1
|
Abdi H, Sanchez-Molina D, Garcia-Vilana S, Rahimi-Movaghar V. Biomechanical perspectives on traumatic brain injury in the elderly: a comprehensive review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022001. [PMID: 39761631 DOI: 10.1088/2516-1091/ada654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025]
Abstract
Traumatic brain injuries (TBIs) pose a significant health concern among the elderly population, influenced by age-related physiological changes and the prevalence of neurodegenerative diseases. Understanding the biomechanical dimensions of TBIs in this demographic is vital for developing effective preventive strategies and optimizing clinical management. This comprehensive review explores the intricate biomechanics of TBIs in the elderly, integrating medical and aging studies, experimental biomechanics of head tissues, and numerical simulations. Research reveals that global brain atrophy in normal aging occurs at annual rates of -0.2% to -0.5%. In contrast, neurodegenerative diseases such as Alzheimer's, Parkinson's, and multiple sclerosis are associated with significantly higher rates of brain atrophy. These variations in atrophy rates underscore the importance of considering differing brain atrophy patterns when evaluating TBIs among the elderly. Experimental studies further demonstrate that age-related changes in the mechanical properties of critical head tissues increase vulnerability to head injuries. Numerical simulations provide insights into the biomechanical response of the aging brain to traumatic events, aiding in injury prediction and preventive strategy development tailored to the elderly. Biomechanical analysis is essential for understanding injury mechanisms and forms the basis for developing effective preventive strategies. By incorporating local atrophy and age-specific impact characteristics into biomechanical models, researchers can create targeted interventions to reduce the risk of head injuries in vulnerable populations. Future research should focus on refining these models and integrating clinical data to better predict outcomes and enhance preventive care. Advancements in this field promise to improve health outcomes and reduce injury risks for the aging population.
Collapse
Affiliation(s)
- Hamed Abdi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Blaylock RL. Immunoexcitoxicity as the possible major pathophysiology behind multiple sclerosis and other autoimmune disorders. Surg Neurol Int 2025; 16:26. [PMID: 39926461 PMCID: PMC11799683 DOI: 10.25259/sni_1114_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Autoimmune disorders are destructive processes considered to be an attack on "self " antigens by the immune system CD-+4 T-cells that are directed toward antigens, in the case of multiple sclerosis (MS), particularly myelin antigens. Yet, there is growing evidence that the major destructive events in MS, as well as other non-central nervous system (CNS) autoimmune disorders, are much more than an immune attack on the CNS initiated by a misdirected immune system that attacks a "self " antigen or antigens by a process called molecular mimicry. Extensive evidence suggests that inflammation, in turn, initiates excitotoxicity, which is responsible for the majority of pathological findings in all stages of the disease, especially a loss of oligodendroglia (source of myelin) and axon injury in MS. Excitotoxicity also is a better explanation for progressive MS, in which the immune attack has either slowed or is halted; yet, the destructive pathology continues to progress. It also explains the destructive lesions seen in gray matter, which is essentially devoid of inflammation. It has recently been shown that most of the damage to the oligodendrocytes, as well as axonal injury, is secondary to excitotoxicity. While there is a growing appreciation that excitotoxicity plays a major role, there has been little effort to link the immune changes to the excitotoxic process, recently named immunoexcitotoxicity, even though the role of excitotoxicity has been shown to occur in the inflammatory stage in the beginning and throughout the process of the disease, particularly the chronic progressive stage. It is also known that peripheral glutamate receptors exist throughout the body, thus making the process of immunoexcitotoxicity a possible integral part of all or most autoimmune disorders in which the immune system is intimately linked to enhancing the excitotoxic process. This is of special concern now that peripheral glutamate receptors have been isolated in many peripheral tissues and are known to be fully functional.
Collapse
|
3
|
De Jager P, Zeng L, Khan A, Lama T, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. RESEARCH SQUARE 2025:rs.3.rs-5644532. [PMID: 39866869 PMCID: PMC11760239 DOI: 10.21203/rs.3.rs-5644532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type. The expression of IL7 and STAT3 are affected only in inhibitory neurons, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
| | - Lu Zeng
- Columbia University Irving Medical Center
| | | | | | | | | | | | | | - Frauke Zipp
- University Medical Center of the Johannes Gutenberg University Mainz
| | - Mariko Taga
- Center for Translational & Computational Neuroimmunology
| | | |
Collapse
|
4
|
Zeng L, Atlas K, Lama T, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K, De Jager PL. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318500. [PMID: 39677438 PMCID: PMC11643295 DOI: 10.1101/2024.12.04.24318500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
- Lu Zeng
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Khan Atlas
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Tsering Lama
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tanuja Chitnis
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Howard Weiner
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Gao Wang
- The Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Frauke Zipp
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Hernandez ME, Motl RW, Foley FW, Picone MA, Izzetoglu M, Lipton ML, Wagshul M, Holtzer R. Disability Moderates Dual Task Walking Performance and Neural Efficiency in Older Adults With Multiple Sclerosis. Neurorehabil Neural Repair 2024; 38:795-807. [PMID: 39177188 PMCID: PMC11970354 DOI: 10.1177/15459683241273411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Mobility and cognitive impairment are prevalent and co-occurring in older adults with multiple sclerosis (OAMS), yet there is limited research concerning the role of disability status in the cognitive control of gait among OAMS. OBJECTIVE We investigated the levels of prefrontal cortex (PFC) activation, using oxygenated hemoglobin (HbO2), during cognitively-demanding tasks in OAMS with lower and higher disability using functional near-infrared spectroscopy (fNIRS) to: (1) identify PFC activation differences in single task walk and cognitively-demanding tasks in OAMS with different levels of disability; and (2) evaluate if disability may moderate practice-related changes in neural efficiency in OAMS. METHODS We gathered data from OAMS with lower (n = 51, age = 65 ± 4 years) or higher disability (n = 48, age = 65 ± 5 years), using a cutoff of 3 or more, in the Patient Determined Disease Steps, for higher disability, under 3 different conditions (single-task walk, Single-Task-Alpha, and Dual-Task-Walk [DTW]) administered over 3 counterbalanced, repeated trials. RESULTS OAMS who had a lower disability level exhibited decreased PFC activation levels during Single-Task-Walk (STW) and larger increases in PFC activation levels, when going from STW to a cognitively-demanding task, such as a DTW, than those with higher disability. OAMS with a lower disability level exhibited greater declines in PFC activation levels with additional within session practice than those with a higher disability level. CONCLUSIONS These findings suggest that disability moderates brain adaptability to cognitively-demanding tasks and demonstrate the potential for fNIRS-derived outcome measures to complement neurorehabilitation outcomes.
Collapse
Affiliation(s)
- Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, United States
| | - Mary Ann Picone
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, United States
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, United States
| | - Michael L Lipton
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Zivadinov R, Tranquille A, Reeves JA, Dwyer MG, Bergsland N. Brain atrophy assessment in multiple sclerosis: technical- and subject-related barriers for translation to real-world application in individual subjects. Expert Rev Neurother 2024; 24:1081-1096. [PMID: 39233336 DOI: 10.1080/14737175.2024.2398484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Brain atrophy is a well-established MRI outcome for predicting clinical progression and monitoring treatment response in persons with multiple sclerosis (pwMS) at the group level. Despite the important progress made, the translation of brain atrophy assessment into clinical practice faces several challenges. AREAS COVERED In this review, the authors discuss technical- and subject-related barriers for implementing brain atrophy assessment as part of the clinical routine at the individual level. Substantial progress has been made to understand and mitigate technical barriers behind MRI acquisition. Numerous research and commercial segmentation techniques for volume estimation are available and technically validated, but their clinical value has not been fully established. A systematic assessment of subject-related barriers, which include genetic, environmental, biological, lifestyle, comorbidity, and aging confounders, is critical for the interpretation of brain atrophy measures at the individual subject level. Educating both medical providers and pwMS will help better clarify the benefits and limitations of assessing brain atrophy for disease monitoring and prognosis. EXPERT OPINION Integrating brain atrophy assessment into clinical practice for pwMS requires overcoming technical and subject-related challenges. Advances in MRI standardization, artificial intelligence, and clinician education will facilitate this process, improving disease management and potentially reducing long-term healthcare costs.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ashley Tranquille
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
7
|
Zivadinov R, Keenan AJ, Le HH, Ait-Tihyaty M, Gandhi K, Zierhut ML, Salvo-Halloran EM, Ramirez AO, Vuong V, Singh S, Hutton B. Brain volume loss in relapsing multiple sclerosis: indirect treatment comparisons of available disease-modifying therapies. BMC Neurol 2024; 24:378. [PMID: 39379875 PMCID: PMC11460132 DOI: 10.1186/s12883-024-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Brain volume loss (BVL) has been identified as a predictor of disability progression in relapsing multiple sclerosis (RMS). As many available disease-modifying treatments (DMTs) have shown an effect on slowing BVL, this is becoming an emerging clinical endpoint in RMS clinical trials. METHODS In this study, a systematic literature review was conducted to identify BVL results from randomized controlled trials of DMTs in RMS. Indirect treatment comparisons (ITCs) were conducted to estimate the relative efficacy of DMTs on BVL using two approaches: a model-based meta-analysis (MBMA) with adjustment for measurement timepoint and DMT dosage, and a network meta-analysis (NMA). RESULTS In the MBMA, DMTs associated with significantly reduced BVL versus placebo at two years included fingolimod (mean difference [MD] = 0.25; 95% confidence interval [CI] = 0.15 - 0.36), ozanimod (MD = 0.26; 95% CI = 0.12 - 0.41), teriflunomide (MD = 0.38; 95% CI = 0.20 - 0.55), alemtuzumab (MD = 0.38; 95% CI = 0.10 - 0.67) and ponesimod (MD = 0.71; 95% CI = 0.48 - 0.95), whereas interferons and natalizumab performed the most poorly. The results of NMA analysis were generally comparable with those of the MBMA. CONCLUSIONS Limitations of these analyses included the potential for confounding due to pseudoatrophy, and a lack of long-term clinical data for BVL. Our findings suggest that important differences in BVL may exist between DMTs. Continued investigation of BVL in studies of RMS is important to complement traditional disability endpoints, and to foster a better understanding of the mechanisms by which DMTs can slow BVL.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander J Keenan
- Janssen Scientific Affairs, Janssen Pharmaceuticals, Titusville, NJ, USA.
| | - Hoa H Le
- Janssen Scientific Affairs, Janssen Pharmaceuticals, Titusville, NJ, USA
| | | | | | | | | | | | - Vivian Vuong
- EVERSANA, Value & Evidence Services, Burlington, ON, Canada
| | - Sumeet Singh
- EVERSANA, Value & Evidence Services, Burlington, ON, Canada
| | - Brian Hutton
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
8
|
Reinhardt C, Angstwurm K, Freudenstein D, Lee DH, Wendl C, Linker RA. Real-world analysis of brain atrophy in multiple sclerosis patients with an artificial intelligence based software tool. Neurol Res Pract 2024; 6:40. [PMID: 39113151 PMCID: PMC11308334 DOI: 10.1186/s42466-024-00339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Atrophy of white and grey matter volumes occurs early in the brains of people with multiple sclerosis (pwMS) and has great clinical relevance. In clinical trials, brain atrophy can be quantified by magnetic resonance imaging (MRI) with automated software tools. METHODS In this study, we analyze volumes of various brain regions with the software "md brain" based on routine MRI scans of 53 pwMS in a real-world setting. We compare brain volumes of pwMS with an EDSS ≥ 3.5 and a disease duration ≥ 10 years to the brain volumes of pwMS with an EDSS < 3.5 and a disease duration < 10 years as well as with or without immunotherapy. RESULTS pwMS with an EDSS ≥ 3.5 and a disease duration ≥ 10 years had significantly lower volumes of the total brain, the grey matter and of the frontal, temporal, parietal and occipital lobe regions as compared to pwMS with an EDSS < 3.5 and a disease duration < 10 years. Regional brain volumes were significantly lower in pwMS without immunotherapy. CONCLUSIONS The study showed that higher EDSS, longer disease duration and absence of immunotherapy was associated with lower volumes in a number of brain regions. Further real-world studies may include larger patient cohorts in longitudinal analyses.
