1
|
Almehmadi M, Alqahtani JS. Healthcare Research in Mass Religious Gatherings and Emergency Management: A Comprehensive Narrative Review. Healthcare (Basel) 2023; 11:healthcare11020244. [PMID: 36673612 PMCID: PMC9859393 DOI: 10.3390/healthcare11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Religious mass gatherings, especially pilgrimages of various faiths, involve overcrowding and the international movement of people, exposing individuals to significant health risks, such as the spread of infectious diseases, crowds, exposure to bad weather, physical stress, or risks due to pre-existing medical conditions. This paper aims to review the literature related to health care research on religious mass gatherings, with special reference to the role of awareness creation, training, and risk awareness for individuals during Hajj. The results indicated that the research on health risks associated with large-scale gatherings showed that some countries (which witness religious gatherings) follow effective preventive measures to reduce health risks, while some countries did not (and linked this to its poor infrastructure and the low standard of living in it, such as India). It also showed that most studies overlooked identifying the causes of infectious diseases and determining the perceptions of participants in mass gatherings. While it showed that environmental factors strongly influence the emergence of infectious diseases among individuals, the results also showed the scarcity of research that revolves around the awareness of community members, the health risks of mass gatherings, preventive measures against diseases, and the main effects on individuals' perceptions of risks. The results also showed a lack of research evidence on how pilgrims perceive risks, adopt information, and interact with their willingness to be trained in preventive measures.
Collapse
Affiliation(s)
- Mater Almehmadi
- UCL Institute for Risk and Disaster, University College London, London WC1E 6BT, UK
- Correspondence:
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam 34313, Saudi Arabia
| |
Collapse
|
2
|
Burns J, Movsisyan A, Stratil JM, Biallas RL, Coenen M, Emmert-Fees KM, Geffert K, Hoffmann S, Horstick O, Laxy M, Klinger C, Kratzer S, Litwin T, Norris S, Pfadenhauer LM, von Philipsborn P, Sell K, Stadelmaier J, Verboom B, Voss S, Wabnitz K, Rehfuess E. International travel-related control measures to contain the COVID-19 pandemic: a rapid review. Cochrane Database Syst Rev 2021; 3:CD013717. [PMID: 33763851 PMCID: PMC8406796 DOI: 10.1002/14651858.cd013717.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In late 2019, the first cases of coronavirus disease 2019 (COVID-19) were reported in Wuhan, China, followed by a worldwide spread. Numerous countries have implemented control measures related to international travel, including border closures, travel restrictions, screening at borders, and quarantine of travellers. OBJECTIVES To assess the effectiveness of international travel-related control measures during the COVID-19 pandemic on infectious disease transmission and screening-related outcomes. SEARCH METHODS We searched MEDLINE, Embase and COVID-19-specific databases, including the Cochrane COVID-19 Study Register and the WHO Global Database on COVID-19 Research to 13 November 2020. SELECTION CRITERIA We considered experimental, quasi-experimental, observational and modelling studies assessing the effects of travel-related control measures affecting human travel across international borders during the COVID-19 pandemic. In the original review, we also considered evidence on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). In this version we decided to focus on COVID-19 evidence only. Primary outcome categories were (i) cases avoided, (ii) cases detected, and (iii) a shift in epidemic development. Secondary outcomes were other infectious disease transmission outcomes, healthcare utilisation, resource requirements and adverse effects if identified in studies assessing at least one primary outcome. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts and subsequently full texts. For studies included in the analysis, one review author extracted data and appraised the study. At least one additional review author checked for correctness of data. To assess the risk of bias and quality of included studies, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for observational studies concerned with screening, and a bespoke tool for modelling studies. We synthesised findings narratively. One review author assessed the certainty of evidence with GRADE, and several review authors discussed these GRADE judgements. MAIN RESULTS Overall, we included 62 unique studies in the analysis; 49 were modelling studies and 13 were observational studies. Studies covered a variety of settings and levels of community transmission. Most studies compared travel-related control measures against a counterfactual scenario in which the measure was not implemented. However, some modelling studies described additional comparator scenarios, such as different levels of stringency of the measures (including relaxation of restrictions), or a combination of measures. Concerns with the quality of modelling studies related to potentially