1
|
Yamamoto K, Takahashi K, Ato M, Iwanaga S, Ohta N. Antimalarial activity of vitamin D3 (VD3) does not result from VD3-induced antimicrobial agents including nitric oxide or cathelicidin. Exp Parasitol 2019; 201:67-77. [PMID: 30904694 DOI: 10.1016/j.exppara.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/01/2019] [Accepted: 03/17/2019] [Indexed: 01/29/2023]
Abstract
Recent evidence suggests that 1α,25-dihydroxyvitamin D3 (VD3), the active form of vitamin D, inhibits microbial proliferation. Previously, we used in vivo murine models to investigate the antimalarial activity of VD3 and confirmed potent antimalarial activity in the acute phase. This study aimed to clarify the mechanisms underlying the antimalarial activity of VD3 in vivo, particularly extensive inhibition of parasitemia in the acute phase, focusing on nitric oxide (NO), a potent antimalarial molecule. VD3 is a good NO inducer. When most Plasmodium chabaudi AS (PcAS)-infected mice treated with VD3 survived, NO was present in blood samples obtained from VD3-treated mice at a significantly higher rate at 2 and/or 3 days post-infection than that in vehicle-treated control mice. To verify the involvement of NO in the antimalarial activity of VD3, we used aminoguanidine (AG), an inducible NO synthase (iNOS) inhibitor, to abrogate the antimalarial activity of VD3. However, despite AG-induced reductions in NO levels, parasitemia remained inhibited during the acute phase, even in the presence of AG, and the antiplasmodial faculty of VD3 was not ablated. VD3-mediated antimalarial activity irrelevant of NO compelled us to consider another candidate. In a pilot experiment, we used cathelicidin (CAMP), an antimicrobial peptide, since it is known that VD3 induces CAMP synthesis. Serum CAMP levels increased on days 4 or 5 post-infection with or without VD3 administration, but experiments using exogenous CAMP did not display curative effects in PcAS-infected mice. The present study using VD3 to target the malarial parasite thus suggests a potential novel approach to treat malarial infections.
Collapse
Affiliation(s)
- Kiichi Yamamoto
- Section of Environmental Parasitology, Tokyo Medical and Dental University, Japan.
| | - Kentaro Takahashi
- Department of Bio-informational Pharmacology, Tokyo Medical and Dental University, Japan
| | - Manabu Ato
- Department of Mycobacteriology, National Institute of Infectious Diseases, Japan
| | - Shiroh Iwanaga
- Section of Environmental Parasitology, Tokyo Medical and Dental University, Japan
| | - Nobuo Ohta
- Section of Environmental Parasitology, Tokyo Medical and Dental University, Japan; Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Japan
| |
Collapse
|
2
|
Yamamoto K, Iwagami M, Seki T, Kano S, Ota N, Ato M. Dual antiplasmodial activity of vitamin D3 and its analog, 22-oxacalcitriol, by direct and indirect mechanisms. Parasitol Int 2016; 66:89-99. [PMID: 27919743 DOI: 10.1016/j.parint.2016.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/08/2016] [Accepted: 11/22/2016] [Indexed: 12/01/2022]
Abstract
Recent evidence suggests that 1α,25-dihydroxyvitamin D3 (calcitriol, VD3), the active form of vitamin D (VD), can inhibit the proliferation of microorganisms. In the present study, we conducted in vitro experiments and utilized in vivo murine models to investigate the antimalarial activity of VD3 and its analog, 22-oxacalcitriol (22-OCT), which was designed to cause less hypercalcemia than VD3. VD3 and 22-OCT treatments effectively resolved a Plasmodium chabaudi (Pc) infection in wild-type mice. Reduced parasitemia was observed during the acute phase of infection in the presence of VD3 and 22-OCT, followed by a delayed peak during the chronic stage of infection. Some anti-Pc activity was observed in VD receptor knockout (KO) mice. VD3 and 22-OCT also completely inhibited the proliferation of P. falciparum (Pf) in human red blood cells in vitro. Plasma levels of interferon (IFN)-γ in VD3-treated B10 and B6 mice were lower than those in vehicle-treated animals, and VD3 resolved a Pc infection in IFN-γ-KO mice, which greatly improved survival. These data suggest that the protective effects of VD3 are elicited through an IFN-γ-independent mechanism. Effective antiplasmodial doses of VD3 and 22-OCT resulted in a loss of body weight in mice. This loss in body weight occurred concomitantly with the development of hypercalcemia. Zoledronic acid partially attenuated VD3-induced hypercalcemia and abrogated the antiparasitic effects of VD3. This study highlights a potential therapeutic role for VD3 in the treatment of malarial infections and shows that hypercalcemia is excellent indicator of the antiplasmodial activity of VD3.