Collapse
Affiliation(s)
- Caroline Reinhardt
- Department of Neurology, University of Regensburg, Universitätsstr. 84, 93053, Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Universitätsstr. 84, 93053, Regensburg, Germany
| | - David Freudenstein
- Department of Neurology, University of Regensburg, Universitätsstr. 84, 93053, Regensburg, Germany
| | - De-Hyung Lee
- Department of Neurology, University of Regensburg, Universitätsstr. 84, 93053, Regensburg, Germany
| | - Christina Wendl
- Department of Neuroradiology, University of Regensburg, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Universitätsstr. 84, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Jellinger KA. Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms. J Neural Transm (Vienna) 2024; 131:871-899. [PMID: 38761183 DOI: 10.1007/s00702-024-02786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated disease of the central nervous system characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of clinical symptoms, cognitive impairment (CI) is a common and disabling feature greatly affecting the patients' quality of life. Its prevalence is 20% up to 88% with a wide variety depending on the phenotype of MS, with highest frequency and severity in primary progressive MS. Involving different cognitive domains, CI is often associated with depression and other neuropsychiatric symptoms, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. While no specific neuropathological data for CI in MS are available, modern research has provided evidence that it arises from the disease-specific brain alterations. Multimodal neuroimaging, besides structural changes of cortical and deep subcortical gray and white matter, exhibited dysfunction of fronto-parietal, thalamo-hippocampal, default mode and cognition-related networks, disruption of inter-network connections and involvement of the γ-aminobutyric acid (GABA) system. This provided a conceptual framework to explain how aberrant pathophysiological processes, including oxidative stress, mitochondrial dysfunction, autoimmune reactions and disruption of essential signaling pathways predict/cause specific disorders of cognition. CI in MS is related to multi-regional patterns of cerebral disturbances, although its complex pathogenic mechanisms await further elucidation. This article, based on systematic analysis of PubMed, Google Scholar and Cochrane Library, reviews current epidemiological, clinical, neuroimaging and pathogenetic evidence that could aid early identification of CI in MS and inform about new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
10
|
Suwannasak A, Angkurawaranon S, Sangpin P, Chatnuntawech I, Wantanajittikul K, Yarach U. Deep learning-based super-resolution of structural brain MRI at 1.5 T: application to quantitative volume measurement. MAGMA (NEW YORK, N.Y.) 2024; 37:465-475. [PMID: 38758489 DOI: 10.1007/s10334-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE This study investigated the feasibility of using deep learning-based super-resolution (DL-SR) technique on low-resolution (LR) images to generate high-resolution (HR) MR images with the aim of scan time reduction. The efficacy of DL-SR was also assessed through the application of brain volume measurement (BVM). MATERIALS AND METHODS In vivo brain images acquired with 3D-T1W from various MRI scanners were utilized. For model training, LR images were generated by downsampling the original 1 mm-2 mm isotropic resolution images. Pairs of LR and HR images were used for training 3D residual dense net (RDN). For model testing, actual scanned 2 mm isotropic resolution 3D-T1W images with one-minute scan time were used. Normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used for model evaluation. The evaluation also included brain volume measurement, with assessments of subcortical brain regions. RESULTS The results showed that DL-SR model improved the quality of LR images compared with cubic interpolation, as indicated by NRMSE (24.22% vs 30.13%), PSNR (26.19 vs 24.65), and SSIM (0.96 vs 0.95). For volumetric assessments, there were no significant differences between DL-SR and actual HR images (p > 0.05, Pearson's correlation > 0.90) at seven subcortical regions. DISCUSSION The combination of LR MRI and DL-SR enables addressing prolonged scan time in 3D MRI scans while providing sufficient image quality without affecting brain volume measurement.
Collapse
Affiliation(s)
- Atita Suwannasak
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intavaroros Road, Muang, Chiang Mai, 50200, Thailand
| | - Salita Angkurawaranon
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Intavaroros Road, Muang, Chiang Mai, Thailand
| | - Prapatsorn Sangpin
- Philips (Thailand) Ltd, New Petchburi Road, Bangkapi, Huaykwang, Bangkok, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center (NANOTEC), Phahon Yothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Kittichai Wantanajittikul
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intavaroros Road, Muang, Chiang Mai, 50200, Thailand
| | - Uten Yarach
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intavaroros Road, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
Wu X, Wang S, Xue T, Tan X, Li J, Chen Z, Wang Z. Disease-modifying therapy in progressive multiple sclerosis: a systematic review and network meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1295770. [PMID: 38529035 PMCID: PMC10962394 DOI: 10.3389/fneur.2024.1295770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Background Currently, disease-modifying therapies (DMTs) for progressive multiple sclerosis (PMS) are widely used in clinical practice. At the same time, there are a variety of drug options for DMTs, but the effect of the drugs that can better relieve symptoms and improve the prognosis are still inconclusive. Objectives This systematic review aimed to evaluate the efficacy and safety of DMTs for PMS and to identify the best among these drugs. Methods MEDLINE, EMBASE, the Cochrane Library, and clinicaltrials.gov were systematically searched to identify relevant studies published before 30 January, 2023. We assessed the certainty of the evidence using the confidence in the network meta-analysis (CINeMA) framework. We estimated the summary risk ratio (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes with 95% credible intervals (CrIs). Results We included 18 randomized controlled trials (RCTs) involving 9,234 patients in the study. DMT can effectively control the disease progression of MS. Among them, mitoxantrone, siponimod, and ocrelizumab are superior to other drug options in delaying disease progression (high certainty). Mitoxantrone was the best (with high certainty) for mitigating deterioration (progression of disability). Ocrelizumab performed best on the pre- and post-treatment Timed 25-Foot Walk test (T25FW; low certainty), as did all other agents (RR range: 1.12-1.05). In the 9-Hole Peg Test (9HPT), natalizumab performed the best (high certainty), as did all other agents (RR range: 1.59-1.09). In terms of imaging, IFN-beta-1b performed better on the new T2 hypointense lesion on contrast, before and after treatment (high certainty), while siponimod performed best on the change from baseline in the total volume of lesions on T2-weighted image contrast before and after treatment (high certainty), and sWASO had the highest area under the curve (SUCRA) value (100%). In terms of adverse events (AEs), rituximab (RR 1.01), and laquinimod (RR 1.02) were more effective than the placebo (high certainty). In terms of serious adverse events (SAEs), natalizumab (RR 1.09), and ocrelizumab (RR 1.07) were safer than placebo (high certainty). Conclusion DMTs can effectively control disease progression and reduce disease deterioration during the treatment of PMS. Systematic review registration https://inplasy.com/?s=202320071, identifier: 202320071.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shixin Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Tan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Jiaxuan Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Siger M, Wydra J, Wildner P, Podyma M, Puzio T, Matera K, Stasiołek M, Świderek-Matysiak M. Differences in Brain Atrophy Pattern between People with Multiple Sclerosis and Systemic Diseases with Central Nervous System Involvement Based on Two-Dimensional Linear Measures. J Clin Med 2024; 13:333. [PMID: 38256467 PMCID: PMC10816254 DOI: 10.3390/jcm13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Conventional brain magnetic resonance imaging (MRI) in systemic diseases with central nervous system involvement (SDCNS) may imitate MRI findings of multiple sclerosis (MS). In order to better describe the MRI characteristics of these conditions, in our study we assessed brain volume parameters in MS (n = 58) and SDCNS (n = 41) patients using two-dimensional linear measurements (2DLMs): bicaudate ratio (BCR), corpus callosum index (CCI) and width of third ventricle (W3V). In SDCNS patients, all 2DLMs were affected by age (CCI p = 0.005, BCR p < 0.001, W3V p < 0.001, respectively), whereas in MS patients only BCR and W3V were (p = 0.001 and p = 0.015, respectively). Contrary to SDCNS, in the MS cohort BCR and W3V were associated with T1 lesion volume (T1LV) (p = 0.020, p = 0.009, respectively) and T2 lesion volume (T2LV) (p = 0.015, p = 0.009, respectively). CCI was associated with T1LV in the MS cohort only (p = 0.015). Moreover, BCR was significantly higher in the SDCNS group (p = 0.01) and CCI was significantly lower in MS patients (p = 0.01). The best predictive model to distinguish MS and SDCNS encompassed gender, BCR and T2LV as the explanatory variables (sensitivity 0.91; specificity 0.68; AUC 0.86). Implementation of 2DLMs in the brain MRI analysis of MS and SDCNS patients allowed for the identification of diverse patterns of local brain atrophy in these clinical conditions.
Collapse
Affiliation(s)
- Małgorzata Siger
- Department of Neurology, Medical University of Lodz, Kopcinskiego Street 22, 90-414 Lodz, Poland; (M.S.); (P.W.); (M.Ś.-M.)
| | - Jacek Wydra
- Pixel Technology LLC, Piekna 1, 93-558 Lodz, Poland; (J.W.); (M.P.); (T.P.); (K.M.)
| | - Paula Wildner
- Department of Neurology, Medical University of Lodz, Kopcinskiego Street 22, 90-414 Lodz, Poland; (M.S.); (P.W.); (M.Ś.-M.)
| | - Marek Podyma
- Pixel Technology LLC, Piekna 1, 93-558 Lodz, Poland; (J.W.); (M.P.); (T.P.); (K.M.)
| | - Tomasz Puzio
- Pixel Technology LLC, Piekna 1, 93-558 Lodz, Poland; (J.W.); (M.P.); (T.P.); (K.M.)
| | - Katarzyna Matera
- Pixel Technology LLC, Piekna 1, 93-558 Lodz, Poland; (J.W.); (M.P.); (T.P.); (K.M.)