inappropriate assumptions about the structure and input parameters, and an inadequate assessment of model uncertainty. Concerns with risk of bias in observational studies related to the selection of travellers and the reference test, and unclear reporting of certain methodological aspects. Below we outline the results for each intervention category by illustrating the findings from selected outcomes. Travel restrictions reducing or stopping cross-border travel (31 modelling studies) The studies assessed cases avoided and shift in epidemic development. We found very low-certainty evidence for a reduction in COVID-19 cases in the community (13 studies) and cases exported or imported (9 studies). Most studies reported positive effects, with effect sizes varying widely; only a few studies showed no effect. There was very low-certainty evidence that cross-border travel controls can slow the spread of COVID-19. Most studies predicted positive effects, however, results from individual studies varied from a delay of less than one day to a delay of 85 days; very few studies predicted no effect of the measure. Screening at borders (13 modelling studies; 13 observational studies) Screening measures covered symptom/exposure-based screening or test-based screening (commonly specifying polymerase chain reaction (PCR) testing), or both, before departure or upon or within a few days of arrival. Studies assessed cases avoided, shift in epidemic development and cases detected. Studies generally predicted or observed some benefit from screening at borders, however these varied widely. For symptom/exposure-based screening, one modelling study reported that global implementation of screening measures would reduce the number of cases exported per day from another country by 82% (95% confidence interval (CI) 72% to 95%) (moderate-certainty evidence). Four modelling studies predicted delays in epidemic development, although there was wide variation in the results between the studies (very low-certainty evidence). Four modelling studies predicted that the proportion of cases detected would range from 1% to 53% (very low-certainty evidence). Nine observational studies observed the detected proportion to range from 0% to 100% (very low-certainty evidence), although all but one study observed this proportion to be less than 54%. For test-based screening, one modelling study provided very low-certainty evidence for the number of cases avoided. It reported that testing travellers reduced imported or exported cases as well as secondary cases. Five observational studies observed that the proportion of cases detected varied from 58% to 90% (very low-certainty evidence). Quarantine (12 modelling studies) The studies assessed cases avoided, shift in epidemic development and cases detected. All studies suggested some benefit of quarantine, however the magnitude of the effect ranged from small to large across the different outcomes (very low- to low-certainty evidence). Three modelling studies predicted that the reduction in the number of cases in the community ranged from 450 to over 64,000 fewer cases (very low-certainty evidence). The variation in effect was possibly related to the duration of quarantine and compliance. Quarantine and screening at borders (7 modelling studies; 4 observational studies) The studies assessed shift in epidemic development and cases detected. Most studies predicted positive effects for the combined measures with varying magnitudes (very low- to low-certainty evidence). Four observational studies observed that the proportion of cases detected for quarantine and screening at borders ranged from 68% to 92% (low-certainty evidence). The variation may depend on how the measures were combined, including the length of the quarantine period and days when the test was conducted in quarantine. AUTHORS' CONCLUSIONS With much of the evidence derived from modelling studies, notably for travel restrictions reducing or stopping cross-border travel and quarantine of travellers, there is a lack of 'real-world' evidence. The certainty of the evidence for most travel-related control measures and outcomes is very low and the true effects are likely to be substantially different from those reported here. Broadly, travel restrictions may limit the spread of disease across national borders. Symptom/exposure-based screening measures at borders on their own are likely not effective; PCR testing at borders as a screening measure likely detects more cases than symptom/exposure-based screening at borders, although if performed only upon arrival this will likely also miss a meaningful proportion of cases. Quarantine, based on a sufficiently long quarantine period and high compliance is likely to largely avoid further transmission from travellers. Combining quarantine with PCR testing at borders will likely improve effectiveness. Many studies suggest that effects depend on factors, such as levels of community transmission, travel volumes and duration, other public health measures in place, and the exact specification and timing of the measure. Future research should be better reported, employ a range of designs beyond modelling and assess potential benefits and harms of the travel-related control measures from a societal perspective.
