1
|
Ntetsika T, Catrina SB, Markaki I. Understanding the link between type 2 diabetes mellitus and Parkinson's disease: role of brain insulin resistance. Neural Regen Res 2025; 20:3113-3123. [PMID: 39715083 DOI: 10.4103/nrr.nrr-d-23-01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/03/2024] [Indexed: 12/25/2024] Open
Abstract
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden. Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms. Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes. The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease, with emphasis on brain insulin resistance, is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| |
Collapse
|
2
|
Albaqami F, Ahmad KW, Shah FA. Carvacrol attenuated haloperidol-induced Parkinson's disease via TNF/NFκβ-NLRP3-mediated pyroptosis. Lab Anim Res 2025; 41:7. [PMID: 39910608 DOI: 10.1186/s42826-025-00237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Parkinson's disease is a debilitating and the second most common neurodegenerative disorder with a high prevalence. Parkinson's disease has a multifaceted etiology characterized by an altered redox state and an excessive inflammatory response. In this study, we investigated the potential neuroprotective properties of carvacrol in a haloperidol-induced Parkinson's model. In female Sprague-Dawley rats, the animal Parkinson model was induced by intraperitoneally administering 1 mg / kg of haloperidol once daily for fifteen days. Carvacrol was administered at a dose of 25 and 50 mg / kg once daily for fifteen days before haloperidol administration. In order to further illustrate the vital role of the tumor necrosis factor (TNF-α) pathway, we administered 50 mg / kg of the TNF-α inhibitor thalidomide once daily for 15 days. RESULTS Our results showed that haloperidol-induced motor deficits, changed endogenous antioxidant enzymes, along with higher levels of inflammasome (NLRP3) and other inflammatory mediators. Moreover, increased levels of lipid peroxidase (LPO) indicated a significant rise in oxidative stress due to haloperidol. Moreover, carvacrol reduced these effects by preventing pyroptosis mediated by the inflammasome (NLRP3) and TNF-α. The administration of thalidomide mitigated oxidative stress and suppresses inflammatory pathways through the augmentation of the intrinsic antioxidant system. Further, co-treatment of carvacrol with thalidomide synergized the neuroprotective effect of carvacrol as demonstrated by various immunoassays and histology analyses. CONCLUSIONS Taken together, our findings suggest that carvacrol mitigated haloperidol-induced Parkinson-like symptoms, partially through the downregulation of TNF-α and NLRP3.
Collapse
Affiliation(s)
- Faisal Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Khawaja Waqas Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 7th Avenue, Sector G-7/4, Street 43, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
3
|
Huang Z, Pan Y, Ma K, Luo H, Zong Q, Wu Z, Zhu Z, Guan Y. Nicotine Ameliorates α-Synuclein Preformed Fibril-Induced Behavioral Deficits and Pathological Features in Mice. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05086-z. [PMID: 39815141 DOI: 10.1007/s12010-024-05086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL). After 1 month, the motor ability, mood, spatial learning, and memory ability of the PD phenotype-like model mice were detected using open field, rotarod, Y maze, and O maze tests. The expression of pathological α-syn and apoptotic proteins, as well as the number of glial and neural stem cells in the hippocampus of mice, was detected using western blot and immunofluorescence. The results demonstrated that nicotine significantly reduced pathological α-syn accumulation, α-syn serine 129 phosphorylation, and apoptosis induced by α-syn-PFF injection in the hippocampus of mice. Nicotine also inhibited the increase in the number of glia, microglia, and neuronal apoptotic cells, and it decreased the expression of PI3K and Akt while also exhibiting significant memory impairment, motor deficits, and anxiety-like behavior. In conclusion, our findings suggest that nicotine ameliorates behavioral deficits and pathological changes in mice by inhibiting human α-syn-PFF-induced neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Haiyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Zhouhai Zhu
- The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
| | - Ying Guan
- The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
| |
Collapse
|
4
|
Stanzione A, Melchiori FM, Costa A, Leonardi C, Scalici F, Caltagirone C, Carlesimo GA. Dopaminergic Treatment and Episodic Memory in Parkinson's Disease: A Meta-analysis of the Literature. Neuropsychol Rev 2024:10.1007/s11065-024-09656-0. [PMID: 39708069 DOI: 10.1007/s11065-024-09656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
To date, few studies have focused on the benefits of dopaminergic treatment on episodic memory functions in patients affected by Parkinson's disease (PD). We conducted a meta-analysis to determine the effects of pharmacological therapy with dopamine in alleviating episodic memory deficits in Parkinson's patients. A secondary aim was to evaluate the role of dopamine in episodic memory circuits and thus in different memory systems. We conducted a comprehensive literature search in PubMed (1971-2022) to find studies that met specific inclusion criteria. The studies had to provide sufficient data (means and standard deviations) to evaluate performance on neuropsychological tests of episodic memory. A total of k = 36 measures were included in the analysis. A statistically significant difference suggested better performance following dopaminergic therapy assumption (ON condition) than following dopaminergic withdrawal (OFF condition), specifically the estimated pooled effect calculated through a random-effects restricted maximum likelihood model was log ratio of means (RoM) = 0.047 (p = 0.011). The back-transformed RoM, indicating a 4.8% improvement, provides an interpretable measure of the effect size, as it reflects the multiplicative change in performance associated with the ON condition. A meta-regression analysis was also performed to assess the influence of specific memory tasks and relevant covariates/factors on the overall meta-analytic effect: four memory contrasts (verbal/visual, immediate/delayed, recall/recognition, word-list/short-story), age of participants, years of education, severity of illness, duration of illness in years, country of study, proportion of women in the sample, type of medication, counterbalancing. Word list/short story and proportion of women in the sample were the only two statistically significant predictors in the model, both associated with a positive higher pooled effect size. The present study revealed a significant overall difference between the results obtained in the ON and OFF conditions. We also found a significantly greater pharmacological effect in the recall of short stories than word lists, which supports the hypothesis of a beneficial effect of dopamine on the hippocampal circuit rather than on prefrontal cortical areas.