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kopcinskiego Street 22, 90-414 Lodz, Poland; (M.S.); (P.W.); (M.Ś.-M.)
| | - Mariola Świderek-Matysiak
- Department of Neurology, Medical University of Lodz, Kopcinskiego Street 22, 90-414 Lodz, Poland; (M.S.); (P.W.); (M.Ś.-M.)
| |
Collapse
|
13
|
Cacciaguerra L, Rocca MA, Filippi M. Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Korean J Radiol 2023; 24:1260-1283. [PMID: 38016685 PMCID: PMC10700997 DOI: 10.3348/kjr.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 11/30/2023] Open
Abstract
Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
14
|
Nold AK, Wittayer M, Weber CE, Platten M, Gass A, Eisele P. Short-term brain atrophy evolution after initiation of immunotherapy in a real-world multiple sclerosis cohort. J Neuroimaging 2023; 33:904-908. [PMID: 37491626 DOI: 10.1111/jon.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND AND PURPOSE In multiple sclerosis (MS), brain atrophy measurements have emerged as an important biomarker reflecting neurodegeneration and disability progression. However, due to several potential confounders, investigation of brain atrophy in clinical routine and even in controlled clinical studies can be challenging. The aim of this study was to investigate the short-term dynamics of brain atrophy development after initiation of disease-modifying therapy (DMT) in a "real-world setting." METHODS In this retrospective study, we included MS patients starting DMT (natalizumab, fingolimod, dimethyl fumarate, or interferon-ß1a) or without DMT, availability of a baseline MRI, and two annual follow-up scans on the same MRI system. Two-timepoint percentage brain volume changes (PBVCs) were calculated. RESULTS Fifty-five MS patients (12 patients starting DMT with natalizumab, 7 fingolimod, 14 dimethyl fumarate, 11 interferon-ß1a, and 11 patients without DMT) were included. We found the highest PBVCs in the first 12 months after initiation of natalizumab treatment. Furthermore, the PBVCs in our study were very much comparable to the results observed by other groups, as well as for fingolimod, dimethyl fumarate, and interferon-ß1a. CONCLUSION We found PBVCs that are comparable to the results of previous studies, suggesting that brain atrophy, assessed on 3D MRI data sets acquired on the same 3T MRI, provides a robust MS biomarker.
Collapse
Affiliation(s)
- Ann-Kathrin Nold
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Matthias Wittayer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Claudia E Weber
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| |
Collapse
|
15
|
Loomis SJ, Sadhu N, Fisher E, Gafson AR, Huang Y, Yang C, Hughes EE, Marshall E, Herman A, John S, Runz H, Jia X, Bhangale T, Bronson PG. Genome-wide study of longitudinal brain imaging measures of multiple sclerosis progression across six clinical trials. Sci Rep 2023; 13:14313. [PMID: 37652990 PMCID: PMC10471679 DOI: 10.1038/s41598-023-41099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
While the genetics of MS risk susceptibility are well-described, and recent progress has been made on the genetics of disease severity, the genetics of disease progression remain elusive. We therefore investigated the genetic determinants of MS progression on longitudinal brain MRI: change in brain volume (BV) and change in T2 lesion volume (T2LV), reflecting progressive tissue loss and increasing disease burden, respectively. We performed genome-wide association studies of change in BV (N = 3401) and change in T2LV (N = 3513) across six randomized clinical trials from Biogen and Roche/Genentech: ADVANCE, ASCEND, DECIDE, OPERA I & II, and ORATORIO. Analyses were adjusted for randomized treatment arm, age, sex, and ancestry. Results were pooled in a meta-analysis, and were evaluated for enrichment of MS risk variants. Variant colocalization and cell-specific expression analyses were performed using published cohorts. The strongest peaks were in PTPRD (rs77321193-C/A, p = 3.9 × 10-7) for BV change, and NEDD4L (rs11398377-GC/G, p = 9.3 × 10-8) for T2LV change. Evidence of colocalization was observed for NEDD4L, and both genes showed increased expression in neuronal and/or glial populations. No association between MS risk variants and MRI outcomes was observed. In this unique, precompetitive industry partnership, we report putative regions of interest in the neurodevelopmental gene PTPRD, and the ubiquitin ligase gene NEDD4L. These findings are distinct from known MS risk genetics, indicating an added role for genetic progression analyses and informing drug discovery.
Collapse
|
16
|
Chylińska M, Komendziński J, Wyszomirski A, Karaszewski B. Brain Atrophy as an Outcome of Disease-Modifying Therapy for Remitting-Relapsing Multiple Sclerosis. Mult Scler Int 2023; 2023:4130557. [PMID: 37693228 PMCID: PMC10484652 DOI: 10.1155/2023/4130557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Currently, clinical trials of DMTs strive to determine their effect on neuroinflammation and neurodegeneration. We aimed to determine the impact of currently used DMTs on brain atrophy and disability in RRMS. The main goal of this review is to evaluate the neuroprotective potential of MS therapy and assess its impact on disability. Methods We performed a systematic analysis of clinical trials that used brain atrophy as an outcome or performed post hoc analysis of volumetric MRI parameters to assess the neuroprotective potential of applied therapies. Trials between 2008 and 2019 that included published results of brain parenchymal fraction (BPF) change and brain volume loss (BVL) in the period from baseline to week 96 or longer were considered. Results Twelve from 146 clinical trials met the inclusion criteria and were incorporated into the analysis. DMTs that presented a large reduction in BVL also exhibited robust effects on clinical disability worsening, e.g., alemtuzumab with a 42% risk reduction in 6-month confirmed disability accumulation (p = 0.0084), ocrelizumab with a 40% risk reduction in 6-month confirmed disability progression (p = 0.003), and other DMTs (cladribine and teriflunomide) with moderate influence on brain atrophy were also associated with a marked impact on disability worsening. Dimethyl fumarate (DEFINE) and fingolimod (FREEDOMS I) initially exhibited significant effect on BVL; however, this effect was not confirmed in further clinical trials: CONFIRM and FREEDOMS II, respectively. Peg-IFN-β1a shows a modest effect on BVL and disability worsening. Conclusion Our results show that BVL in one of the components of clinical disability worsening, together with other variables (lesion volume and annualized relapse rate). Standardization of atrophy measurement technique as well as harmonization of disability worsening and progression criteria in further clinical trials are of utmost importance as they enable a reliable comparison of neuroprotective potential of DMTs.
Collapse
Affiliation(s)
| | - Jakub Komendziński
- Department of Adult Neurology, Gdańsk Medical University, Gdańsk, Poland
| | - Adam Wyszomirski
- Department of Adult Neurology, Gdańsk Medical University, Gdańsk, Poland
| | | |
Collapse
|
17
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
18
|
Zhan G, Wang D, Cabezas M, Bai L, Kyle K, Ouyang W, Barnett M, Wang C. Learning from pseudo-labels: deep networks improve consistency in longitudinal brain volume estimation. Front Neurosci 2023; 17:1196087. [PMID: 37483345 PMCID: PMC10358358 DOI: 10.3389/fnins.2023.1196087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Brain atrophy is a critical biomarker of disease progression and treatment response in neurodegenerative diseases such as multiple sclerosis (MS). Confounding factors such as inconsistent imaging acquisitions hamper the accurate measurement of brain atrophy in the clinic. This study aims to develop and validate a robust deep learning model to overcome these challenges; and to evaluate its impact on the measurement of disease progression. Methods Voxel-wise pseudo-atrophy labels were generated using SIENA, a widely adopted tool for the measurement of brain atrophy in MS. Deformation maps were produced for 195 pairs of longitudinal 3D T1 scans from patients with MS. A 3D U-Net, namely DeepBVC, was specifically developed overcome common variances in resolution, signal-to-noise ratio and contrast ratio between baseline and follow up scans. The performance of DeepBVC was compared against SIENA using McLaren test-retest dataset and 233 in-house MS subjects with MRI from multiple time points. Clinical evaluation included disability assessment with the Expanded Disability Status Scale (EDSS) and traditional imaging metrics such as lesion burden. Results For 3 subjects in test-retest experiments, the median percent brain volume change (PBVC) for DeepBVC and SIENA was 0.105 vs. 0.198% (subject 1), 0.061 vs. 0.084% (subject 2), 0.104 vs. 0.408% (subject 3). For testing consistency across multiple time points in individual MS subjects, the mean (± standard deviation) PBVC difference of DeepBVC and SIENA were 0.028% (± 0.145%) and 0.031% (±0.154%), respectively. The linear correlation with baseline T2 lesion volume were r = -0.288 (p < 0.05) and r = -0.249 (p < 0.05) for DeepBVC and SIENA, respectively. There was no significant correlation of disability progression with PBVC as estimated by either method (p = 0.86, p = 0.84). Discussion DeepBVC is a deep learning powered brain volume change estimation method for assessing brain atrophy used T1-weighted images. Compared to SIENA, DeepBVC demonstrates superior performance in reproducibility and in the context of common clinical scan variances such as imaging contrast, voxel resolution, random bias field, and signal-to-noise ratio. Enhanced measurement robustness, automation, and processing speed of DeepBVC indicate its potential for utilisation in both research and clinical environments for monitoring disease progression and, potentially, evaluating treatment effectiveness.
Collapse
Affiliation(s)
- Geng Zhan
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Center, Sydney, NSW, Australia
| | - Dongang Wang
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Center, Sydney, NSW, Australia
| | - Mariano Cabezas
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
| | - Lei Bai
- Shanghai AI Laboratory, Shanghai, China
| | - Kain Kyle
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Center, Sydney, NSW, Australia
| | | | - Michael Barnett
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Center, Sydney, NSW, Australia
| | - Chenyu Wang
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Center, Sydney, NSW, Australia
| |
Collapse
|
19
|
Aleksandravičiūtė E, Stankevičiūtė R, Balnytė R, Šaknys L, Ulozienė I. Oligoclonal Band Status and Features of Radiological and Clinical Findings in Patients with Multiple Sclerosis in Lithuania. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1028. [PMID: 37374232 PMCID: PMC10301297 DOI: 10.3390/medicina59061028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Multiple sclerosis (MS) is a widely spread and debilitating disease with 2.8 million people worldwide currently affected. However, the exact pathogenesis of the disease and its progression remains incompletely understood. According to the revised McDonald criteria, cerebrospinal fluid oligoclonal bands (CSF OCBs) magnetic resonance imaging (MRI) results, in conjunction with clinical presentation, remain the gold standard of MS diagnostics. Therefore, this study aims to evaluate the association between CSF OCB status and features of radiological and clinical findings in patients with multiple sclerosis in Lithuania. Materials and Methods: The selection of 200 MS patients was performed in order to find associations between CSF OCB status, MRI data and various disease features. The data were acquired from outpatient records and a retrospective analysis was performed. Results: OCB positive patients were diagnosed with MS earlier and had spinal cord lesions more frequently than OCB negative patients. Patients with lesions in the corpus callosum had a greater increase in the Expanded Disability Status Scale (EDSS) score between their first and last visit. Patients with brainstem lesions had higher EDSS scores during their first and last visit. Even so, the progression of the EDSS score was not greater. The time between the first symptoms and diagnosis was shorter for patients who had juxtacortical lesions than patients who did not. Conclusions: CSF OCBs and MRI data remain irreplaceable tools when diagnosing multiple sclerosis as well as prognosing the development of the disease and disability.