Collapse
Affiliation(s)
- Kiichi Yamamoto
- Section of Environmental Parasitology, Tokyo Medical and Dental University, Japan; Department of Immunology, National Institute of Infectious Diseases, Japan.
| | - Moritoshi Iwagami
- Department of Tropical Medicine and Malaria Research Institute, National Center for Global Health and Medicine, Japan
| | - Takenori Seki
- Section of Environmental Parasitology, Tokyo Medical and Dental University, Japan
| | - Shigeyuki Kano
- Department of Tropical Medicine and Malaria Research Institute, National Center for Global Health and Medicine, Japan
| | - Nobuo Ota
- Section of Environmental Parasitology, Tokyo Medical and Dental University, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Japan
| |
Collapse
|
3
|
Singh VK, Ghosh I. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum. FEBS Lett 2013; 587:2806-17. [PMID: 23816706 DOI: 10.1016/j.febslet.2013.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022]
Abstract
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | |
Collapse
|
4
|
Missailidis S, Perkins A. Update: aptamers as novel radiopharmaceuticals: their applications and future prospects in diagnosis and therapy. Cancer Biother Radiopharm 2007; 22:453-68. [PMID: 17803440 DOI: 10.1089/cbr.2007.357] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The production of biomaterials with the capacity to bind tightly and specifically to cell surface receptors of malignant cells can greatly benefit cancer diagnosis and treatment. Whereas antibodies have the ability to specifically recognize some tumor cell makers, their large size and immunogenecity markedly limit their value. The development of nuclease-resistant oligonucleotide agents, termed aptamers, offers an alternative to antibodies as targeting, diagnostic, and delivery agents. Using the systematic evolution of ligands by exponential enrichment (SELEX) methodology or other variations, one can select specific sequences that have appropriate binding affinities and specificities against clinically relevant markers from large libraries of oligonucleotide ligands. Aptamers have been found to bind their targets with high specificity and with dissociation constants in the subnanomolar or picomolar range. However, the possibility for the selected aptamers to be developed as targeting agents for diagnostic imaging or targeted radiotherapy purposes has yet to be realized. Peptide-coupling reactions between amino and carboxylic groups offer the possibility of labeling the aptamers with a number of chelators that, coupled with appropriate radionuclides, would generate novel targeted radiopharmaceuticals for the diagnosis and therapy of disease. The unparalleled combinatorial chemical diversity, small size, and modification ability of aptamers is expected to meet the criteria for robust, generic drug discovery technology and open new horizons for the development of future radiopharmaceuticals.
Collapse
Affiliation(s)
- Sotiris Missailidis
- Department of Chemistry, The Open University, Walton Hall, Milton Keynes, UK.