Collapse
Affiliation(s)
- Agostino Stanzione
- Laboratory of Neuropsychology of Memory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy.
| | | | - Alberto Costa
- Laboratory of Neuropsychology of Memory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
- Niccolò Cusano University, Rome, Italy
| | - Carla Leonardi
- Laboratory of Neuropsychology of Memory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
- Niccolò Cusano University, Rome, Italy
| | - Francesco Scalici
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
- Centre for Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Laboratory of Neuropsychology of Memory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
| | - Giovanni Augusto Carlesimo
- Laboratory of Neuropsychology of Memory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| |
Collapse
|
5
|
Samanci B, Bayram A, Tan S, Wanders M, Michielse S, Kuijf ML, Temel Y. Exploring habenular structural connectivity in Parkinson's disease: insights from 7 T MRI study. J Neurol 2024; 272:8. [PMID: 39666152 DOI: 10.1007/s00415-024-12773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND PD is marked by both motor and non-motor symptoms, with its pathophysiology involving many neural pathways and brain regions beyond the dopaminergic system. While mainly gray matter changes have been noted, white matter changes also exist in PD. Habenula, known for its role in reward processing, mood regulation, motor functions, and cognition, is of interest due to its connection to mood disorders in PD. This study aims to explore diffusion metrics and structural connectivity changes in the habenula of newly diagnosed PD patients using 7 T MRI. METHODS 84 PDs and 38 HCs were recruited from Maastricht University Medical Centre. Clinical, demographic, and total Beck Depression Inventory (BDI) scores were recorded. A 7 T brain MRI was conducted. Diffusion metrics and structural connectivity were evaluated. RESULTS The mean diffusion metrics of Hb were not significantly different between the groups. However, in PD patients, there was an increase in mean structural connectivity from the right Hb to the right hippocampus (p = 0.006) and the right fusiform gyrus (p = 0.007). On the left side, enhanced connectivity was observed with the left pallidum (p = 0.040) and left accumbens (p = 0.009). In the PD group, a significant correlation was found between the BDI total score and increased structural connectivity from the right Hb to the left cingulate isthmus (R2 = 0.090, p = 0.003). CONCLUSION This pioneering study examines diffusion metrics and structural connectivity of Hb in PD patients using high-resolution 7 T MRI. Our findings highlight the habenula's potential role in PD pathophysiology, with altered connectivity suggesting early neurodegenerative or compensatory processes. These results underscore the importance of the habenula as a biomarker for PD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands.
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Meriek Wanders
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Atlas University, Istanbul, Turkey
| |
Collapse
|
6
|
Lv D, Feng P, Guan X, Liu Z, Li D, Xue C, Bai B, Hölscher C. Neuroprotective effects of GLP-1 class drugs in Parkinson's disease. Front Neurol 2024; 15:1462240. [PMID: 39719978 PMCID: PMC11667896 DOI: 10.3389/fneur.2024.1462240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive neurological disorder primarily affecting motor control, clinically characterized by resting tremor, bradykinesia, rigidity, and other symptoms that significantly diminish the quality of life. Currently, available treatments only alleviate symptoms without halting or delaying disease progression. There is a significant association between PD and type 2 diabetes mellitus (T2DM), possibly due to shared pathological mechanisms such as insulin resistance, chronic inflammation, and mitochondrial dysfunction. PD is caused by a deficiency of dopamine, a neurotransmitter in the brain that plays a critical role in the control of movement. Glucose metabolism and energy metabolism disorders also play an important role in the pathogenesis of PD. This review investigates the neuroprotective mechanisms of glucagon-like peptide-1 (GLP-1) and its receptor agonists, offering novel insights into potential therapeutic strategies for PD. GLP-1 class drugs, primarily used in diabetes management, show promise in addressing PD's underlying pathophysiological mechanisms, including energy metabolism and neuroprotection. These drugs can cross the blood-brain barrier, improve insulin resistance, stabilize mitochondrial function, and enhance neuronal survival and function. Additionally, they exhibit significant anti-inflammatory and antioxidative stress effects, which are crucial in neurodegenerative diseases like PD. Research indicates that GLP-1 receptor agonists could improve both motor and cognitive symptoms in PD patients, marking a potential breakthrough in PD treatment and prevention. Further exploration of GLP-1's molecular mechanisms in PD could provide new preventive and therapeutic approaches, especially for PD patients with concurrent T2DM. By targeting both metabolic and neurodegenerative pathways, GLP-1 receptor agonists represent a multifaceted approach to PD treatment, offering hope for better disease management and improved patient outcomes.
Collapse
Affiliation(s)
- Dongliang Lv
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Peng Feng
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xueying Guan
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhaona Liu
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongfang Li
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cunshui Xue
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Bo Bai
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, China
| |
Collapse
|
7
|
Porcu M, Cocco L, Marrosu F, Cau R, Puig J, Suri JS, Saba L. Hippocampus and olfactory impairment in Parkinson disease: a comparative exploratory combined volumetric/functional MRI study. Neuroradiology 2024; 66:1941-1953. [PMID: 39046517 DOI: 10.1007/s00234-024-03436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Patients with Parkinson's Disease (PD) commonly experience Olfactory Dysfunction (OD). Our exploratory study examined hippocampal volumetric and resting-state functional magnetic resonance imaging (rs-fMRI) variations in a Healthy Control (HC) group versus a cognitively normal PD group, further categorized into PD with No/Mild Hyposmia (PD-N/MH) and PD with Severe Hyposmia (PD-SH). METHODS We calculated participants' relative Total Hippocampal Volume (rTHV) and performed Spearman's partial correlations, controlled for age and gender, to examine the correlation between rTHV and olfactory performance assessed by the Odor Stick Identification Test for the Japanese (OSIT-J) score. Mann-Whitney U tests assessed rTHV differences across groups and subgroups, rejecting the null hypothesis for p < 0.05. Furthermore, a seed-based rs-fMRI analysis compared hippocampal connectivity differences using a one-way ANCOVA covariate model with controls for age and gender. RESULTS Spearman's partial correlations indicated a moderate positive correlation between rTHV and OSIT-J in the whole study population (ρ = 0.406; p = 0.007), PD group (ρ = 0.493; p = 0.008), and PD-N/MH subgroup (ρ = 0.617; p = 0.025). Mann-Whitney U tests demonstrated lower rTHV in PD-SH subgroup compared to both HC group (p = 0.013) and PD-N/MH subgroup (p = 0.029). Seed-to-voxel rsfMRI analysis revealed reduced hippocampal connectivity in PD-SH subjects compared to HC subjects with a single cluster of voxels. CONCLUSIONS Although the design of the study do not allow to make firm conclusions, it is reasonable to speculate that the progressive involvement of the hippocampus in PD patients is associated with the progression of OD.