Collapse
Affiliation(s)
- Emilija Aleksandravičiūtė
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Radvilė Stankevičiūtė
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Renata Balnytė
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Laurynas Šaknys
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Ingrida Ulozienė
- Department of Otorhinolaringology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
20
|
Oertel FC, Krämer J, Motamedi S, Keihani A, Zimmermann HG, Dimitriou NG, Condor-Montes S, Bereuter C, Cordano C, Abdelhak A, Trip A, Aktas O, Meuth SG, Wiendl H, Ruprecht K, Bellmann-Strobl J, Paul F, Petzold A, Brandt AU, Albrecht P, Green AJ. Visually Evoked Potential as Prognostic Biomarker for Neuroaxonal Damage in Multiple Sclerosis From a Multicenter Longitudinal Cohort. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200092. [PMID: 36878713 PMCID: PMC10026703 DOI: 10.1212/nxi.0000000000200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND AND OBJECTIVES With the increasing use of visually evoked potentials (VEPs) as quantitative outcome parameters for myelin in clinical trials, an in-depth understanding of longitudinal VEP latency changes and their prognostic potential for subsequent neuronal loss will be required. In this longitudinal multicenter study, we evaluated the association and prognostic potential of VEP latency for retinal neurodegeneration, measured by optical coherence tomography (OCT), in relapsing-remitting MS (RRMS). METHODS We included 293 eyes of 147 patients with RRMS (age [years, median ± SD] 36 ± 10, male sex 35%, F/U [years, median {IQR} 2.1 {1.5-3.9}]): 41 eyes had a history of optic neuritis (ON) ≥6 months before baseline (CHRONIC-ON), and 252 eyes had no history of ON (CHRONIC-NON). P100 latency (VEP), macular combined ganglion cell and inner plexiform layer volume (GCIPL), and peripapillary retinal nerve fiber layer thickness (pRNFL) (OCT) were quantified. RESULTS P100 latency change over the first year predicted subsequent GCIPL loss (36 months) across the entire chronic cohort (p = 0.001) and in (and driven by) the CHRONIC-NON subset (p = 0.019) but not in the CHRONIC-ON subset (p = 0.680). P100 latency and pRNFL were correlated at baseline (CHRONIC-NON p = 0.004, CHRONIC-ON p < 0.001), but change in P100 latency and pRNFL were not correlated. P100 latency did not differ longitudinally between protocols or centers. DISCUSSION VEP in non-ON eyes seems to be a promising marker of demyelination in RRMS and of potential prognostic value for subsequent retinal ganglion cell loss. This study also provides evidence that VEP may be a useful and reliable biomarker for multicenter studies.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Julia Krämer
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Seyedamirhosein Motamedi
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Azeen Keihani
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Hanna G Zimmermann
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Nikolaos G Dimitriou
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Shivany Condor-Montes
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Charlotte Bereuter
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Christian Cordano
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Ahmed Abdelhak
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Anand Trip
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Orhan Aktas
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Sven G Meuth
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Heinz Wiendl
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Klemens Ruprecht
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Judith Bellmann-Strobl
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Friedemann Paul
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Axel Petzold
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Alexander U Brandt
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Philipp Albrecht
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF)
| | - Ari J Green
- From the Weill Institute for Neurosciences (F.C.C.O., A.K., S.C.-M., C.C., A.A., A.J.G.), Department of Neurology, University of California San Francisco (UCSF); Experimental and Clinical Research Center (F.C.C.O., S.M., H.G.Z., C.B., J.B.-S., F.P., A.U.B.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Neurology with Institute of Translational Neurology (J.K., H.W.), University Hospital Münster, Germany; University of California Berkeley (A.K.); Department of Neurology (N.G.D., O.A., S.G.M., P.A.), Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Germany; Department of Neurology (P.A.), Maria Hilf Clinic Moenchengladbach, Germany; Queen Square MS Centre (A.T., A.P.), University College London, UK; Department of Neurology (K.R., F.P.),-Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Moorfield's Eye Hospital & The National Hospital for Neurology and Neurosurgery (A.P.); Queen Square Institute of Neurology, University College London, UK; Dutch Neuro-ophthalmology Expertise Centre, Amsterdam, NL; Department of Neurology (A.U.B.), University of California Irvine (UCI); and Department of Ophthalmology (A.J.G.), University of California San Francisco (UCSF).
| |
Collapse
|
21
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
22
|
Optical coherence tomography as a prognostic tool for disability progression in MS: a systematic review. J Neurol 2023; 270:1178-1186. [PMID: 36372866 DOI: 10.1007/s00415-022-11474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
Since multiple sclerosis (MS) is characterized by an unpredictable disease course, accurate prognosis and personalized treatment constitute an important challenge in clinical practice. We performed a qualitative systematic review to assess the predictive value of retinal layer measurement by spectral-domain optical coherence tomography (SD-OCT) in MS patients. Longitudinal MS cohort studies that determined the risk of clinical deterioration based on peripapillary retinal nerve fiber layer (pRNFL) and/or macular ganglion cell-inner plexiform layer (mGCIPL) atrophy were included. Our search strategy and selection process yielded eight articles in total. Of those, five studies only focused on patients with a relapsing-remitting disease pattern (RRMS). After correction for confounders such as disease duration, we found that (1) cross-sectional measurement of pRNFL thickness ≤ 88 µm; (2) cross-sectional measurement of mGCIPL thickness < 77 µm; (3) longitudinal measurement of pRNFL thinning > 1.5 µm/year; and (4) longitudinal measurement of mGCIPL thinning ≥ 1.0 µm/year is associated with an increased risk for disability progression in subsequent years. Longitudinal mGCIPL assessment consistently resulted in the highest risk estimates in our analysis. Within these studies, inclusion and exclusion criteria accounted for the retinal degeneration inherent to (acute) optic neuritis (ON). This small systematic review provides additional evidence that OCT-measured pRNFL and/or mGCIPL atrophy can predict disability progression in RRMS patients. We therefore recommend close clinical follow-up or initiation/change of treatment in RRMS patients with increased risk for clinical deterioration based on retinal layer thresholds, in particular when other poor prognostic signs co-occur.
Collapse
|
23
|
Pennington P, Weinstock-Guttman B, Kolb C, Jakimovski D, Sacca K, Benedict RHB, Eckert S, Stecker M, Lizarraga A, Dwyer MG, Schumacher CB, Bergsland N, Picco P, Bernitsas E, Zabad R, Pardo G, Negroski D, Belkin M, Hojnacki D, Zivadinov R. Communicating the relevance of neurodegeneration and brain atrophy to multiple sclerosis patients: patient, provider and researcher perspectives. J Neurol 2023; 270:1095-1119. [PMID: 36376729 DOI: 10.1007/s00415-022-11405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Central nervous system (CNS) atrophy provides valuable additional evidence of an ongoing neurodegeneration independent of lesion accrual in persons with multiple sclerosis (PwMS). However, there are limitations for interpretation of CNS volume changes at individual patient-level. Patients are receiving information on the topic of atrophy through various sources, including media, patient support groups and conferences, and discussions with their providers. Whether or not the topic of CNS atrophy should be proactively discussed with PwMS during office appointments is currently controversial. This commentary/perspective article represents perspectives of PwMS, providers and researchers with recommendations for minimizing confusion and anxiety, and facilitating proactive discussion about brain atrophy, as an upcoming routine measure in evaluating disease progression and treatment response monitoring. The following recommendations were created based on application of patient's and provider's surveys, and various workshops held over a period of 2 years: (1) PwMS should receive basic information on understanding of brain functional anatomy, and explanation of inflammation and neurodegeneration; (2) the expertise for atrophy measurements should be characterized as evolving; (3) quality patient education materials on these topics should be provided; (4) the need for standardization of MRI exams has to be explained and communicated; (5) providers should discuss background on volumetric changes, including references to normal aging; (6) the limitations of brain volume assessments at an individual-level should be explained; (7) the timing and language used to convey this information should be individualized based on the patient's background and disease status; (8) a discussion guide may be a very helpful resource for use by providers/staff to support these discussions; (9) understanding the role of brain atrophy and other MRI metrics may elicit greater patient satisfaction and acceptance of the value of therapies that have proven efficacy around these outcomes; (10) the areas that represent possibilities for positive self-management of MS symptoms that foster hope for improvement should be emphasized, and in particular regarding use of physical and mental exercise that build or maintain brain reserve through increased network efficiency, and (11) an additional time during clinical visits should be allotted to discuss these topics, including creation of specific educational programs.
Collapse
Affiliation(s)
- Penny Pennington
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Channa Kolb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Katherine Sacca
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Svetlana Eckert
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Marc Stecker
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Alexis Lizarraga
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Carol B Schumacher
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Patricia Picco
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | | | - Rana Zabad
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Gabriel Pardo
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Martin Belkin
- Michigan Institute for Neurological Disorders (MIND), Farmington Hills, MI, USA
| | - David Hojnacki
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA. .,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
24
|
AbdelRazek MA, Tummala S, Khalid F, Tauhid S, Jalkh Y, Khalil S, Hurwitz S, Zurawski J, Bakshi R. Exploring the effect of glatiramer acetate on cerebral gray matter atrophy in multiple sclerosis. J Neurol Sci 2023; 444:120501. [PMID: 36481574 DOI: 10.1016/j.jns.2022.120501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral gray matter (GM) atrophy is a proposed measure of neuroprotection in multiple sclerosis (MS). Glatiramer acetate (GA) limits clinical relapses, MRI lesions, and whole brain atrophy in relapsing-remitting MS (RRMS). The effect of GA on GM atrophy remains unclear. We assessed GM atrophy in patients with RRMS starting GA therapy in comparison to a cohort of patients with clinically benign RRMS (BMS). DESIGN/METHODS We studied 14 patients at GA start [age (mean ± SD) 44.2 ± 7.0 years, disease duration (DD) 7.2 ± 6.4 years, Expanded Disability Status Scale score (EDSS) (median,IQR) 1.0,2.0] and 6 patients with BMS [age 43.0 ± 6.1 years, DD 18.1 ± 8.4 years, EDSS 0.5,1.0]. Brain MRI was obtained at baseline and one year later (both groups) and two years later in all patients in the GA group except one who was lost to follow-up. Semi-automated algorithms assessed cerebral T2 hyperintense lesion volume (T2LV), white matter fraction (WMF), GM fraction (GMF), and brain parenchymal fraction (BPF). The exact Wilcoxon-Mann-Whitney test compared the groups. The Wilcoxon signed rank test assessed longitudinal changes within groups. RESULTS During the first year, MRI changes did not differ significantly between groups (p > 0.15). Within the BMS group, WMF and BPF decreased during the first year (p = 0.03). Within the GA group, there was no significant change in MRI measures during each annual period (p > 0.05). Over two years, the GA group had a significant increase in T2LV and decrease in WMF (p < 0.05), while GMF and BPF remained stable (p > 0.05). MRI changes in brain volumes (GMF or WMF) in the first year in the GA group were not significantly different from those in the BMS group (p > 0.5). CONCLUSIONS In this pilot study with a small sample size, patients with RRMS started on GA did not show significant GM or whole brain atrophy over 2 years, resembling MS patients with a clinically benign disease course.