Collapse
Affiliation(s)
- Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ani Movsisyan
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Jan M Stratil
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Renke Lars Biallas
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Michaela Coenen
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Karl Mf Emmert-Fees
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Munich, Germany
| | - Karin Geffert
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Sabine Hoffmann
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Olaf Horstick
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Michael Laxy
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Munich, Germany
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Carmen Klinger
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Suzie Kratzer
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Tim Litwin
- Institute for Medical Biometry and Statistics (IMBI), Freiburg Center for Data Analysis and Modeling (FDM), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susan Norris
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
- Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Pfadenhauer
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Peter von Philipsborn
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Kerstin Sell
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Julia Stadelmaier
- Institute for Evidence in Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ben Verboom
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Stephan Voss
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Katharina Wabnitz
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Eva Rehfuess
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| |
Collapse
|
3
|
Yezli S, Mushi A, Almuzaini Y, Balkhi B, Yassin Y, Khan A. Prevalence of Diabetes and Hypertension among Hajj Pilgrims: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031155. [PMID: 33525524 PMCID: PMC7908531 DOI: 10.3390/ijerph18031155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
The Hajj mass gathering is attended by over two million Muslims each year, many of whom are elderly and have underlying health conditions. Data on the number of pilgrims with health conditions would assist public health planning and improve health services delivery at the event. We carried out a systematic review of literature based on structured search in the MEDLINE/PubMed, SCOPUS and CINAHL databases, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to estimate the prevalence of diabetes and hypertension among Hajj pilgrims. Twenty-six studies conducted between 1993 and 2018 with a total of 285,467 participants were included in the review. The weighted pooled prevalence rates of hypertension and diabetes among Hajj pilgrims in all included studies were 12.2% (95% CI: 12.0-12.3) and 5.0% (95% CI: 4.9-5.1), respectively. The reported prevalence of other underlying health conditions such as chronic respiratory, kidney or liver disease, cardiovascular disease, cancer and immune deficiency were generally low. Potentially a large number of pilgrims each Hajj have diabetes and/or hypertension and other underlying health conditions. Hajj could be a great opportunity to reduce the burden of these diseases within the over 180 countries participating in the event by identifying undiagnosed cases and optimizing patients' knowledge and management of their conditions. Prospero registration number: CRD42020171082.
Collapse
Affiliation(s)
- Saber Yezli
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (A.M.); (Y.A.); (Y.Y.); (A.K.)
- Correspondence:
| | - Abdulaziz Mushi
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (A.M.); (Y.A.); (Y.Y.); (A.K.)
| | - Yasir Almuzaini
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (A.M.); (Y.A.); (Y.Y.); (A.K.)
| | - Bander Balkhi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Yara Yassin
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (A.M.); (Y.A.); (Y.Y.); (A.K.)
| | - Anas Khan
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (A.M.); (Y.A.); (Y.Y.); (A.K.)