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S. 554, km 4.500, CAP 09042, Monserrato (Cagliari), Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Ning C, Jin M, Cai Y, Fan L, Hu K, Lu Z, Zhang M, Chen C, Li Y, Hu N, Zhang D, Liu Y, Chen S, Jiang Y, He C, Wang Z, Cao Z, Li H, Li G, Ma Q, Geng H, Tian W, Zhang H, Yang X, Huang C, Wei Y, Li B, Zhu Y, Li X, Miao X, Tian J. Genetic architectures of the human hippocampus and those involved in neuropsychiatric traits. BMC Med 2024; 22:456. [PMID: 39394562 PMCID: PMC11470718 DOI: 10.1186/s12916-024-03682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The hippocampus, with its complex subfields, is linked to numerous neuropsychiatric traits. While most research has focused on its global structure or a few specific subfields, a comprehensive analysis of hippocampal substructures and their genetic correlations across a wide range of neuropsychiatric traits remains underexplored. Given the hippocampus's high heritability, considering hippocampal and subfield volumes (HASV) as endophenotypes for neuropsychiatric conditions is essential. METHODS We analyzed MRI-derived volumetric data of hippocampal and subfield structures from 41,525 UK Biobank participants. Genome-wide association studies (GWAS) on 24 HASV traits were conducted, followed by genetic correlation, overlap, and Mendelian randomization (MR) analyses with 10 common neuropsychiatric traits. Polygenic risk scores (PRS) based on HASV traits were also evaluated for predicting these traits. RESULTS Our analysis identified 352 independent genetic variants surpassing a significance threshold of 2.1 × 10-9 within the 24 HASV traits, located across 93 chromosomal regions. Notably, the regions 12q14.3, 17q21.31, 12q24.22, 6q21, 9q33.1, 6q25.1, and 2q24.2 were found to influence multiple HASVs. Gene set analysis revealed enrichment of neural differentiation and signaling pathways, as well as protein binding and degradation. Of 240 HASV-neuropsychiatric trait pairs, 75 demonstrated significant genetic correlations (P < 0.05/240), revealing 433 pleiotropic loci. Particularly, genes like ACBD4, ARHGAP27, KANSL1, MAPT, ARL17A, and ARL17B were involved in over 50 HASV-neuropsychiatric pairs. Leveraging Mendelian randomization analysis, we further confirmed that atrophy in the left hippocampus, right hippocampus, right hippocampal body, and right CA1-3 region were associated with an increased risk of developing Parkinson's disease (PD). Furthermore, PRS for all four HASVs were significantly linked to a higher risk of Parkinson's disease (PD), with the highest hazard ratio (HR) of 1.30 (95% CI 1.18-1.43, P = 6.15 × 10⁻⁸) for right hippocampal volume. CONCLUSIONS These findings highlight the extensive distribution of pleiotropic genetic determinants between HASVs and neuropsychiatric traits. Moreover, they suggest a significant potential for effectively managing and intervening in these diseases during their early stages.
Collapse
Affiliation(s)
- Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Kexin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Naifan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Donghui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yuan Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Chunyi He
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zilong Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hanting Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Qianying Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Goyal A, Karanovic U, Blaha CD, Lee KH, Shin H, Oh Y. Toward Precise Modeling of Dopamine Release Kinetics: Comparison and Validation of Kinetic Models Using Voltammetry. ACS OMEGA 2024; 9:33563-33573. [PMID: 39130585 PMCID: PMC11307285 DOI: 10.1021/acsomega.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Dopamine (DA) is a neurotransmitter present within the animal brain that is responsible for a wide range of physiologic functions, including motivation, reward, and movement control. Changes or dysfunction in the dynamics of DA release are thought to play a pivotal role in regulating various physiological and behavioral processes, as well as leading to neuropsychiatric diseases. Therefore, it is of fundamental interest to neuroscientists to understand and accurately model the kinetics that govern dopaminergic neurotransmission. In the past several decades, many mathematical models have been proposed to attempt to capture the biologic parameters that govern dopaminergic kinetics, with each model seeking to improve upon a previous model. In this review, each of these models are derived, and the ability of each model to properly fit two fast-scan cyclic voltammetry (FSCV) data sets will be demonstrated and discussed. The dopamine oxidation current in both FSCV data sets exhibits hang-up and overshoot behaviors, which have traditionally been difficult for mathematical models to capture. We show that more recent models are better able to model DA release that exhibits these behaviors but that no single model is clearly the best. Rather, models should be selected based on their mathematical properties to best fit the FSCV data one is trying to model. Developing such differential equation models to describe the kinetics of DA release from the synapse confers significant applications both for advancing scientific understanding of DA neurotransmission and for advancing clinical ability to treat neuropsychiatric diseases.
Collapse
Affiliation(s)
- Abhinav Goyal
- Mayo
Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Una Karanovic
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Mayo
Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Charles D. Blaha
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kendall H. Lee
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Hojin Shin
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Yoonbae Oh
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
10
|
Yang Y, Ke J, Cao Y, Gao Y, Lin C. Melatonin regulates microglial M1/M2 polarization via AMPKα2-mediated mitophagy in attenuating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117092. [PMID: 38976956 DOI: 10.1016/j.biopha.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Jinyong Ke
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yang Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yue Gao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The key Laboratory of Precision Anesthesia & perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
11
|
Yan J, Luo X, Xu J, Li D, Qiu L, Li D, Cao P, Zhang C. Unlocking the potential: T1-weighed MRI as a powerful predictor of levodopa response in Parkinson's disease. Insights Imaging 2024; 15:141. [PMID: 38853208 PMCID: PMC11162980 DOI: 10.1186/s13244-024-01690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The efficacy of levodopa, the most crucial metric for Parkinson's disease diagnosis and treatment, is traditionally gauged through the levodopa challenge test, which lacks a predictive model. This study aims to probe the predictive power of T1-weighted MRI, the most accessible modality for levodopa response. METHODS This retrospective study used two datasets: from the Parkinson's Progression Markers Initiative (219 records) and the external clinical dataset from Ruijin Hospital (217 records). A novel feature extraction method using MedicalNet, a pre-trained deep learning network, along with three previous approaches was applied. Three machine learning models were trained and tested on the PPMI dataset and included clinical features, imaging features, and their union set, using the area under the curve (AUC) as the metric. The most significant brain regions were visualized. The external clinical dataset was further evaluated using trained models. A paired one-tailed t-test was performed between the two sets; statistical significance was set at p < 0.001. RESULTS For 46 test set records (mean age, 62 ± 9 years, 28 men), MedicalNet-extracted features demonstrated a consistent improvement in all three machine learning models (SVM 0.83 ± 0.01 versus 0.73 ± 0.01, XgBoost 0.80 ± 0.04 versus 0.74 ± 0.02, MLP 0.80 ± 0.03 versus 0.70 ± 0.07, p < 0.001). Both feature sets were validated on the clinical dataset using SVM, where MedicalNet features alone achieved an AUC of 0.64 ± 0.03. Key responsible brain regions were visualized. CONCLUSION The T1-weighed MRI features were more robust and generalizable than the clinical features in prediction; their combination provided the best results. T1-weighed MRI provided insights on specific regions responsible for levodopa response prediction. CRITICAL RELEVANCE STATEMENT This study demonstrated that T1w MRI features extracted by a deep learning model have the potential to predict the levodopa response of PD patients and are more robust than widely used clinical information, which might help in determining treatment strategy. KEY POINTS This study investigated the predictive value of T1w features for levodopa response. MedicalNet extractor outperformed all other previously published methods with key region visualization. T1w features are more effective than clinical information in levodopa response prediction.