Collapse
Affiliation(s)
| | - Subhash Tummala
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fariha Khalid
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Youmna Jalkh
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samar Khalil
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shelley Hurwitz
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Zurawski
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Departments of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Skorve E, Lundervold AJ, Torkildsen Ø, Riemer F, Grüner R, Myhr KM. Brief international cognitive assessment for MS (BICAMS) and global brain volumes in early stages of MS - A longitudinal correlation study. Mult Scler Relat Disord 2023; 69:104398. [PMID: 36462469 DOI: 10.1016/j.msard.2022.104398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/04/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cognitive impairment is common in patients with multiple sclerosis, even in the early stages of the disease. The Brief International Cognitive Assessment for multiple sclerosis (BICAMS) is a short screening tool developed to assess cognitive function in everyday clinical practice. OBJECTIVE To investigate associations between volumetric brain measures derived from a magnetic resonance imaging (MRI) examination and performance on BICAMS subtests in early stages of multiple sclerosis (MS). METHODS BICAMS was used to assess cognitive function in 49 MS patients at baseline and after one and two years. The patients were separated into two groups (with or without cognitive impairment) based on their performances on BICAMSs subtests. MRI data were analysed by a software tool (MSMetrix), yielding normalized measures of global brain volumes and lesion volumes. Associations between cognitive tests and brain MRI measures were analysed by running correlation analyses, and differences between subgroups and changes over time with independent and paired samples tests, respectively. RESULTS The strongest baseline correlations were found between the BICAMS subtests and normalized whole brain volume (NBV) and grey matter volume (NGV); processing speed r = 0.54/r = 0.48, verbal memory r = 0.49/ r = 0.42, visual memory r = 0.48 /r = 0.39. Only the verbal memory test had significant correlations with T2 and T1 lesion volumes (LV) at both time points; T2LV r = 0.39, T1LV r = 0.38. There were significant loss of grey matter and white matter volume overall (NGV p<0.001, NWV p = 0.003), as well as an increase in T1LV (p = 0.013). The longitudinally defined confirmed cognitively impaired (CCI) and preserved (CCP) patients showed significant group differences on all MRI volume measures at both time points, except for NWV. Only the CCI subgroup showed significant white matter atrophy (p = 0.006) and increase in T2LV (p = 0.029). CONCLUSIONS The present study found strong correlations between whole brain and grey matter volumes and performance on the BICAMS subtests as well as significant changes in global volumes from baseline to follow-up with clear differences between patients defined as cognitively impaired and preserved at both baseline and follow-up.
Collapse
Affiliation(s)
- Ellen Skorve
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Frank Riemer
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, N-5007 Bergen, Norway
| | - Kjell-Morten Myhr
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Mendelsohn Z, Pemberton HG, Gray J, Goodkin O, Carrasco FP, Scheel M, Nawabi J, Barkhof F. Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence. Neuroradiology 2023; 65:5-24. [PMID: 36331588 PMCID: PMC9816195 DOI: 10.1007/s00234-022-03074-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE MRI is integral to the diagnosis of multiple sclerosis (MS) and is important for clinical prognostication. Quantitative volumetric reporting tools (QReports) can improve the accuracy and objectivity of MRI-based assessments. Several QReports are commercially available; however, validation can be difficult to establish and does not currently follow a common pathway. To aid evidence-based clinical decision-making, we performed a systematic review of commercial QReports for use in MS including technical details and published reports of validation and in-use evaluation. METHODS We categorized studies into three types of testing: technical validation, for example, comparison to manual segmentation, clinical validation by clinicians or interpretation of results alongside clinician-rated variables, and in-use evaluation, such as health economic assessment. RESULTS We identified 10 companies, which provide MS lesion and brain segmentation and volume quantification, and 38 relevant publications. Tools received regulatory approval between 2006 and 2020, contextualize results to normative reference populations, ranging from 620 to 8000 subjects, and require T1- and T2-FLAIR-weighted input sequences for longitudinal assessment of whole-brain volume and lesions. In MS, six QReports provided evidence of technical validation, four companies have conducted clinical validation by correlating results with clinical variables, only one has tested their QReport by clinician end-users, and one has performed a simulated in-use socioeconomic evaluation. CONCLUSION We conclude that there is limited evidence in the literature regarding clinical validation and in-use evaluation of commercial MS QReports with a particular lack of clinician end-user testing. Our systematic review provides clinicians and institutions with the available evidence when considering adopting a quantitative reporting tool for MS.
Collapse
Affiliation(s)
- Zoe Mendelsohn
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK ,grid.6363.00000 0001 2218 4662Department of Neuroradiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Radiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany
| | - Hugh G. Pemberton
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.420685.d0000 0001 1940 6527GE Healthcare, Amersham, UK
| | - James Gray
- grid.416626.10000 0004 0391 2793Stepping Hill Hospital, NHS Foundation Trust, Stockport, UK
| | - Olivia Goodkin
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ferran Prados Carrasco
- grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK ,grid.36083.3e0000 0001 2171 6620E-Health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Michael Scheel
- grid.6363.00000 0001 2218 4662Department of Neuroradiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany
| | - Jawed Nawabi
- grid.6363.00000 0001 2218 4662Department of Radiology, Charité School of Medicine and University Hospital Berlin, Berlin, Germany ,grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Frederik Barkhof
- grid.83440.3b0000000121901201Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Medical Physics and Bioengineering, Centre for Medical Image Computing (CMIC), University College London, London, UK ,grid.83440.3b0000000121901201Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, UK ,grid.12380.380000 0004 1754 9227Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
27
|
El Garhy NM, El Toukhy MM, Fatouh MM. MR volumetry in detection of brain atrophic changes in MS patients and its implication on disease prognosis: retrospective study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Multiple sclerosis is a chronic demyelinating disease of the central nervous system. It may lead to disability and cognitive impairment. Our study aimed at evaluation of the role of MR volumetry technique in detection of brain atrophic changes in patients with multiple sclerosis and its impact on disease prognosis.
Results
This study was carried out on thirty healthy control with mean age 26.23 years and thirty patients with remitting relapsing multiple sclerosis, with a mean age of 28.18 years. Patients with multiple sclerosis were distributed across six subgroups based on the z-score cut-off of − 1.96 for regional and whole brain atrophy. We found that 2 patients (6.6%) showed no thalamic or brain atrophy, 28 patients (93.3%) showed whole brain atrophy only and 10 patients (33.3%) showed both, thalamic and BP atrophy. No patients showed only thalamic atrohy, 4 patients showed whole brain atrophy with other structure atrophy rather than thalamus (13.3%), 10 patients with whole brain and more than one structure atrophy (33.3%). Relation between subgroups and degree of increase in the Expanded Disability Status Scale (EDSS) as well as presence of cognitive decline were assessed. No significant relation were found between RRMS patients subgroups with whole brain atrophy, subgroup with isolated thalamic atrophy or subgroup with multiple structure atrophy and increase of EDSS or cognitive decline.
Conclusion
We found that MRI volumetry is a very useful technique in the assessment of the atrophic changes that occur as a consequence of multiple sclerosis affecting the whole brain, deep grey matter as well as corpus callosum. Although our study did not prove significant relation between presence of brain atrophic changes and disability or cognitive impairment, presence of atrophy warrants careful clinical evaluation of those patients to detect any possible further progression of disability or cognitive decline.
Collapse
|
28
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
29
|
Cranial MRI in Childhood Acute Leukemia during Treatment and Follow-Up Including the Impact of Intrathecal MTX-A Single-Center Study and Review of the Literature. Cancers (Basel) 2022; 14:cancers14194688. [PMID: 36230611 PMCID: PMC9563423 DOI: 10.3390/cancers14194688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Due to high survival rates, long-term sequelae, especially neurotoxicity, need to be considered in childhood acute leukemias. In this retrospective analysis of morphologic changes of the brain in children treated for acute leukemias, we included 94 patients (77 ALL, 17 AML; 51 male, 43 female; median age: 5 years) from a single center. We analyzed 170 cranial MRI scans (T2, FLAIR axial) for morphologic alterations of the brain and variations of the ventricular width (GDAH). In addition, the corresponding literature was reviewed. More than 50% of all patients showed cerebral pathomorphologies (CP). They were seen more often in children with ALL (55.8%), ≤ 6 years of age (60.8%), in relapse (58.8%) or after CNS irradiation (75.0%) and included white matter changes, brain atrophy, sinus vein thrombosis and ischemic events. GDAH significantly enlarged mainly in children up to 6 years, with relapse, high-risk leukemias or ALL patients. However, GDAH can normalize again. The number of intrathecal Methotrexate applications (≤12 vs. >12) showed no correlation to morphologic alterations besides a significant increase in GDAH (−0.3 vs. 0.9 mm) between the first and last follow-up MRI in ALL patients receiving >12 ith. MTX applications. The role of ith. MTX on CP needs to be further investigated and correlated to the neurocognitive outcome of children with acute leukemias.
Collapse
|
30
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
31
|
Zivadinov R, Bergsland N, Jakimovski D, Weinstock-Guttman B, Benedict RHB, Riolo J, Silva D, Dwyer MG. Thalamic atrophy measured by artificial intelligence in a multicentre clinical routine real-word study is associated with disability progression. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329333. [PMID: 35902228 DOI: 10.1136/jnnp-2022-329333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The thalamus is a key grey matter structure, and sensitive marker of neurodegeneration in multiple sclerosis (MS). Previous reports indicated that thalamic volumetry using artificial intelligence (AI) on clinical-quality T2-fluid-attenuated inversion recovery (FLAIR) images alone is fast and reliable. OBJECTIVE To investigate whether thalamic volume (TV) loss, measured longitudinally by AI, is associated with disability progression (DP) in patients with MS, participating in a large multicentre study. METHODS The DeepGRAI (Deep Grey Rating via Artificial Intelligence) Registry is a multicentre (30 USA sites), longitudinal, observational, retrospective, real-word study of relapsing-remitting (RR) MS patients. Each centre enrolled between 30 and 35 patients. Brain MRI exams acquired at baseline and follow-up on 1.5T or 3T scanners with no prior standardisation were collected. TV measurement was performed on T2-FLAIR using DeepGRAI, and on two dimensional (D)-weighted and 3D T1-weighted images (WI) by using FMRIB's Integrated Registration and Segmentation Tool software where possible. RESULTS 1002 RRMS patients were followed for an average of 2.6 years. Longitudinal TV analysis was more readily available on T2-FLAIR (96.1%), compared with 2D-T1-WI (61.8%) or 3D-T1-WI (33.2%). Over the follow-up, DeepGRAI TV loss was significantly higher in patients with DP, compared with those with disability improvement (DI) or disease stability (-1.35% in DP, -0.87% in DI and -0.57% in Stable, p=0.045, Bonferroni-adjusted, age-adjusted and follow-up time-adjusted analysis of covariance). In a regression model including MRI scanner change, age, sex, disease duration and follow-up time, DP was associated with DeepGRAI TV loss (p=0.022). CONCLUSIONS Thalamic atrophy measured by AI in a multicentre clinical routine real-word setting is associated with DP over mid-term follow-up.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, Buffalo, New York, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, New Jersey, USA
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, New Jersey, USA
| | - Jon Riolo
- Bristol Myers Squibb, New Jersey, USA
| | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
32
|
Moghimi P, Dang AT, Do Q, Netoff TI, Lim KO, Atluri G. Evaluation of functional MRI-based human brain parcellation: a review. J Neurophysiol 2022; 128:197-217. [PMID: 35675446 DOI: 10.1152/jn.00411.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain parcellations play a crucial role in the analysis of brain imaging data sets, as they can significantly affect the outcome of the analysis. In recent years, several novel approaches for constructing MRI-based brain parcellations have been developed with promising results. In the absence of ground truth, several evaluation approaches have been used to evaluate currently available brain parcellations. In this article, we review and critique methods used for evaluating functional brain parcellations constructed using fMRI data sets. We also describe how some of these evaluation methods have been used to estimate the optimal parcellation granularity. We provide a critical discussion of the current approach to the problem of identifying the optimal brain parcellation that is suited for a given neuroimaging study. We argue that the criteria for an optimal brain parcellation must depend on the application the parcellation is intended for. We describe a teleological approach to the evaluation of brain parcellations, where brain parcellations are evaluated in different contexts and optimal brain parcellations for each context are identified separately. We conclude by discussing several directions for further research that would result in improved evaluation strategies.