| | | |
Collapse
|
5
|
Karmodiya K, Surolia N. A unique and differential effect of denaturants on cofactor mediated activation of Plasmodium falciparum β-ketoacyl-ACP reductase. Proteins 2007; 70:528-38. [PMID: 17879351 DOI: 10.1002/prot.21530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The urea and guanidinium chloride (GdmCl) induced unfolding of FabG, a beta-ketoacyl-ACP reductase of Plasmodium falciparum, was examined in detail using intrinsic fluorescence of FabG, UV-circular dichroism (CD), spectrophotometric enzyme activity measurements, glutaraldehyde cross-linking, and size exclusion chromatography. The equilibrium unfolding of FabG by urea is a multistep process as compared with a two-state process by GdmCl. FabG is fully unfolded at 6.0M urea and 4.0M GdmCl. Approximately 90% of the enzyme activity could be recovered on dialyzing the denaturants, showing that denaturation by both urea and GdmCl is reversible. We found two states in the reversible unfolding process of FabG in presence of NADPH; one is an activity-enhanced state and the other, an inactive state in case of equilibrium unfolding with urea. On the contrary, in presence of NADPH, there is no stabilization of FabG in case of equilibrium unfolding with GdmCl. We hypothesize that the hydrogen-bonding network may be reorganized by the denaturant in the activity-enhanced state formed in presence of 1.0M urea, by interrupting the association between dimer-dimer interface and help in accommodating the larger substrate in the substrate binding tunnel thus, increasing the activity. Furthermore, binding of the active site organizer, NADPH leads to compaction of the FabG in presence of urea, as evident by acrylamide quenching. We have shown here for the first time, the detailed inactivation kinetics of FabG, which have not been evaluated in the past from any of the FabG family of enzymes from any of the other sources. These findings provide impetus for exploring the influences of ligands on the structure-activity relationship of Plasmodium beta-ketoacyl-ACP reductase.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | |
Collapse
|
6
|
Heidari A, Keshavarz H, Rokni MB, Jelinek T. Genetic diversity in merozoite surface protein (MSP)-1 and MSP-2 genes of Plasmodium falciparum in a major endemic region of Iran. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 45:59-63. [PMID: 17374980 PMCID: PMC2526331 DOI: 10.3347/kjp.2007.45.1.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Merozoite surface protein-1 (MSP-1) and merozoite surface protein-2 (MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorphisms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.
Collapse
Affiliation(s)
- Aliehsan Heidari
- Department of Medical Science, Ministry of Science (G.P.E.F), Tehran, Iran
| | | | | | | |
Collapse
|
7
|
Eisen DP, Wang L, Jouin H, Murhandarwati EEH, Black CG, Mercereau-Puijalon O, Coppel RL. Antibodies elicited in adults by a primary Plasmodium falciparum blood-stage infection recognize different epitopes compared with immune individuals. Malar J 2007; 6:86. [PMID: 17605823 PMCID: PMC1924525 DOI: 10.1186/1475-2875-6-86] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/02/2007] [Indexed: 11/22/2022] Open
Abstract
Background Asexual stage antibody responses following initial Plasmodium falciparum infections in previously healthy adults may inform vaccine development, yet these have not been as intensively studied as they have in populations from malaria-endemic areas. Methods Serum samples were collected over a six-month period from twenty travellers having returned with falciparum malaria. Fourteen of these were malaria-naïve and six had a past history of one to two episodes of malaria. Antibodies to seven asexual stage P. falciparum antigens were measured by ELISA. Invasion inhibitory antibody responses to the 19kDa fragment of merozoite surface protein 1 (MSP119) were determined. Results Short-lived antibody responses were found in the majority of the subjects. While MSP119 antibodies were most common, MSP1 block 2 antibodies were significantly less frequent and recognized conserved domains. Antibodies to MSP2 cross-reacted to the dimorphic allelic families and anti-MSP2 isotypes were not IgG3 skewed as shown previously. MSP119 invasion inhibiting antibodies were present in 9/20 patients. A past history of malaria did not influence the frequency of these short-lived, functional antibodies (p = 0.2, 2-tailed Fisher's exact test). Conclusion Adults infected with P. falciparum for the first time, develop relatively short-lived immune responses that, in the case of MSP119, are functional. Antibodies to the polymorphic antigens studied were particularly directed to allelic family specific, non-repetitive and conserved determinants and were not IgG subclass skewed. These responses are substantially different to those found in malaria immune individuals.