Collapse
Affiliation(s)
- Junyi Yan
- Department of Neurosurgery, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197th, 200025, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine Luwan Brunch, Shanghai, China
| | - Xufang Luo
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China.
| | - Jiahang Xu
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China
| | - Dongsheng Li
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China
| | - Lili Qiu
- Microsoft Research, Unit 4301-4304 AI Tower, No.701 Yunjin Road, 200232, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong Hong Kong SAR, Hong Kong, China
| | - Chencheng Zhang
- Department of Neurosurgery, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197th, 200025, Shanghai, China.
- Clinical Neuroscience Center, Ruijin Hospital Shanghai Jiaotong University School of Medicine Luwan Brunch, Shanghai, China.
- Ruijin-miHoYo lab, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197th, 200025, Shanghai, China.
| |
Collapse
|
12
|
Bertagna F, Ahmad S, Lewis R, Silva SRP, McFadden J, Huang CLH, Matthews HR, Jeevaratnam K. Loose patch clamp membrane current measurements in cornus ammonis 1 neurons in murine hippocampal slices. Ann N Y Acad Sci 2024; 1535:62-75. [PMID: 38602714 DOI: 10.1111/nyas.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024]
Abstract
Hippocampal pyramidal neuronal activity has been previously studied using conventional patch clamp in isolated cells and brain slices. We here introduce the loose patch clamping study of voltage-activated currents from in situ pyramidal neurons in murine cornus ammonis 1 hippocampal coronal slices. Depolarizing pulses of 15-ms duration elicited early transient inward, followed by transient and prolonged outward currents in the readily identifiable junctional region between the stratum pyramidalis (SP) and oriens (SO) containing pyramidal cell somas and initial segments. These resembled pyramidal cell currents previously recorded using conventional patch clamp. Shortening the depolarizing pulses to >1-2 ms continued to evoke transient currents; hyperpolarizing pulses to varying voltages evoked decays whose time constants could be shortened to <1 ms, clarifying the speed of clamping in this experimental system. The inward and outward currents had distinct pharmacological characteristics and voltage-dependent inactivation and recovery from inactivation. Comparative recordings from the SP, known to contain pyramidal cell somas, demonstrated similar current properties. Recordings from the SO and stratum radiatum demonstrated smaller inward and outward current magnitudes and reduced transient outward currents, consistent with previous conventional patch clamp results from their different interneuron types. The loose patch clamp method is thus useful for in situ studies of neurons in hippocampal brain slices.
Collapse
Affiliation(s)
- Federico Bertagna
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Shiraz Ahmad
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - S Ravi P Silva
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Johnjoe McFadden
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Christopher L-H Huang
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Kamalan Jeevaratnam
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
13
|
Kim B, Hong S, Lee J, Kang S, Kim JS, Jung C, Shin T, Youn B, Moon C. Identifying candidate genes associated with hippocampal dysfunction in a hemiparkinsonian rat model by transcriptomic profiling. Anim Cells Syst (Seoul) 2024; 28:198-215. [PMID: 38693920 PMCID: PMC11062273 DOI: 10.1080/19768354.2024.2348671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted p-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (Notch3, Gng4, Itga3, Grin2d, Hgf, Fgf11, Htr3a, and Col6a2), along with a significant downregulation of two hub genes (Itga11 and Plp1), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.
Collapse
Affiliation(s)
- Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - BuHyun Youn
- Department of Biological Science, Pusan National University, Busan, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Prasad K, de Vries EFJ, van der Meiden E, Moraga-Amaro R, Vazquez-Matias DA, Barazzuol L, Dierckx RAJO, van Waarde A. Effects of the adenosine A 2A receptor antagonist KW6002 on the dopaminergic system, motor performance, and neuroinflammation in a rat model of Parkinson's disease. Neuropharmacology 2024; 247:109862. [PMID: 38325770 DOI: 10.1016/j.neuropharm.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Adenosine A2A-receptors (A2AR) and dopamine D2-receptors (D2R) are known to work together in a synergistic manner. Inhibiting A2ARs by genetic or pharmacological means can relief symptoms and have neuroprotective effects in certain conditions. We applied PET imaging to evaluate the impact of the A2AR antagonist KW6002 on D2R availability and neuroinflammation in an animal model of Parkinson's disease. Male Wistar rats with 6-hydroxydopamine-induced damage to the right striatum were given 3 mg/kg of KW6002 daily for 20 days. Motor function was assessed using the rotarod and cylinder tests, and neuroinflammation and dopamine receptor availability were measured using PET scans with the tracers [11C]PBR28 and [11C]raclopride, respectively. On day 7 and 22 following 6-OHDA injection, rats were sacrificed for postmortem analysis. PET scans revealed a peak in neuroinflammation on day 7. Chronic treatment with KW6002 significantly reduced [11C]PBR28 uptake in the ipsilateral striatum [normalized to contralateral striatum] and [11C]raclopride binding in both striata when compared to the vehicle group. These imaging findings were accompanied by an improvement in motor function. Postmortem analysis showed an 84% decrease in the number of Iba-1+ cells in the ipsilateral striatum [normalized to contralateral striatum] of KW6002-treated rats compared to vehicle rats on day 22 (p = 0.007), corroborating the PET findings. Analysis of tyrosine hydroxylase levels showed less dopaminergic neuron loss in the ipsilateral striatum of KW6002-treated rats compared to controls on day 7. These findings suggest that KW6002 reduces inflammation and dopaminergic neuron loss, leading to less motor symptoms in this animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Esther van der Meiden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Daniel Aaron Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
15
|
Mann LG, Claassen DO. Mesial temporal dopamine: From biology to behaviour. Eur J Neurosci 2024; 59:1141-1152. [PMID: 38057945 DOI: 10.1111/ejn.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
While colloquially recognized for its role in pleasure, reward, and affect, dopamine is also necessary for proficient action control. Many motor studies focus on dopaminergic transmission along the nigrostriatal pathway, using Parkinson's disease as a model of a dorsal striatal lesion. Less attention to the mesolimbic pathway and its role in motor control has led to an important question related to the limbic-motor network. Indeed, secondary targets of the mesolimbic pathway include the hippocampus and amygdala, and these are linked to the motor cortex through the substantia nigra and thalamus. The modulatory impact of dopamine in the hippocampus and amygdala in humans is a focus of current investigations. This review explores dopaminergic activity in the mesial temporal lobe by summarizing dopaminergic networks and transmission in these regions and examining their role in behaviour and disease.