Collapse
Affiliation(s)
- Pantea Moghimi
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Anh The Dang
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Quan Do
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Gowtham Atluri
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
33
|
Rojas JI, Patrucco L, Pappolla A, Sánchez F, Cristiano E. Brain volume loss and physical and cognitive impairment in naive multiple sclerosis patients treated with fingolimod: prospective cohort study in Buenos Aires, Argentina. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:699-705. [PMID: 36254442 PMCID: PMC9685825 DOI: 10.1055/s-0042-1755277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
BACKGROUND The percentage of brain volume loss (PBVL) has been classically considered as a biomarker in multiple sclerosis (MS). OBJECTIVE The objective of the present study was to analyze if the PBVL during the 1st year after the onset of the disease predicts physical and cognitive impairment (CI). METHODS Prospective study that included naïve patients without cognitive impairment who initiated MS treatment with fingolimod. Patients were followed for 3 years and relapses, expanded disability status scale (EDSS) progression (defined as worsening of 1 point on the EDSS), the annual PBVL (evaluated by structural image evaluation using normalization of atrophy [SIENA]), and the presence of CI were evaluated. Cognitive impairment was defined in patients who scored at least 2 standard deviations (SDs) below controls on at least 2 domains. The PBVL after 1 year of treatment with fingolimod was used as an independent variable, while CI and EDSS progression at the 3rd year of follow-up as dependent variables. RESULTS A total of 71 patients were included, with a mean age of 35.4 ± 3 years old. At the 3rd year, 14% of the patients were classified as CI and 6.2% had EDSS progression. In the CI group, the PBVL during the 1st year was - 0.52 (±0.07) versus -0.42 (±0.04) in the no CI group (p < 0.01; odds ratio [OR] = 2.24; 95% confidence interval [CI]: 1.72-2.44). In the group that showed EDSS progression, the PBVL during the 1st year was - 0.59 (±0.05) versus - 0.42 (±0.03) (p < 0.01; OR = 2.33; 95%CI: 1.60-2.55). CONCLUSIONS A higher PBVL during the 1st year in naïve MS patients was independently associated with a significant risk of CI and EDSS progression.
Collapse
Affiliation(s)
- Juan Ignacio Rojas
- Multiple Sclerosis Center of Buenos Aires, Buenos Aires, Argentina
- Hospital Universitario CEMIC, Neurology Service, Buenos Aires, Argentina
| | - Liliana Patrucco
- Hospital Italiano de Buenos Aires, Neurology Service, Buenos Aires, Argentina
| | - Agustín Pappolla
- Hospital Italiano de Buenos Aires, Neurology Service, Buenos Aires, Argentina
| | | | | |
Collapse
|
34
|
Vestergaard MB, Frederiksen JL, Larsson HBW, Cramer SP. Cerebrovascular Reactivity and Neurovascular Coupling in Multiple Sclerosis-A Systematic Review. Front Neurol 2022; 13:912828. [PMID: 35720104 PMCID: PMC9198441 DOI: 10.3389/fneur.2022.912828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
The inflammatory processes observed in the central nervous system in multiple sclerosis (MS) could damage the endothelium of the cerebral vessels and lead to a dysfunctional regulation of vessel tonus and recruitment, potentially impairing cerebrovascular reactivity (CVR) and neurovascular coupling (NVC). Impaired CVR or NVC correlates with declining brain health and potentially plays a causal role in the development of neurodegenerative disease. Therefore, we examined studies on CVR or NVC in MS patients to evaluate the evidence for impaired cerebrovascular function as a contributing disease mechanism in MS. Twenty-three studies were included (12 examined CVR and 11 examined NVC). Six studies found no difference in CVR response between MS patients and healthy controls. Five studies observed reduced CVR in patients. This discrepancy can be because CVR is mainly affected after a long disease duration and therefore is not observed in all patients. All studies used CO2 as a vasodilating stimulus. The studies on NVC demonstrated diverse results; hence a conclusion that describes all the published observations is difficult to find. Future studies using quantitative techniques and larger study samples are needed to elucidate the discrepancies in the reported results.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
35
|
Kihara Y, Zhu Y, Jonnalagadda D, Romanow W, Palmer C, Siddoway B, Rivera R, Dutta R, Trapp BD, Chun J. Single-Nucleus RNA-seq of Normal-Appearing Brain Regions in Relapsing-Remitting vs. Secondary Progressive Multiple Sclerosis: Implications for the Efficacy of Fingolimod. Front Cell Neurosci 2022; 16:918041. [PMID: 35783097 PMCID: PMC9247150 DOI: 10.3389/fncel.2022.918041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2) - the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yunjiao Zhu
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Deepa Jonnalagadda
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - William Romanow
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carter Palmer
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Benjamin Siddoway
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
36
|
Madsen MAJ, Wiggermann V, Marques MFM, Lundell H, Cerri S, Puonti O, Blinkenberg M, Christensen JR, Sellebjerg F, Siebner HR. Linking lesions in sensorimotor cortex to contralateral hand function in multiple sclerosis: a 7 T MRI study. Brain 2022; 145:3522-3535. [PMID: 35653498 PMCID: PMC9586550 DOI: 10.1093/brain/awac203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical lesions constitute a key manifestation of multiple sclerosis and contribute to clinical disability and cognitive impairment. Yet it is unknown whether local cortical lesions and cortical lesion subtypes contribute to domain-specific impairments attributable to the function of the lesioned cortex.
In this cross-sectional study, we assessed how cortical lesions in the primary sensorimotor hand area (SM1-HAND) relate to corticomotor physiology and sensorimotor function of the contralateral hand. 50 relapse-free patients with relapsing-remitting or secondary-progressive multiple sclerosis and 28 healthy age- and sex-matched participants underwent whole-brain 7 T MRI to map cortical lesions. Brain scans were also used to estimate normalized brain volume, pericentral cortical thickness, white matter lesion fraction of the corticospinal tract, infratentorial lesion volume and the cross-sectional area of the upper cervical spinal cord. We tested sensorimotor hand function and calculated a motor and sensory composite score for each hand. In 37 patients and 20 healthy controls, we measured maximal motor evoked potential (MEP) amplitude, resting motor threshold and corticomotor conduction time with transcranial magnetic stimulation (TMS) and the N20 latency from somatosensory evoked potentials (SSEPs).
Patients showed at least one cortical lesion in the SM1-HAND in 47 of 100 hemispheres. The presence of a lesion was associated with worse contralateral sensory (P = 0.014) and motor (P = 0.009) composite scores. TMS of a lesion-positive SM1-HAND revealed a decreased maximal MEP amplitude (P < 0.001) and delayed corticomotor conduction (P = 0.002) relative to a lesion-negative SM1-HAND. Stepwise mixed linear regressions showed that the presence of an SM1-HAND lesion, higher white-matter lesion fraction of the corticospinal tract, reduced spinal cord cross-sectional area and higher infratentorial lesion volume were associated with reduced contralateral motor hand function. Cortical lesions in SM1-HAND, spinal cord cross-sectional area and normalized brain volume were also associated with smaller maximal MEP amplitude and longer corticomotor conduction times. The effect of cortical lesions on sensory function was no longer significant when controlling for MRI-based covariates. Lastly, we found that intracortical and subpial lesions had the largest effect on reduced motor hand function, intracortical lesions on reduced MEP amplitude and leukocortical lesions on delayed corticomotor conduction.
Together, this comprehensive multi-level assessment of sensorimotor brain damage shows that the presence of a cortical lesion in SM1-HAND is associated with impaired corticomotor function of the hand, after accounting for damage at the subcortical level. The results also provide preliminary evidence that cortical lesion types may affect the various facets of corticomotor function differentially.
Collapse
Affiliation(s)
- Mads A. J. Madsen
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Vanessa Wiggermann
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Marta F. M. Marques
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Henrik Lundell
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Stefano Cerri
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
- Technical University of Denmark Department of Health Technology, , 2800 Kgs. Lyngby, Denmark
| | - Oula Puonti
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Morten Blinkenberg
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
| | - Jeppe Romme Christensen
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
- University of Copenhagen Department of Clinical Medicine, , 2200 Copenhagen, Denmark
| | - Hartwig R. Siebner
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
- Copenhagen University Hospital - Bispebjerg & Frederiksberg Department of Neurology, , 2400 Copenhagen, Denmark
- University of Copenhagen Department of Clinical Medicine, , 2200 Copenhagen, Denmark
| |
Collapse
|
37
|
Engelhardt B, Comabella M, Chan A. Multiple sclerosis: Immunopathological heterogeneity and its implications. Eur J Immunol 2022; 52:869-881. [PMID: 35476319 PMCID: PMC9324211 DOI: 10.1002/eji.202149757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
MS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.