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
4
|
Burns J, Movsisyan A, Stratil JM, Coenen M, Emmert-Fees KM, Geffert K, Hoffmann S, Horstick O, Laxy M, Pfadenhauer LM, von Philipsborn P, Sell K, Voss S, Rehfuess E. Travel-related control measures to contain the COVID-19 pandemic: a rapid review. Cochrane Database Syst Rev 2020; 10:CD013717. [PMID: 33502002 DOI: 10.1002/14651858.cd013717] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In late 2019, first cases of coronavirus disease 2019, or COVID-19, caused by the novel coronavirus SARS-CoV-2, were reported in Wuhan, China. Subsequently COVID-19 spread rapidly around the world. To contain the ensuing pandemic, numerous countries have implemented control measures related to international travel, including border closures, partial travel restrictions, entry or exit screening, and quarantine of travellers. OBJECTIVES To assess the effectiveness of travel-related control measures during the COVID-19 pandemic on infectious disease and screening-related outcomes. SEARCH METHODS We searched MEDLINE, Embase and COVID-19-specific databases, including the WHO Global Database on COVID-19 Research, the Cochrane COVID-19 Study Register, and the CDC COVID-19 Research Database on 26 June 2020. We also conducted backward-citation searches with existing reviews. SELECTION CRITERIA We considered experimental, quasi-experimental, observational and modelling studies assessing the effects of travel-related control measures affecting human travel across national borders during the COVID-19 pandemic. We also included studies concerned with severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) as indirect evidence. Primary outcomes were cases avoided, cases detected and a shift in epidemic development due to the measures. Secondary outcomes were other infectious disease transmission outcomes, healthcare utilisation, resource requirements and adverse effects if identified in studies assessing at least one primary outcome. DATA COLLECTION AND ANALYSIS One review author screened titles and abstracts; all excluded abstracts were screened in duplicate. Two review authors independently screened full texts. One review author extracted data, assessed risk of bias and appraised study quality. At least one additional review author checked for correctness of all data reported in the 'Risk of bias' assessment, quality appraisal and data synthesis. For assessing the risk of bias and quality of included studies, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for observational studies concerned with screening, ROBINS-I for observational ecological studies and a bespoke tool for modelling studies. We synthesised findings narratively. One review author assessed certainty of evidence with GRADE, and the review author team discussed ratings. MAIN RESULTS We included 40 records reporting on 36 unique studies. We found 17 modelling studies, 7 observational screening studies and one observational ecological study on COVID-19, four modelling and six observational studies on SARS, and one modelling study on SARS and MERS, covering a variety of settings and epidemic stages. Most studies compared travel-related control measures against a counterfactual scenario in which the intervention measure was not implemented. However, some modelling studies described additional comparator scenarios, such as different levels of travel restrictions, or a combination of measures. There were concerns with the quality of many modelling studies and the risk of bias of observational studies. Many modelling studies used potentially inappropriate assumptions about the structure and input parameters of models, and failed to adequately assess uncertainty. Concerns with observational screening studies commonly related to the reference test and the flow of the screening process. Studies on COVID-19 Travel restrictions reducing cross-border travel Eleven studies employed models to simulate a reduction in travel volume; one observational ecological study assessed travel restrictions in response to the COVID-19 pandemic. Very low-certainty evidence from modelling studies suggests that when implemented at the beginning of the outbreak, cross-border travel restrictions may lead to a reduction in the number of new cases of between 26% to 90% (4 studies), the number of deaths (1 study), the time to outbreak of between 2 and 26 days (2 studies), the risk of outbreak of between 1% to 37% (2 studies), and the effective reproduction number (1 modelling and 1 observational ecological study). Low-certainty evidence from modelling studies suggests a reduction in the number of imported or exported cases of between 70% to 81% (5 studies), and in the growth acceleration of epidemic progression (1 study). Screening at borders with or without quarantine Evidence from three modelling studies of entry and exit symptom screening without quarantine suggests delays in the time to outbreak of between 1 to 183 days (very low-certainty evidence) and a detection rate of infected travellers of between 10% to 53% (low-certainty evidence). Six observational studies of entry and exit screening were conducted in specific settings such as evacuation flights and cruise ship outbreaks. Screening approaches varied but followed a similar structure, involving symptom screening of all individuals at departure or upon arrival, followed