Collapse
Affiliation(s)
- Leah G Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Chun MY, Chung SJ, Kim SH, Park CW, Jeong SH, Lee HS, Lee PH, Sohn YH, Jeong Y, Kim YJ. Hippocampal Perfusion Affects Motor and Cognitive Functions in Parkinson Disease: An Early Phase 18 F-FP-CIT Positron Emission Tomography Study. Ann Neurol 2024; 95:388-399. [PMID: 37962393 DOI: 10.1002/ana.26827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE We investigated whether hippocampal perfusion changes are associated with cognitive decline, motor deficits, and the risk of dementia conversion in patients with Parkinson disease (PD). METHODS We recruited patients with newly diagnosed and nonmedicated PD and healthy participants who underwent dual phase 18 F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane positron emission tomography scans. Patients were classified into 3 groups according to hippocampal perfusion measured by standard uptake value ratios (SUVRs): (1) PD hippocampal hypoperfusion group (1 standard deviation [SD] below the mean hippocampal SUVR of healthy controls; PD-hippo-hypo), (2) PD hippocampal hyperperfusion group (1 SD above the mean; PD-hippo-hyper), and (3) the remaining patients (PD-hippo-normal). We compared the baseline cognitive performance, severity of motor deficits, hippocampal volume, striatal dopamine transporter (DAT) availability, and risk of dementia conversion among the groups. RESULTS We included 235 patients (PD-hippo-hypo, n = 21; PD-hippo-normal, n = 157; PD-hippo-hyper, n = 57) and 48 healthy participants. Patients in the PD-hippo-hypo group were older and had smaller hippocampal volumes than those in the other PD groups. The PD-hippo-hypo group showed less severely decreased DAT availability in the putamen than the other groups despite similar severities of motor deficit. The PD-hippo-hypo group had a higher risk of dementia conversion compared to the PD-hippo-normal (hazard ratio = 2.59, p = 0.013) and PD-hippo-hyper (hazard ratio = 3.73, p = 0.006) groups, despite similar cognitive performance at initial assessment between groups. INTERPRETATION Hippocampal hypoperfusion may indicate a reduced capacity to cope with neurodegenerative processes in terms of the development of motor deficits and cognitive decline in patients with PD. ANN NEUROL 2024;95:388-399.
Collapse
Affiliation(s)
- Min Young Chun
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| | - Su Hong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Radiology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| |
Collapse
|
17
|
Citro S, Lazzaro GD, Cimmino AT, Giuffrè GM, Marra C, Calabresi P. A multiple hits hypothesis for memory dysfunction in Parkinson disease. Nat Rev Neurol 2024; 20:50-61. [PMID: 38052985 DOI: 10.1038/s41582-023-00905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Cognitive disorders are increasingly recognized in Parkinson disease (PD), even in early disease stages, and memory is one of the most affected cognitive domains. Classically, hippocampal cholinergic system dysfunction was associated with memory disorders, whereas nigrostriatal dopaminergic system impairment was considered responsible for executive deficits. Evidence from PD studies now supports involvement of the amygdala, which modulates emotional attribution to experiences. Here, we propose a tripartite model including the hippocampus, striatum and amygdala as key structures for cognitive disorders in PD. First, the anatomo-functional relationships of these structures are explored and experimental evidence supporting their role in cognitive dysfunction in PD is summarized. We then discuss the potential role of α-synuclein, a pathological hallmark of PD, in the tripartite memory system as a key mechanism in the pathogenesis of memory disorders in the disease.
Collapse
Affiliation(s)
- Salvatore Citro
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Di Lazzaro
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angelo Tiziano Cimmino
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Guido Maria Giuffrè
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Camillo Marra
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
18
|
Metzker KLL, Mathias K, Machado RS, Bonfante S, Joaquim L, da Silva MG, Daros GC, Lins EMF, Belle F, Alano CG, Matiola RT, da Silva Lemos I, Danielski LG, Gava FF, de Bitencourt RM, Bobinski F, Streck EL, Reus GZ, Petronilho F. Amelioration of Neurochemical Alteration and Memory and Depressive Behavior in Sepsis by Allopurinol, a Tryptophan 2,3-Dioxygenase Inhibitor. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1499-1515. [PMID: 38712373 DOI: 10.2174/0118715273282363240415045927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND In response to inflammation and other stressors, tryptophan is catalyzed by Tryptophan 2,3-Dioxygenase (TDO), which leads to activation of the kynurenine pathway. Sepsis is a serious condition in which the body responds improperly to an infection, and the brain is the inflammation target in this condition. OBJECTIVE This study aimed to determine if the induction of TDO contributes to the permeability of the Blood-Brain Barrier (BBB), mortality, neuroinflammation, oxidative stress, and mitochondrial dysfunction, besides long-term behavioral alterations in a preclinical model of sepsis. METHODS Male Wistar rats with two months of age were submitted to the sepsis model using Cecal Ligation and Perforation (CLP). The rats received allopurinol (Allo, 20 mg/kg, gavage), a TDO inhibitor, or a vehicle once a day for seven days. RESULTS Sepsis induction increased BBB permeability, IL-6 level, neutrophil infiltrate, nitric oxide formation, and oxidative stress, resulting in energy impairment in 24h after CLP and Allo administration restored these parameters. Regarding memory, Allo restored short-term memory impairment and decreased depressive behavior. However, no change in survival rate was verified. CONCLUSION In summary, TDO inhibition effectively prevented depressive behavior and memory impairment 10 days after CLP by reducing acute BBB permeability, neuroinflammation, oxidative stress, and mitochondrial alteration.
