty
- Malaria Vaccine Development Unit, NIAID, NIH, Twin Brook I, 5640 Fishers Lane, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
12
|
Carvalho LJM, Daniel-Ribeiro CT, Goto H. Malaria vaccine: candidate antigens, mechanisms, constraints and prospects. Scand J Immunol 2002; 56:327-43. [PMID: 12234254 DOI: 10.1046/j.1365-3083.2002.01160.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
More than 30 years after the first report of successful vaccination against malaria using radiation-attenuated sporozoites, an effective malaria vaccine is not yet available. However, field and experimental data indicate that it can be developed. An astonishing amount of data has accumulated concerning parasite biology, host-parasite interactions, immunity and escape mechanisms, targets and modulators of immune responses. Nevertheless, so far this knowledge has not been enough to make us understand how to properly manipulate the whole system to build an effective vaccine. In this article, we describe candidate antigens, mechanisms, targets and trials performed with potential malaria vaccines and discuss the approaches, in vivo and in vitro models, constraints and how technologies such as DNA vaccination, genomics/proteomics and reverse immunogenetics are providing exciting results and opening new doors to make malaria vaccine a reality.
Collapse
Affiliation(s)
- L J M Carvalho
- Department of Immunology, WHO Collaborating Centre for Research and Training in the Immunology of Parasitic Diseases, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
13
|
Caro-Aguilar I, Rodríguez A, Calvo-Calle JM, Guzmán F, De la Vega P, Patarroyo ME, Galinski MR, Moreno A. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Infect Immun 2002; 70:3479-92. [PMID: 12065487 PMCID: PMC128085 DOI: 10.1128/iai.70.7.3479-3492.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1* alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development.
Collapse
Affiliation(s)
- Ivette Caro-Aguilar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Santafé de Bogotá, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Malaria causes much physical and economic hardship in tropical regions, particularly in communities where medical care is rudimentary. Should a vaccine be developed, it is the residents of these areas that stand to benefit the most. But the vaccine, which has been promised to be 'just round the corner' for many years, remains elusive. It is important to ask why this is so, when effective vaccines exist for many other infectious diseases. What are the reasons for the slow rate of progress, and what has been learned from the first clinical trials of candidate malaria vaccines? What are the remaining challenges, and what strategies can be pursued to address them?
Collapse
Affiliation(s)
- Thomas L Richie
- Malaria Program, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, Maryland 20910-7500, USA.
| | | |
Collapse
|