by quarantine, and different procedures for observation and PCR testing over a period of at least 14 days. The proportion of cases detected ranged from 0% to 91% (depending on the screening approach), and the positive predictive value ranged from 0% to 100% (very low-certainty evidence). The outcomes, however, should be interpreted in relation to both the screening approach used and the prevalence of infection among the travellers screened; for example, symptom-based screening alone generally performed worse than a combination of symptom-based and PCR screening with subsequent observation during quarantine. Quarantine of travellers Evidence from one modelling study simulating a 14-day quarantine suggests a reduction in the number of cases seeded by imported cases; larger reductions were seen with increasing levels of quarantine compliance ranging from 277 to 19 cases with rates of compliance modelled between 70% to 100% (very low-certainty evidence). AUTHORS' CONCLUSIONS With much of the evidence deriving from modelling studies, notably for travel restrictions reducing cross-border travel and quarantine of travellers, there is a lack of 'real-life' evidence for many of these measures. The certainty of the evidence for most travel-related control measures is very low and the true effects may be substantially different from those reported here. Nevertheless, some travel-related control measures during the COVID-19 pandemic may have a positive impact on infectious disease outcomes. Broadly, travel restrictions may limit the spread of disease across national borders. Entry and exit symptom screening measures on their own are not likely to be effective in detecting a meaningful proportion of cases to prevent seeding new cases within the protected region; combined with subsequent quarantine, observation and PCR testing, the effectiveness is likely to improve. There was insufficient evidence to draw firm conclusions about the effectiveness of travel-related quarantine on its own. Some of the included studies suggest that effects are likely to depend on factors such as the stage of the epidemic, the interconnectedness of countries, local measures undertaken to contain community transmission, and the extent of implementation and adherence.
Collapse
Affiliation(s)
- Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ani Movsisyan
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Jan M Stratil
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Michaela Coenen
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Karl Mf Emmert-Fees
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Munich, Germany
| | - Karin Geffert
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Sabine Hoffmann
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Olaf Horstick
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Michael Laxy
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Munich, Germany
| | - Lisa M Pfadenhauer
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Peter von Philipsborn
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Kerstin Sell
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Stephan Voss
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Eva Rehfuess
- Institute for Medical Information Processing, Biometry and Epidemiology, IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| |
Collapse
|
5
|
Omrani A, Shalhoub S. Middle East respiratory syndrome coronavirus (MERS-CoV): what lessons can we learn? J Hosp Infect 2015. [DOI: 10.1016/j.jhin.2015.08.002 0195-6701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Abstract
The Middle East Respiratory Coronavirus (MERS-CoV) was first isolated from a patient who died with severe pneumonia in June 2012. As of 19 June 2015, a total of 1,338 MERS-CoV infections have been notified to the World Health Organization (WHO). Clinical illness associated with MERS-CoV ranges from mild upper respiratory symptoms to rapidly progressive pneumonia and multi-organ failure. A significant proportion of patients present with non-respiratory symptoms such as headache, myalgia, vomiting and diarrhoea. A few potential therapeutic agents have been identified but none have been conclusively shown to be clinically effective. Human to human transmission is well documented, but the epidemic potential of MERS-CoV remains limited at present. Healthcare-associated clusters of MERS-CoV have been responsible for the majority of reported cases. The largest outbreaks have been driven by delayed diagnosis, overcrowding and poor infection control practices. However, chains of MERS-CoV transmission can be readily interrupted with implementation of appropriate control measures. As with any emerging infectious disease, guidelines for MERS-CoV case identification and surveillance evolved as new data became available. Sound clinical judgment is required to identify unusual presentations and trigger appropriate control precautions. Evidence from multiple sources implicates dromedary camels as natural hosts of MERS-CoV. Camel to human transmission has been demonstrated, but the exact mechanism of infection remains uncertain. The ubiquitously available social media have facilitated communication and networking amongst healthcare professionals and eventually proved to be important channels for presenting the public with factual material, timely updates and relevant advice.