Collapse
Affiliation(s)
- Kiuanne Lino Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Elisa Mitkus Flores Lins
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Fernanda Belle
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Carolina Giassi Alano
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaela Tezza Matiola
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela da Silva Lemos
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNex), Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoca, Brazil
| | - Emilio Luiz Streck
- Laboratory of Translational Biomedicine, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Zilli Reus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
19
|
Kim B, Kim JS, Youn B, Moon C. Dopamine depletion alters neuroplasticity-related signaling in the rat hippocampus. Anim Cells Syst (Seoul) 2023; 27:436-446. [PMID: 38125760 PMCID: PMC10732217 DOI: 10.1080/19768354.2023.2294308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Dopamine (DA) plays a significant role in regulating hippocampal function, particularly in modulating synaptic plasticity. Despite this, a comprehensive understanding of the molecular mechanisms involved in neuroplasticity-related signaling influenced by DA remains incomplete. This study aimed to elucidate the changes in the expression of key molecules related to hippocampal neuroplasticity following DA depletion in rats. To induce DA depletion, unilateral striatal infusions of 6-hydroxydopamine (6-OHDA) were administered to adult Sprague-Dawley rats. The subsequent loss of nigrostriatal DAergic signaling in these 6-OHDA-lesioned rats was confirmed using an apomorphine-induced rotation test at 4 weeks post-infusion and by assessing the expression levels of tyrosine hydroxylase (TH) through immunohistochemistry and western blotting at 7 weeks post-infusion. A decrease in DAergic signaling, evidenced by reduced TH-positive immunoreactivity, was also noted in the ipsilateral hippocampus of the lesioned rats. Interestingly, 6-OHDA infusion led to increased phosphorylation of pivotal hippocampal plasticity-related proteins, including extracellular signal-regulated kinase (ERK), protein kinase B (Akt), glycogen synthase kinase 3β (GSK3β), and cAMP response element-binding protein (CREB), in the ipsilateral hippocampus 7 weeks following the infusion. To extend these findings, in vitro experiments were conducted on primary hippocampal neurons exposed to DA and/or the active D1/D2 DA receptor antagonist, flupentixol (Flux). DA inhibited the constitutive phosphorylation of ERK, Akt, GSK3, and CREB, while Flux restored these phosphorylation levels. Taken together, these findings indicate that DA depletion triggers an increase in plasticity-related signaling in the hippocampus, suggesting a possible compensatory mechanism that promotes activity-independent neuroplasticity following DA depletion.
Collapse
Affiliation(s)
- Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - BuHyun Youn
- Department of Biological Science, Pusan National University, Busan, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
20
|
Xie H, Yang Y, Sun Q, Li ZY, Ni MH, Chen ZH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Yu Y, Yan LF, Cui GB. Abnormalities of cerebral blood flow and the regional brain function in Parkinson's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurol 2023; 14:1289934. [PMID: 38162449 PMCID: PMC10755479 DOI: 10.3389/fneur.2023.1289934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Belloso-Iguerategui A, Zamarbide M, Merino-Galan L, Rodríguez-Chinchilla T, Gago B, Santamaria E, Fernández-Irigoyen J, Cotman CW, Prieto GA, Quiroga-Varela A, Rodríguez-Oroz MC. Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain 2023; 146:4949-4963. [PMID: 37403195 PMCID: PMC10690043 DOI: 10.1093/brain/awad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.
Collapse
Affiliation(s)
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Belén Gago
- Faculty of Medicine, IBIMA Plataforma BIONAND, Universidad de Málaga, 29016 Málaga, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76010 Querétaro, México
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
22
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
An JH, Han KD, Jung JH, Jeon HJ. Association of physical activity with the risk of Parkinson's disease in depressive disorder: A nationwide longitudinal cohort study. J Psychiatr Res 2023; 167:93-99. [PMID: 37862909 DOI: 10.1016/j.jpsychires.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/14/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Regular physical activity (PA) has been suggested as effective disease preventable strategies for Parkinson's disease (PD). Depression often precedes PD but whether PA also would reduce the risk of PD in patients with depression has not been known. The aim of study is to examine the association of regular PA with risk of PD among patients with depressive disorder. A total of 1,342,282 patients with depressive disorder were identified from a nationwide health screening cohort from 2010 to 2016. The exposure was changes in pattern of regular PA between pre-and post-diagnosis of depressive disorder, categorized as four groups; 1) no PA, 2) increased PA, 3) decreased PA, and 4) maintaining PA. The outcome was risk of incident PD, calculated using multivariate adjusted Cox proportional hazards regressions according to the PA categorization. Total of 8901 PD cases (0.66%) were developed during 5.3 years of follow-up period. Maintaining PA group was associated with the lowest risk of PD (adjusted hazard ratio [aHR] 0.89, 95% CI 0.83-0.97) among all other PA groups with depressive disorder (with no PA group as reference). Otherwise, decreased PA group significantly increased the risk of PD (aHR 1.10, 95% CI 1.03-1.16). Those who maintained PA before and after diagnosis of depressive disorder were associated with lower risk of incident PD.
Collapse
Affiliation(s)
- Ji Hyun An
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung-do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences & Technology, Department of Medical Device Management& Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced, Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
24
|
Schaffner SL, Wassouf Z, Hentrich T, Nuesch-Germano M, Kobor MS, Schulze-Hentrich JM. Distinct impacts of alpha-synuclein overexpression on the hippocampal epigenome of mice in standard and enriched environments. Neurobiol Dis 2023; 186:106274. [PMID: 37648037 DOI: 10.1016/j.nbd.2023.106274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Elevated alpha-synuclein (SNCA) gene expression is associated with transcriptional deregulation and increased risk of Parkinson's disease, which may be partially ameliorated by environmental enrichment. At the molecular level, there is emerging evidence that excess alpha-synuclein protein (aSyn) impacts the epigenome through direct and/or indirect mechanisms. However, the extents to which the effects of both aSyn and the environment converge at the epigenome and whether epigenetic alterations underpin the preventive effects of environmental factors on transcription remain to be elucidated. Here, we profiled five DNA and histone modifications in the hippocampus of wild-type and transgenic mice overexpressing human SNCA. Mice of each genotype were housed under either standard conditions or in an enriched environment (EE) for 12 months. SNCA overexpression induced hippocampal CpG hydroxymethylation and histone H3K27 acetylation changes that associated with genotype more than environment. Excess aSyn was also associated with genotype- and environment-dependent changes in non-CpG (CpH) DNA methylation and H3K4 methylation. These H3K4 methylation changes included loci where the EE ameliorated the impacts of the transgene as well as loci resistant to the effects of environmental enrichment in transgenic mice. In addition, select H3K4 monomethylation alterations were associated with changes in mRNA expression. Our results suggested an environment-dependent impact of excess aSyn on some functionally relevant parts of the epigenome, and will ultimately enhance our understanding of the molecular etiology of Parkinson's disease and other synucleinopathies.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, 117-2194 Health Sciences Mall, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, V5Z 4H4 Vancouver, BC, Canada.