Collapse
Affiliation(s)
- Damon P Eisen
- Clinical Centre for Research Excellence in Infectious Diseases, Victorian Infectious Diseases Service, Royal Melbourne Hospital, Grattan St, Parkville, Victoria, 3050, Australia
- Malaria and Scabies Unit, Queensland Institute of Medical Research, Herston, Queensland, 4029, Australia
| | - Lina Wang
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Helene Jouin
- Unite d'Immunologie Moléculaire des Parasites, Institut Pasteur, Paris, France
| | | | - Casilda G Black
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Ross L Coppel
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
8
|
Heidari A, Keshavarz H, Dittrich S, Ebrahimzad A, Jelinek T. Genotyping of Plasmodium falciparum Field Isolates in Major Endemic Region of Iran and Potential Uses in Identification of Field Strains. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2007.228.232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Karmodiya K, Surolia N. Analyses of co-operative transitions in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase upon co-factor and acyl carrier protein binding. FEBS J 2006; 273:4093-103. [PMID: 16934037 DOI: 10.1111/j.1742-4658.2006.05412.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The type II fatty acid synthase pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials because of its intrinsic differences from the type I pathway operating in humans. beta-Ketoacyl-acyl carrier protein reductase is the only enzyme of this pathway that has no isoforms and thus selective inhibitors can be developed for this player of the pathway. We report here intensive studies on the direct interactions of Plasmodiumbeta-ketoacyl-acyl carrier protein reductase with its cofactor, NADPH, acyl carrier protein, acetoacetyl-coenzyme A and other ligands in solution, by monitoring the intrinsic fluorescence (lambdamax 334 nM) of the protein as a result of its lone tryptophan, as well as the fluorescence of NADPH (lambdamax 450 nM) upon binding to the enzyme. Binding of the reduced cofactor makes the enzyme catalytically efficient, as it increases the binding affinity of the substrate, acetoacetyl-coenzyme A, by 16-fold. The binding affinity of acyl carrier protein to the enzyme also increases by approximately threefold upon NADPH binding. Plasmodiumbeta-ketoacyl-acyl carrier protein reductase exhibits negative, homotropic co-operative binding for NADPH, which is enhanced in the presence of acyl carrier protein. Acyl carrier protein increases the accessibility of NADPH to beta-ketoacyl-acyl carrier protein reductase, as evident from the increase in the accessibility of the tryptophan of beta-ketoacyl-acyl carrier protein reductase to acrylamide, from 81 to 98%. In the presence of NADP+, the reaction proceeds in the reverse direction (Ka=23.17 microM-1). These findings provide impetus for exploring the influence of ligands on the structure-activity relationship of Plasmodiumbeta-ketoacyl-acyl carrier protein reductase.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | |
Collapse
|
10
|
Affiliation(s)
- Dewesh Agrawal
- George Washington University School of Medicine, Washington, DC, USA.
| | | |
Collapse
|
11
|
Eda S, Sherman IW. Selection of peptides recognized by human antibodies against the surface of Plasmodium falciparum-infected erythrocytes. Parasitology 2005; 130:1-11. [PMID: 15700752 DOI: 10.1017/s0031182004006328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an attempt to identify mimotopes of the surface antigens of P. falciparum-infected erythrocytes (iRBC), antibodies were eluted from iRBC that had been treated with a pool of sera from malaria-infected individuals (IHS), and were used to screen a phage display library (PDL). After repeated panning of the PDL on immobilized antibodies, phage that selectively bound to IHS were accumulated. Of 23 randomly chosen clones that were sequenced, 13 individual sequences were detected at varying frequencies and 3 of the 13 sequences had homology with membrane proteins known to exist on iRBC. The majority of phage clones (7 out of 8 clones) selected after the 4th panning bound selectively to IgG in IHS. Specific binding of the selected phage to IgG in IHS was also confirmed using 24 IHS and 11 sera from uninfected individuals. One phage clone was the most frequently found in the sequenced clones after the 4th panning, and the binding of this clone to IgG in all IHS was greater than in any serum from uninfected individuals. A rabbit antiserum against the peptide expressed on the clone specifically recognized the surface of iRBC and resulted in iRBC haemolysis.