Collapse
|
7
|
Omrani AS, Shalhoub S. Middle East respiratory syndrome coronavirus (MERS-CoV): what lessons can we learn? J Hosp Infect 2015; 91:188-96. [PMID: 26452615 PMCID: PMC7114843 DOI: 10.1016/j.jhin.2015.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/12/2023]
Abstract
The Middle East Respiratory Coronavirus (MERS-CoV) was first isolated from a patient who died with severe pneumonia in June 2012. As of 19 June 2015, a total of 1,338 MERS-CoV infections have been notified to the World Health Organization (WHO). Clinical illness associated with MERS-CoV ranges from mild upper respiratory symptoms to rapidly progressive pneumonia and multi-organ failure. A significant proportion of patients present with non-respiratory symptoms such as headache, myalgia, vomiting and diarrhoea. A few potential therapeutic agents have been identified but none have been conclusively shown to be clinically effective. Human to human transmission is well documented, but the epidemic potential of MERS-CoV remains limited at present. Healthcare-associated clusters of MERS-CoV have been responsible for the majority of reported cases. The largest outbreaks have been driven by delayed diagnosis, overcrowding and poor infection control practices. However, chains of MERS-CoV transmission can be readily interrupted with implementation of appropriate control measures. As with any emerging infectious disease, guidelines for MERS-CoV case identification and surveillance evolved as new data became available. Sound clinical judgment is required to identify unusual presentations and trigger appropriate control precautions. Evidence from multiple sources implicates dromedary camels as natural hosts of MERS-CoV. Camel to human transmission has been demonstrated, but the exact mechanism of infection remains uncertain. The ubiquitously available social media have facilitated communication and networking amongst healthcare professionals and eventually proved to be important channels for presenting the public with factual material, timely updates and relevant advice.
Collapse
Affiliation(s)
- A S Omrani
- Department of Medicine, Section of Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - S Shalhoub
- Department of Medicine, Division of Infectious Diseases, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Gautret P, Gray GC, Charrel RN, Odezulu NG, Al-Tawfiq JA, Zumla A, Memish ZA. Emerging viral respiratory tract infections--environmental risk factors and transmission. THE LANCET. INFECTIOUS DISEASES 2014; 14:1113-1122. [PMID: 25189350 PMCID: PMC7106556 DOI: 10.1016/s1473-3099(14)70831-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past decade has seen the emergence of several novel viruses that cause respiratory tract infections in human beings, including Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia, an H7N9 influenza A virus in eastern China, a swine-like influenza H3N2 variant virus in the USA, and a human adenovirus 14p1 also in the USA. MERS-CoV and H7N9 viruses are still a major worldwide public health concern. The pathogenesis and mode of transmission of MERS-CoV and H7N9 influenza A virus are poorly understood, making it more difficult to implement intervention and preventive measures. A united and coordinated global response is needed to tackle emerging viruses that can cause fatal respiratory tract infections and to fill major gaps in the understanding of the epidemiology and transmission dynamics of these viruses.
Collapse
Affiliation(s)
- Philippe Gautret
- Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Faculté de Médecine, Marseille, France.