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Michael S Kobor
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, 117-2194 Health Sciences Mall, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, V5Z 4H4 Vancouver, BC, Canada.
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Siciliano M, De Micco R, Russo AG, Esposito F, Sant'Elia V, Ricciardi L, Morgante F, Russo A, Goldman JG, Chiorri C, Tedeschi G, Trojano L, Tessitore A. Memory Phenotypes In Early, De Novo Parkinson's Disease Patients with Mild Cognitive Impairment. Mov Disord 2023; 38:1461-1472. [PMID: 37319041 DOI: 10.1002/mds.29502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Memory deficits in mild cognitive impairment related to Parkinson's disease (PD-MCI) are quite heterogeneous, and there is no general agreement on their genesis. OBJECTIVES To define memory phenotypes in de novo PD-MCI and their associations with motor and non-motor features and patients' quality of life. METHODS From a sample of 183 early de novo patients with PD, cluster analysis was applied to neuropsychological measures of memory function of 82 patients with PD-MCI (44.8%). The remaining patients free of cognitive impairment were considered as a comparison group (n = 101). Cognitive measures and structural magnetic resonance imaging-based neural correlates of memory function were used to substantiate the results. RESULTS A three-cluster model produced the best solution. Cluster A (65.85%) included memory unimpaired patients; Cluster B (23.17%) included patients with mild episodic memory disorder related to a "prefrontal executive-dependent phenotype"; Cluster C (10.97%) included patients with severe episodic memory disorder related to a "hybrid phenotype," where hippocampal-dependent deficits co-occurred with prefrontal executive-dependent memory dysfunctions. Cognitive and brain structural imaging correlates substantiated the findings. The three phenotypes did not differ in terms of motor and non-motor features, but the attention/executive deficits progressively increased from Cluster A, through Cluster B, to Cluster C. This last cluster had worse quality of life compared to others. CONCLUSIONS Our results demonstrated the memory heterogeneity of de novo PD-MCI, suggesting existence of three distinct memory-related phenotypes. Identification of such phenotypes can be fruitful in understanding the pathophysiological mechanisms underlying PD-MCI and its subtypes and in guiding appropriate treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Gerardo Russo
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valeria Sant'Elia
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Carlo Chiorri
- Department of Educational Sciences, University of Genova, Genoa, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Trojano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Liu N, Zhang L, Tian T, Cheng J, Zhang B, Qiu S, Geng Z, Cui G, Zhang Q, Liao W, Yu Y, Zhang H, Gao B, Xu X, Han T, Yao Z, Qin W, Liu F, Liang M, Xu Q, Fu J, Xu J, Zhu W, Zhang P, Li W, Shi D, Wang C, Lui S, Yan Z, Chen F, Li J, Zhang J, Wang D, Shen W, Miao Y, Xian J, Gao JH, Zhang X, Li MJ, Xu K, Zuo XN, Wang M, Ye Z, Yu C. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat Genet 2023:10.1038/s41588-023-01425-8. [PMID: 37337106 DOI: 10.1038/s41588-023-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
The hippocampus is critical for memory and cognition and neuropsychiatric disorders, and its subfields differ in architecture and function. Genome-wide association studies on hippocampal and subfield volumes are mainly conducted in European populations; however, other ancestral populations are under-represented. Here we conduct cross-ancestry genome-wide association meta-analyses in 65,791 individuals for hippocampal volume and 38,977 for subfield volumes, including 7,009 individuals of East Asian ancestry. We identify 339 variant-trait associations at P < 1.13 × 10-9 for 44 hippocampal traits, including 23 new associations. Common genetic variants have similar effects on hippocampal traits across ancestries, although ancestry-specific associations exist. Cross-ancestry analysis improves the fine-mapping precision and the prediction performance of polygenic scores in under-represented populations. These genetic variants are enriched for Wnt signaling and neuron differentiation and affect cognition, emotion and neuropsychiatric disorders. These findings may provide insight into the genetic architectures of hippocampal and subfield volumes.
Collapse
Affiliation(s)
- Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
Iemolo A, De Risi M, Giordano N, Torromino G, Somma C, Cavezza D, Colucci M, Mancini M, de Iure A, Granata R, Picconi B, Calabresi P, De Leonibus E. Synaptic mechanisms underlying onset and progression of memory deficits caused by hippocampal and midbrain synucleinopathy. NPJ Parkinsons Dis 2023; 9:92. [PMID: 37328503 DOI: 10.1038/s41531-023-00520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/15/2023] [Indexed: 06/18/2023] Open
Abstract
Cognitive deficits, including working memory, and visuospatial deficits are common and debilitating in Parkinson's disease. α-synucleinopathy in the hippocampus and cortex is considered as the major risk factor. However, little is known about the progression and specific synaptic mechanisms underlying the memory deficits induced by α-synucleinopathy. Here, we tested the hypothesis that pathologic α-Synuclein (α-Syn), initiated in different brain regions, leads to distinct onset and progression of the pathology. We report that overexpression of human α-Syn in the murine mesencephalon leads to late onset memory impairment and sensorimotor deficits accompanied by reduced dopamine D1 expression in the hippocampus. In contrast, human α-Syn overexpression in the hippocampus leads to early memory impairment, altered synaptic transmission and plasticity, and decreased expression of GluA1 AMPA-type glutamate receptors. These findings identify the synaptic mechanisms leading to memory impairment induced by hippocampal α-synucleinopathy and provide functional evidence of the major neuronal networks involved in disease progression.