Collapse
Affiliation(s)
- S Eda
- Department of Biology, University of California Riverside, Riverside, California 92521, USA
| | | |
Collapse
|
12
|
Cassera MB, Gozzo FC, D'Alexandri FL, Merino EF, del Portillo HA, Peres VJ, Almeida IC, Eberlin MN, Wunderlich G, Wiesner J, Jomaa H, Kimura EA, Katzin AM. The Methylerythritol Phosphate Pathway Is Functionally Active in All Intraerythrocytic Stages of Plasmodium falciparum. J Biol Chem 2004; 279:51749-59. [PMID: 15452112 DOI: 10.1074/jbc.m408360200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two genes encoding the enzymes 1-deoxy-D-xylulose-5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase have been recently identified, suggesting that isoprenoid biosynthesis in Plasmodium falciparum depends on the methylerythritol phosphate (MEP) pathway, and that fosmidomycin could inhibit the activity of 1-deoxy-D-xylulose-5-phosphate reductoisomerase. The metabolite 1-deoxy-D-xylulose-5-phosphate is not only an intermediate of the MEP pathway for the biosynthesis of isopentenyl diphosphate but is also involved in the biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6) in plants and many microorganisms. Herein we report the first isolation and characterization of most downstream intermediates of the MEP pathway in the three intraerythrocytic stages of P. falciparum. These include, 1-deoxy-D-xylulose-5-phosphate, 2-C-methyl-D-erythritol-4-phosphate, 4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol, 4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol-2-phosphate, and 2-C-methyl-D-erythritol-2,4-cyclodiphosphate. These intermediates were purified by HPLC and structurally characterized via biochemical and electrospray mass spectrometric analyses. We have also investigated the effect of fosmidomycin on the biosynthesis of each intermediate of this pathway and isoprenoid biosynthesis (dolichols and ubiquinones). For the first time, therefore, it is demonstrated that the MEP pathway is functionally active in all intraerythrocytic forms of P. falciparum, and de novo biosynthesis of pyridoxal in a protozoan is reported. Its absence in the human host makes both pathways very attractive as potential new targets for antimalarial drug development.
Collapse
Affiliation(s)
- María B Cassera
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Garnica MR, Silva JS, de Andrade Junior HF. Stromal cell-derived factor-1 production by spleen cells is affected by nitric oxide in protective immunity against blood-stage Plasmodium chabaudi CR in C57BL/6j mice. Immunol Lett 2004; 89:133-42. [PMID: 14556970 DOI: 10.1016/j.imlet.2003.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Malaria, a major endemic tropical disease, is caused by the infection of blood cells by Plasmodium protozoa. Most patients control their parasitemia by a not fully understood spleen-dependent mechanism. SDF-1alpha is a chemokine produced by stromal cells such as reticular spleen cells. Nitric oxide (NO) has several immune functions, including killing of intracellular pathogens and its function in malaria is debated. We have previously shown that SDF-1alpha production peaks during the ascending parasitemia in Plasmodium chabaudi infection and its supplementation in lethal models could reduce the parasitemia. In the present study, we analyzed SDF-1 production by spleen cells as related to NO metabolism in the P. chabaudi rodent malaria model using IFN-gamma; TNFR and iNOS-knockout mice or iNOS-blocked, L-NAME- or aminoguanidine-treated mice. Parasitemia and production of SDF-1alpha and SDF-1beta were determined by RT-PCR. In vitro NO production by spleen adherent cells was also tested. The data showed that parasitemia was less intense in both iNOS(-/-) or NO-inhibited mice than in controls, with increased and long-lasting production of SDF-1alpha mRNA. In the absence of cytokines involved in the final regulation of NO production by effector cells, as is the case for TNFR(-/-) and GKO mice, the infection progressed in an uncontrolled manner regardless of SDF-1alpha production, suggesting that these cytokines must be involved in the control of parasitemia after the SDF-1alpha dependent process. The SDF-1beta isoform was constitutive in all experiments, with elevated levels only clearly seen in TNFR(-/-) mice. We conclude that SDF-1 is involved in the promotion of parasitemia control in malaria, and excessive NO could affect its production.
Collapse
Affiliation(s)
- Margoth Ramos Garnica
- Lab. Protozoologia, lnstituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr.E.C. Aguiar 470, 05403-000, SP, São Paulo, Brazil
| | | | | |
Collapse
|