| | - Gregory C Gray
- College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Remi N Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR-D 190 "Emergence des Pathologies Virales" and IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Nnanyelugo G Odezulu
- College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Jaffar A Al-Tawfiq
- Johns Hopkins Aramco Healthcare, and Indiana University School of Medicine, Indiana, USA
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, and NIHR Biomedical Research Center, University College London Hospitals, London, UK
| | - Ziad A Memish
- WHO Collaborating Center for Mass Gathering Medicine Ministry of Health and Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Pavli A, Tsiodras S, Maltezou HC. Middle East respiratory syndrome coronavirus (MERS-CoV): prevention in travelers. Travel Med Infect Dis 2014; 12:602-8. [PMID: 25457301 PMCID: PMC7110598 DOI: 10.1016/j.tmaid.2014.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), a novel coronavirus that causes a severe lower respiratory tract infection in humans, emerged in the Middle East in 2012. Since then, MERS-CoV has caused an ongoing epidemic in the Arabian Peninsula with sporadic cases imported in Europe, North Africa, Southeast Asia, and the United States of America. As of 28th May 2014, 636 laboratory-confirmed cases of infection with MERS-CoV have been reported to World Health Organization including 14 cases imported by travelers. The epicenter of the current MERS-CoV epidemic is located in Saudi Arabia, where millions of pilgrims travel for two mass gatherings annually. In this review we summarize MERS-CoV cases in relation to travel with focus on the epidemiology and prevention in travelers. It is important to increase awareness of travelers about the risks and appropriate preventive measures and for health professionals to be on alert if a patient with severe respiratory symptoms reports a recent history of travel to the region affected with MERS-CoV. Measures should be taken by local health authorities of the affected countries in order to improve hospital hygiene. Finally, it is crucial to investigate the reasons for travelers' poor compliance with rules and recommendations issued by Saudi officials and to take appropriate measures in order to improve them.
Collapse
Affiliation(s)
| | - Sotirios Tsiodras
- Hellenic Center for Disease Control and Prevention, Athens, Greece; University of Athens Medical School, Athens, Greece
| | - Helena C Maltezou
- Department for Interventions in Health Care Facilities, Athens, Greece.
| |
Collapse
|
10
|
Mackey TK, Liang BA, Cuomo R, Hafen R, Brouwer KC, Lee DE. Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin Microbiol Rev 2014; 27:949-79. [PMID: 25278579 PMCID: PMC4187634 DOI: 10.1128/cmr.00045-14] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In global health, critical challenges have arisen from infectious diseases, including the emergence and reemergence of old and new infectious diseases. Emergence and reemergence are accelerated by rapid human development, including numerous changes in demographics, populations, and the environment. This has also led to zoonoses in the changing human-animal ecosystem, which are impacted by a growing globalized society where pathogens do not recognize geopolitical borders. Within this context, neglected tropical infectious diseases have historically lacked adequate attention in international public health efforts, leading to insufficient prevention and treatment options. This subset of 17 infectious tropical diseases disproportionately impacts the world's poorest, represents a significant and underappreciated global disease burden, and is a major barrier to development efforts to alleviate poverty and improve human health. Neglected tropical diseases that are also categorized as emerging or reemerging infectious diseases are an even more serious threat and have not been adequately examined or discussed in terms of their unique risk characteristics. This review sets out to identify emerging and reemerging neglected tropical diseases and explore the policy and innovation environment that could hamper or enable control efforts. Through this examination, we hope to raise awareness and guide potential approaches to addressing this global health concern.
Collapse
Affiliation(s)
- Tim K Mackey
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Division of Global Public Health, University of California, San Diego, Department of Medicine, San Diego, California, USA
| | - Bryan A Liang
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Raphael Cuomo
- Joint Doctoral Program in Global Public Health, University of California, San Diego, and San Diego State University, San Diego, California, USA
| | - Ryan Hafen
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Internal Medicine, University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Kimberly C Brouwer
- Division of Global Public Health, University of California, San Diego, Department of Medicine, San Diego, California, USA
| | - Daniel E Lee
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Pediatrics Department, University of California, San Diego, School of Medicine, San Diego, California, USA
| |
Collapse
|
11
|
Abstract
First reported in September 2012, the Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) has resulted in 206 laboratory-confirmed deaths, with a 42% mortality rate as of 27 March 2014. Closely related coronaviruses have been isolated in bats, but most evidence suggests that humans have become infected directly from camels in a number of separate transmission events, with limited human-to-human transmission reported thus far. The majority of cases originated in the Middle East (predominantly Saudi Arabia), including all the index cases. Clinical manifestations primarily involve fever, chills, and rapidly progressive respiratory failure, often resulting in an acute respiratory distress syndrome, with a minority of patients reporting gastrointestinal symptoms, as well. The majority of critically ill patients are older males with medical co-morbidities, and a large number of minimally symptomatic cases likely go undetected. Unfortunately, attempted therapies have all been unsuccessful thus far, and treatment remains supportive care.