Collapse
Affiliation(s)
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Nakamura K, Mokliatchouk O, Arnold DL, Yousry TA, Kappos L, Richert N, Ayling-Rouse K, Miller C, Fisher E. Effects of Dimethyl Fumarate on Brain Atrophy in Relapsing-Remitting Multiple Sclerosis: Pooled Analysis Phase 3 DEFINE and CONFIRM Studies. Front Neurol 2022; 13:809273. [PMID: 35370887 PMCID: PMC8973916 DOI: 10.3389/fneur.2022.809273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective In the pivotal DEFINE and CONFIRM trials for dimethyl fumarate (DMF), patterns of brain volume changes were different, potentially due to low sample sizes and because MRIs were analyzed at two different reading centers. We evaluated effects of DMF on brain volume change in patients with multiple sclerosis (MS) through reanalysis of pooled images from DEFINE/CONFIRM trials in one reading center. Methods MRIs from DEFINE/CONFIRM at weeks 0, 24, 48, and 96 from patients randomized to twice-daily DMF or placebo (PBO) were reanalyzed at the Cleveland Clinic to measure brain parenchymal fraction (BPF). To account for pseudoatrophy, brain volume estimates were re-baselined to calculate changes for weeks 48–96. Results Across studies, 301 and 314 patients receiving DMF and PBO, respectively, had analyzable MRIs. In weeks 0–48, mean ± SE percentage change in BPF was −0.44 ± 0.04 vs. −0.34 ± 0.04% in DMF vs. PBO, respectively, whereas in weeks 48–96, mean ± SE percentage change in BPF was −0.27 ± 0.03 vs. −0.41 ± 0.04% in DMF vs. PBO, respectively. The mixed-effect model for repeated measures showed similar results: in weeks 48–96, estimated change (95% confidence interval) in BPF was −0.0021 (−0.0027, −0.0016) for DMF vs. −0.0033 (−0.0039, −0.0028) for PBO (35.9% reduction; p = 0.0025). Conclusions The lower rate of whole brain volume loss with DMF in this pooled BPF analysis in the second year vs. PBO is consistent with its effects on relapses, disability, and MRI lesions. Brain volume changes in the first year may be explained by pseudoatrophy effects also described in other MS clinical trials.
Collapse
Affiliation(s)
- Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Douglas L. Arnold
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tarek A. Yousry
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Institute of Neurology, London, United Kingdom
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | - Elizabeth Fisher
- Biogen, Cambridge, MA, United States
- *Correspondence: Elizabeth Fisher
| |
Collapse
|
39
|
Nishizawa K, Fujimori J, Nakashima I. Two-dimensional measurements with cut-off values are useful for assessing brain volume, physical disability, and processing speed in multiple sclerosis. Mult Scler Relat Disord 2022; 59:103543. [PMID: 35078126 DOI: 10.1016/j.msard.2022.103543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Two-dimensional (2D) measures have been proposed as potential proxy measures for whole-brain volume in multiple sclerosis (MS); however, cut-off values that determine the degree of brain volume loss (BVL) have not been established. Since we had previously developed a system to categorize MS patients into clusters with significantly different degrees of BVL, we tried to identify cut-off values for 2D measurements that can discriminate MS patients on the basis of disease severity associated with brain atrophy. METHODS In this cross-sectional analysis, ninety-one consecutive Japanese MS patients-clinically isolated syndrome (5%), relapsing-remitting MS (78%) and progressive MS (17%)-were categorized into two clusters (CL1 and CL2) with a significantly different degree of BVL using the method described in our previous study. MS patients were also evaluated for 2D measurements, namely, third ventricle width, lateral ventricle width (LVW), bicaudate ratio (BCR), and corpus callosum index (CCI). Thereafter, we performed receiver operating characteristic analysis to determine the cut-off values of the 2D measurements for categorizing the MS patients into two clusters. RESULTS We identified optimal cut-off values for each 2D measure with high specificity and sensitivity. The cut-off values for LVW, BCR, and CCI divided the MS patients into two subgroups, in which whole-brain and grey matter volume, EDSS, and processing speed were significantly different. CONCLUSION LVW, BCR, and CCI with particular cut-off values are useful to discriminate MS patients with decreased brain volume, physical disability, and processing speed.
Collapse
Affiliation(s)
- Kouichi Nishizawa
- School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
40
|
Ajitomi S, Fujimori J, Nakashima I. Usefulness of two-dimensional measurements for the evaluation of brain volume and disability in multiple sclerosis. Mult Scler J Exp Transl Clin 2022; 8:20552173211070749. [PMID: 35024162 PMCID: PMC8743968 DOI: 10.1177/20552173211070749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background Two-dimensional (2D) measures have been proposed as potential proxies for whole-brain volume in multiple sclerosis (MS). Objective To verify whether 2D measurements by routine MRI are useful in predicting brain volume or disability in MS. Methods In this cross-sectional analysis, eighty-five consecutive Japanese MS patients—relapsing-remitting MS (81%) and progressive MS (19%)—underwent 1.5 Tesla T1-weighted 3D MRI examinations to measure whole-brain and grey matter volume. 2D measurements, namely, third ventricle width, lateral ventricle width (LVW), brain width, bicaudate ratio, and corpus callosum index (CCI), were obtained from each scan. Correlations between 2D measurements and 3D measurements, the Expanded Disability Status Scale (EDSS), or processing speed were analysed. Results The third and lateral ventricle widths were well-correlated with the whole-brain volume (p < 0.0001), grey matter volume (p < 0.0001), and EDSS scores (p = 0.0001, p = .0004, respectively).The least squares regression model revealed that 78% of the variation in whole-brain volume could be explained using five explanatory variables, namely, LVW, CCI, age, sex, and disease duration. By contrast, the partial correlation coefficient excluding the effect of age showed that the CCI was significantly correlated with the EDSS and processing speed (p < 0.0001). Conclusion Ventricle width correlated well with brain volumes, while the CCI correlated well with age-independent (i.e. disease-induced) disability.
Collapse
Affiliation(s)
- Satori Ajitomi
- School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
41
|
Masuda H, Mori M, Hirano S, Uzawa A, Uchida T, Muto M, Ohtani R, Aoki R, Kuwabara S. Silent progression of brain atrophy in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J Neurol Neurosurg Psychiatry 2022; 93:32-40. [PMID: 34362853 PMCID: PMC8685614 DOI: 10.1136/jnnp-2021-326386] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate longitudinal brain atrophy in patients with neuromyelitis optica spectrum disorder (NMOSD). METHODS We investigated the longitudinal brain atrophy rate in patients with aquaporin-4 antibody-positive NMOSD (AQP4+NMOSD) and those with multiple sclerosis (MS) in a retrospective cohort study. Brain volume was calculated with statistical parametric mapping-12. RESULTS We enrolled 36 patients with AQP4+NMOSD and 60 with MS. Patients with NMOSD were older and had a higher Kurtzke's expanded disability status scale score at baseline MRI compared with those with MS. Disease duration, annual relapse rate and intervals from the last attack and from disease-modifying drugs initiation were not significantly different between the two groups. Lower normalised lesion volume and higher normalised white matter volume were found in patients with NMOSD compared with those with MS at baseline MRI. However, the annualised atrophy rate of normalised brain volume was similar between the NMOSD (median 0.47; IQR 0.75; p=0.49) and MS (median 0.46; IQR 0.84) groups. After adjustment of age and the presence of clinical relapse, no differences of the annualised atrophy rate of normalised brain volume also were found for NMOSD and MS. Patients with AQP4+NMOSD with long cord lesion showed higher annualised atrophy rate of normalised grey matter volume compared with those without long cord lesion. CONCLUSIONS Silent progression of brain atrophy was present in patients with AQP4+NMOSD, as shown in patients with MS, even in the clinically inactive age-matched cases. Subclinical dying back degeneration may explain the brain atrophy in patients with AQP4 +NMOSD.
Collapse
Affiliation(s)
- Hiroki Masuda
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Masahiro Mori
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Shigeki Hirano
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Akiyuki Uzawa
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Tomohiko Uchida
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Mayumi Muto
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Ryohei Ohtani
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Reiji Aoki
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| |
Collapse
|
42
|
Shooli H, Nemati R, Chabi N, Larvie M, Jokar N, Dadgar H, Gholamrezanezhad A, Assadi M. Multimodal assessment of regional gray matter integrity in early relapsing-remitting multiple sclerosis patients with normal cognition: a voxel-based structural and perfusion approach. Br J Radiol 2021; 94:20210308. [PMID: 34491820 DOI: 10.1259/bjr.20210308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE There is increasing evidence that gray matter (GM) impairment is strongly associated with clinical performance decline. We aim to perform a voxelwise analysis between regional GM (rGM) perfusion and structural abnormalities in early relapsing-remitting multiple sclerosis patients with normal cognition (RRMS-IC) and explore clinical correlate of early rGM abnormalities. METHODS AND MATERIALS We studied 14 early RRMS-IC patients and 14 healthy age- and sex-matched controls. Brain perfusion single photon emission computed tomography (SPECT), structural MRI, and a comprehensive neuropsychological examination were acquired from all participants. Neuropsychological tests include expanded disability status scale, minimal mental status examination, short physical performance battery, Wechsler memory scale, and quick smell test. Voxel-based morphometry was used for analyzing SPECT and T1-MR images to identify rGM hypoperfusion and atrophy, respectively (RRMS-IC vs controls (group analysis), and also, each patient vs controls (individual analysis)) (p < 0.001). Then, anatomical location of impaired regions was acquired by automated anatomical labeling software. RESULTS There was no significant difference in total GM volume between RRMS-IC and healthy controls, however, rGM atrophy and hypoperfusion were detected. Individual analysis revealed more rGM impairment compared with group analysis. rGM hypoperfusion was more extensive rather than rGM atrophy in RRMS-IC. There was no spatial association between rGM atrophy and rGM hypoperfusion (p > 0.05). rGM abnormalities correlated with several relevant minimal clinical deficits. CONCLUSION Lack of spatial correlation between rGM atrophy and hypoperfusion might suggest that independent mechanisms might underlie atrophy and hypoperfusion. Perfusion SPECT may provide supplementary information along with MRI. ADVANCES IN KNOWLEDGE Association between rGM atrophy and rGM hypoperfusion and their clinical significance in early RRMS-IC is not well described yet. Our study showed that there is spatial dissociation between rGM atrophy and rGM hypoperfusion, suggesting that different mechanisms might underlie these pathologies.
Collapse
Affiliation(s)
- Hossein Shooli
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negar Chabi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
43
|
Calabresi PA, Kappos L, Giovannoni G, Plavina T, Koulinska I, Edwards MR, Kieseier B, de Moor C, Sotirchos ES, Fisher E, Rudick RA, Sandrock A. Measuring treatment response to advance precision medicine for multiple sclerosis. Ann Clin Transl Neurol 2021; 8:2166-2173. [PMID: 34704393 PMCID: PMC8607451 DOI: 10.1002/acn3.51471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/14/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022] Open
Abstract
Objective To assess the independent contributions of clinical measures (relapses, Expanded Disability Status Scale [EDSS] scores, and neuroperformance measures) and nonclinical measures (new brain magnetic resonance imaging [MRI] activity and serum neurofilament light chain [sNfL] levels) for distinguishing natalizumab‐treated from placebo‐treated patients. Methods We conducted post hoc analyses using data from the AFFIRM trial of natalizumab for multiple sclerosis. We used multivariable regression analyses with predictors (EDSS progression, no relapse, new or enlarging MRI activity, brain atrophy, sNfL levels, and neuroperformance worsening) to identify measures that independently discriminated between treatment groups. Results The multivariable model that best distinguished natalizumab from placebo was no new or enlarging T2 or gadolinium‐enhancing activity on MRI (odds ratio; 95% confidence interval: 7.2; 4.7–10.9), year 2 sNfL levels <97.5th percentile (4.1; 2.6–6.2), and no relapses in years 0–2 (2.1; 1.5–3.0). The next best‐fitting model was a two‐component model that included no MRI activity and sNfL levels <97.5th percentile at year 2. There was little difference between the three‐ and two‐component models. Interpretation Nonclinical measures (new MRI activity and sNfL levels) discriminate between treatment and placebo groups similarly to or better than clinical outcomes composites and have implications for patient monitoring.