Collapse
Affiliation(s)
- Joshua White
- Virginia Commonwealth University Health Systems, Richmond, Virginia
| |
Collapse
|
12
|
Benkouiten S, Brouqui P, Gautret P. Non-pharmaceutical interventions for the prevention of respiratory tract infections during Hajj pilgrimage. Travel Med Infect Dis 2014; 12:429-42. [PMID: 24999278 PMCID: PMC7110686 DOI: 10.1016/j.tmaid.2014.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/27/2022]
Abstract
Overcrowding during the yearly Hajj mass gatherings is associated with increased risk of spreading infectious diseases, particularly respiratory diseases. Non-pharmaceutical interventions (e.g., hand hygiene, wearing face masks, social distancing) are known to reduce the spread of respiratory viruses from person to person and are therefore recommended to pilgrims by public health agencies. The implementation of effective public health policies and recommendations involves evaluating the adherence to and effectiveness of these measures in the specific context of the Hajj. This review summarizes the evidence related to the effectiveness of non-pharmaceutical interventions in preventing the spread of respiratory infectious diseases during the Hajj. Overall, although hand hygiene compliance is high among pilgrims, face mask use and social distancing remain difficult challenges. Data about the effectiveness of these measures at the Hajj are limited, and results are contradictory, highlighting the need for future large-scale studies.
Collapse
Affiliation(s)
- Samir Benkouiten
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France
| | - Philippe Brouqui
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France
| | - Philippe Gautret
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
13
|
Khalid M, Al Rabiah F, Khan B, Al Mobeireek A, Butt TS, Al Mutairy E. Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases. Antivir Ther 2014; 20:87-91. [PMID: 24831606 DOI: 10.3851/imp2792] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly recognized transmissible viral infection with high virulence and case fatality rates for which there is no currently defined primary treatment or prophylaxis. Saudi Arabia has the largest reported number of cases so far. Like severe acute respiratory syndrome (SARS), MERS is caused by a coronavirus. Combination therapy with interferon-α2b and ribavirin has been used successfully as primary treatment and prophylaxis in SARS. Because of similarities between the two coronaviruses, treatment with ribavarin and interferon-α2b has been suggested as a potential therapy for MERS-CoV. Studies in animal models of MERS-CoV have shown the combination of ribavirin and interferon-α2b to be effective both as primary treatment and prophylaxis. In this report, we describe for the first time use of this combination as a primary treatment for a patient with MERS-CoV infection and as prophylaxis for his spouse and discuss its possible role.
Collapse
Affiliation(s)
- Mohammed Khalid
- Section of Pulmonary Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
14
|
Gautret P, Benkouiten S, Salaheddine I, Belhouchat K, Drali T, Parola P, Brouqui P. Hajj pilgrims knowledge about Middle East respiratory syndrome coronavirus, August to September 2013. ACTA ACUST UNITED AC 2013; 18:20604. [PMID: 24135123 DOI: 10.2807/1560-7917.es2013.18.41.20604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In preparation for Hajj 2013, 360 French pilgrims were interviewed regarding their knowledge about Middle East respiratory syndrome (MERS). Respondents were aged 20–85 years, male-female ratio was 1.05:1;64.7% were aware of the MERS situation in Saudi Arabia; 35.3% knew about the Saudi Ministry of Health recommendations for at-risk pilgrims to postpone participation in the 2013 Hajj. None of 179 at-risk individuals(49.9%) decided to cancel their Hajj participation even after advice during consultation.
Collapse
Affiliation(s)
- P Gautret
- Aix Marseille Universite, Unite de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Marseille, France
| | | | | | | | | | | | | |
Collapse
|