Collapse
Affiliation(s)
- Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Gavin Giovannoni
- Blizzard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | - Bernd Kieseier
- Biogen, Cambridge, Massachusetts, USA.,Department of Neurology, Heinrich Heine Universitat, Dusseldorf, Germany
| | | | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
44
|
Tencer T, Will O, Kumar J, Cambron-Mellott MJ, Mackie DS, Beusterien K. Patient and neurologist preferences in the UK for relapsing-remitting multiple sclerosis treatments: findings from a discrete choice experiment. Curr Med Res Opin 2021; 37:1589-1598. [PMID: 34129418 DOI: 10.1080/03007995.2021.1940911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate and compare patient and neurologist preferences for relapsing-remitting multiple sclerosis (RRMS) treatments with respect to benefits and risks associated with common and novel disease-modifying therapies, including brain volume loss (BVL). METHODS Patients with non-highly-active RRMS and neurologists in the United Kingdom completed an online cross-sectional survey. Patients completed one discrete choice experiment (DCE) exercise and providers completed two, one focusing on treatment for non-highly-active RRMS and another focused on highly active RRMS. Respondents chose between two treatment profiles that varied on seven attributes identified in qualitative research: 2 year disability progression; 1 year relapse rate; rate of BVL; and risks of gastrointestinal symptoms, flu-like symptoms, infection and life-threatening event. Bayesian modeling was used to estimate attribute-level weighted preferences. RESULTS Patients (n = 144) prioritized slowing the rate of BVL, followed by reducing risk of infection, rate of 2 year disability progression and 1 year relapse rate. For non-highly-active patients, neurologists (n = 101) prioritized slowing the rate of BVL, followed by reducing 2 year disability progression, risk of infection and 1 year relapse rate. For highly active patients, neurologists prioritized lowering the 1 year relapse rate, followed by slowing the rate of BVL and 2 year disability progression. In all three DCEs, rate of BVL was approximately twice as important as reducing the risks of flu-like symptoms, gastrointestinal symptoms and life-threatening event. CONCLUSIONS This study highlights similarities in treatment preferences for non-highly-active RRMS among patients and neurologists and differences in neurologists' preferences for treating non-highly-active vs. highly active RRMS. This research identifies BVL as a treatment outcome that should be discussed when physicians engage in shared decision-making with patients.
Collapse
Affiliation(s)
- Tom Tencer
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
45
|
Barnett M, Bergsland N, Weinstock-Guttman B, Butzkueven H, Kalincik T, Desmond P, Gaillard F, van Pesch V, Ozakbas S, Rojas JI, Boz C, Altintas A, Wang C, Dwyer MG, Yang S, Jakimovski D, Kyle K, Ramasamy DP, Zivadinov R. Brain atrophy and lesion burden are associated with disability progression in a multiple sclerosis real-world dataset using only T2-FLAIR: The NeuroSTREAM MSBase study. NEUROIMAGE-CLINICAL 2021; 32:102802. [PMID: 34469848 PMCID: PMC8408519 DOI: 10.1016/j.nicl.2021.102802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Methodological challenges limit the use of brain atrophy and lesion burden measures in the follow-up of multiple sclerosis (MS) patients on clinical routine datasets. OBJECTIVE To determine the feasibility of T2-FLAIR-only measures of lateral ventricular volume (LVV) and salient central lesion volume (SCLV), as markers of disability progression (DP) in MS. METHODS A total of 3,228 MS patients from 9 MSBase centers in 5 countries were enrolled. Of those, 2,875 (218 with clinically isolated syndrome, 2,231 with relapsing-remitting and 426 with progressive disease subtype) fulfilled inclusion and exclusion criteria. Patients were scanned on either 1.5 T or 3 T MRI scanners, and 5,750 brain scans were collected at index and on average after 42.3 months at post-index. Demographic and clinical data were collected from the MSBase registry. LVV and SCLV were measured on clinical routine T2-FLAIR images. RESULTS Longitudinal LVV and SCLV analyses were successful in 96% of the scans. 57% of patients had scanner-related changes over the follow-up. After correcting for age, sex, disease duration, disability, disease-modifying therapy and LVV at index, and follow-up time, MS patients with DP (n = 671) had significantly greater absolute LVV change compared to stable (n = 1,501) or disability improved (DI, n = 248) MS patients (2.0 mL vs. 1.4 mL vs. 1.1 mL, respectively, ANCOVA p < 0.001, post-hoc pair-wise DP vs. Stable p = 0.003; and DP vs. DI, p = 0.002). Similar ANCOVA model was also significant for SCLV (p = 0.03). CONCLUSIONS LVV-based atrophy and SCLV-based lesion outcomes are feasible on clinically acquired T2-FLAIR scans in a multicenter fashion and are associated with DP over mid-term.
Collapse
Affiliation(s)
- Michael Barnett
- Sydney Neuroimaging Analysis Centre, Camperdown, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia.
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA; IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA
| | | | - Tomas Kalincik
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Australia; MS Centre, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Frank Gaillard
- Department of Radiology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | | | | | | | - Cavit Boz
- KTU Medical Faculty Farabi Hospital, Trabzon, Turkey
| | - Ayse Altintas
- Koç University School of Medicine, Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Turkey
| | - Chenyu Wang
- Sydney Neuroimaging Analysis Centre, Camperdown, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA; Center for Biomedical Imaging, Clinical Translational Science Institute, USA; University at Buffalo, NY, USA
| | - Suzie Yang
- Sydney Neuroimaging Analysis Centre, Camperdown, Sydney, Australia
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA
| | - Kain Kyle
- Sydney Neuroimaging Analysis Centre, Camperdown, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, USA; Center for Biomedical Imaging, Clinical Translational Science Institute, USA; University at Buffalo, NY, USA
| |
Collapse
|
46
|
Radiologically isolated syndrome is antiquated amidst evolving McDonald criteria for multiple sclerosis. CNS Spectr 2021; 26:307-309. [PMID: 31304895 DOI: 10.1017/s1092852919001202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The diagnosis of radiologically isolated syndrome (RIS) is untenable in the modern era as new diagnostic criteria for multiple sclerosis (MS) continue to evolve. Even without optic nerve involvement, the shift in the diagnostic criteria for MS forces clinicians to make a diagnosis at the earliest possible time and appropriate treatment initiated. In this analysis, we revisit the original RIS criteria as published and conclude that RIS as a diagnostic entity is obsolete.
Collapse
|
47
|
Zhan J, Kipp M, Han W, Kaddatz H. Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology 2021; 164:450-466. [PMID: 34293193 PMCID: PMC8517596 DOI: 10.1111/imm.13395] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Ectopic lymphoid follicles (ELFs), resembling germinal centre‐like structures, emerge in a variety of infectious and autoimmune and neoplastic diseases. ELFs can be found in the meninges of around 40% of the investigated progressive multiple sclerosis (MS) post‐mortem brain tissues and are associated with the severity of cortical degeneration and clinical disease progression. Of predominant importance for progressive neuronal damage during the progressive MS phase appears to be meningeal inflammation, comprising diffuse meningeal infiltrates, B‐cell aggregates and compartmentalized ELFs. However, the absence of a uniform definition of ELFs impedes reproducible and comparable neuropathological research in this field. In this review article, we will first highlight historical aspects and milestones around the discovery of ELFs in the meninges of progressive MS patients. In the next step, we discuss how animal models may contribute to an understanding of the mechanisms underlying ELF formation. Finally, we summarize challenges in investigating ELFs and propose potential directions for future research.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University Health Science Cente, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
48
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Ozakbas S, Piri Cinar B, Yigit P, Baba C, Sagici O. Five-year real-world data on fingolimod treatment's effects on cognitive function. Mult Scler Relat Disord 2021; 54:103089. [PMID: 34198030 DOI: 10.1016/j.msard.2021.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Affiliation(s)
- S Ozakbas
- Dokuz Eylul University, Neurology Department, Izmir, Turkey
| | - B Piri Cinar
- Zonguldak Bulent Ecevit University, Neurology Department, Zonguldak, Turkey.
| | - P Yigit
- Dokuz Eylul University, Neurology Department, Izmir, Turkey
| | - C Baba
- Dokuz Eylul University, Neurology Department, Izmir, Turkey
| | - O Sagici
- Dokuz Eylul University, Neurology Department, Izmir, Turkey
| | | |
Collapse
|
50
|
Chen A, Wen S, Lakhani DA, Gao S, Yoon K, Smith SA, Dortch R, Xu J, Bagnato F. Assessing brain injury topographically using MR neurite orientation dispersion and density imaging in multiple sclerosis. J Neuroimaging 2021; 31:1003-1013. [PMID: 34033187 DOI: 10.1111/jon.12876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Axonal injury is a key player of disability in persons with multiple sclerosis (pwMS). Yet, detecting and measuring it in vivo is challenging. The neurite orientation dispersion and density imaging (NODDI) proposes a novel framework for probing axonal integrity in vivo. NODDI at 3.0 Tesla was used to quantify tissue damage in pwMS and its relationship with disease progression. METHODS Eighteen pwMS (4 clinically isolated syndrome, 11 relapsing remitting, and 3 secondary progressive MS) and nine age- and sex-matched healthy controls underwent a brain MRI, inclusive of clinical sequences and a multi-shell diffusion acquisition. Parametric maps of axial diffusivity (AD), neurite density index (ndi), apparent isotropic volume fraction (ivf), and orientation dispersion index (odi) were fitted. Anatomically matched regions of interest were used to quantify AD and NODDI-derived metrics and to assess the relations between these measures and those of disease progression. RESULTS AD, ndi, ivf, and odi significantly differed between chronic black holes (cBHs) and T2-lesions, and between the latter and normal appearing white matter (NAWM). All metrics except ivf significantly differed between NAWM located next to a cBH and that situated contra-laterally. Only NAWM odi was significantly associated with T2-lesion volume, the timed 25-foot walk test and disease duration. CONCLUSIONS NODDI is sensitive to tissue injury but its relationship with clinical progression remains limited.
Collapse
Affiliation(s)
- Amalie Chen
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Neurology Residency, Brigham and Women's Hospital, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia, USA
| | - Dhairya A Lakhani
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Si Gao
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia, USA
| | - Keejin Yoon
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Vanderbilt University College of Arts and Science, Nashville, Tennessee, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, USA
| | - Richard Dortch
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, USA.,Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, USA
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Neurology, VA Hospital, TN Valley Healthcare System (TVHS) Nashville, Tennessee, USA
| |
Collapse
|