Collapse
Affiliation(s)
- Attilio Iemolo
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
- Institute of Genetics and Biophysics (IGB), Consiglio Nazionale delle Ricerche (CNR), via Pietro Castellino 111, Naples, Italy
| | - Maria De Risi
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
| | - Nadia Giordano
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Giulia Torromino
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
- University of Naples Federico II, Department of Humanistic Studies, Naples, Italy
| | - Cristina Somma
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Diletta Cavezza
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
| | - Martina Colucci
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
- Institute of Genetics and Biophysics (IGB), Consiglio Nazionale delle Ricerche (CNR), via Pietro Castellino 111, Naples, Italy
| | - Maria Mancini
- Institute of Neuroscience (IN), Consiglio Nazionale delle Ricerche (CNR), via Raoul Follereau 3, Vedano al Lambro, Monza e Brianza, Italy
| | - Antonio de Iure
- Lab. Experimental Neurophysiology, IRCCS San Raffaele, Rome, 00166, Italy
| | - Rocco Granata
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
| | - Barbara Picconi
- Lab. Experimental Neurophysiology, IRCCS San Raffaele, Rome, 00166, Italy
- Telematic University San Raffaele, Rome, 00166, Italy
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Neurology, Department of Neuroscience, Faculty of Medicine, Università Cattolica del "Sacro Cuore", 00168, Rome, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy.
- Institute of Genetics and Biophysics (IGB), Consiglio Nazionale delle Ricerche (CNR), via Pietro Castellino 111, Naples, Italy.
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
28
|
Savall ASP, Fidelis EM, de Mello JD, Quines CB, Denardin CC, Marques LS, Klann IP, Nogueira CW, Sampaio TB, Pinton S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75 NTR pathway. Life Sci 2023; 324:121711. [PMID: 37088413 DOI: 10.1016/j.lfs.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.
Collapse
Affiliation(s)
| | | | | | | | | | - Luiza Souza Marques
- Federal University of Santa Maria - Campus Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana CEP 97500-970, RS, Brazil.
| |
Collapse
|
29
|
Yuan M, Du N, Song Z. Primary motor area-related injury of anterior central gyrus in Parkinson's disease with dyskinesia: a study based on MRS and Q-Space. Neurosci Lett 2023; 805:137224. [PMID: 37019268 DOI: 10.1016/j.neulet.2023.137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION By using magnetic resonance spectroscopy (MRS) and Q-Space imaging technology, this research analyzes the imaging characteristics of white matter fibers in the primary motor cortex and posterior limbs of the subcortical internal capsule in parkinsonian patients with motor disorders. The correlation among the changes in axonal function and structure in the cerebral cortex and subcortical cortex and motor disorder is further revealed. METHODS First, motor function and clinical condition of 20 patients with Parkinson's disease is assessed the third section of the Unified Parkinson's Scale and H&Y Parkinson's Clinical Staging Scale. Magnetic resonance (MR) scanning is performed with 1H-MRS. Secondly, the range maps of N-acetylaspartic acid (NAA), Choline (Cho), and Creatine (Cr) in the region of interest (the primary motor area of anterior central cortex gyrus, i.e. M1 region) are obtained, and the ratios of NAA/Cr and Cho are calculated. Third, Q-Space MR diffusion imaging technique is used to collect Q-Space images, and a Dsi-studio workstation is used to post-process the images. The fraction anisotropic (FA), generalized fraction anisotropic (GFA), and apparent diffusion coefficient (ADC) parameters of Q-Space in the primary motor cortex and the region of interest in the posterior limb of the internal capsule are obtained. Finally, the parameters of MRS and Q-Space in the experimental group and the control group are further analyzed by SPSS statistical software. RESULTS After assessing with Parkinson's score scale, there is obvious motor dysfunction in the experimental group. The average clinical stage of H&Y is 3.0±0.31. In the analysis of MRS data, the ratio of NAA/Cr in the primary motor area of the anterior central gyrus in the experimental group is significantly lower than that in the control group (P<0.05). In the ADC map obtained by Q-Space imaging technique, the ADC value in the primary motor area of the anterior central gyrus in the experimental group is higher than that in the control group (P<0.05), and the difference is statistically significant (P<0.05). There is no significant difference between the experimental group and the control group (P>0.05) in FA and GFA values of the posterior limb of capsule to characterize the characteristics of white matter fibers. CONCLUSIONS In parkinsonian patients with motor dysfunction, there are apparent functional and structural changes in the primary motor area neurons and peripheral white matter of the anterior central gyrus, and no obvious damage to the axonal structure of the descending fibers in the cortex.
Collapse
|
30
|
Hou L, Liu J, Sun F, Huang R, Chang R, Ruan Z, Wang Y, Zhao J, Wang Q. Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase-NLRP3 inflammasome axis-dependent microglial activation. J Neuroinflammation 2023; 20:42. [PMID: 36804009 PMCID: PMC9938991 DOI: 10.1186/s12974-023-02732-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
INTRODUCTION The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.
Collapse
Affiliation(s)
- Liyan Hou
- grid.411971.b0000 0000 9558 1426Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China ,grid.411971.b0000 0000 9558 1426National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044 China
| | - Jianing Liu
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Fuqiang Sun
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ruixue Huang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Rui Chang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Zhengzheng Ruan
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ying Wang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China. .,School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
31
|
Wang Y, Liu J, Hui Y, Wu Z, Wang L, Wu X, Bai Y, Zhang Q, Li L. Dose and time-dependence of acute intermittent theta-burst stimulation on hippocampus-dependent memory in parkinsonian rats. Front Neurosci 2023; 17:1124819. [PMID: 36866328 PMCID: PMC9972116 DOI: 10.3389/fnins.2023.1124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Background The treatment options for cognitive impairments in Parkinson's disease (PD) are limited. Repetitive transcranial magnetic stimulation has been applied in various neurological diseases. However, the effect of intermittent theta-burst stimulation (iTBS) as a more developed repetitive transcranial magnetic stimulation paradigm on cognitive dysfunction in PD remains largely unclear. Objective Our aim was to explore the effect of acute iTBS on hippocampus-dependent memory in PD and the mechanism underlying it. Methods Different blocks of iTBS protocols were applied to unilateral 6-hydroxidopamine-induced parkinsonian rats followed by the behavioral, electrophysiological and immunohistochemical analyses. The object-place recognition and hole-board test were used to assess hippocampus-dependent memory. Results Sham-iTBS and 1 block-iTBS (300 stimuli) didn't alter hippocampus-dependent memory, hippocampal theta rhythm and the density of c-Fos- and parvalbumin-positive neurons in the hippocampus and medial septum. 3 block-iTBS (900 stimuli) alleviated 6-hydroxidopamine-induced memory impairments, and increased the density of hippocampal c-Fos-positive neurons at 80 min post-stimulation but not 30 min compared to sham-iTBS. Interestingly, 3 block-iTBS first decreased and then increased normalized theta power during a period of 2 h following stimulation. Moreover, 3 block-iTBS decreased the density of parvalbumin-positive neurons in the medial septum at 30 min post-stimulation compared to sham-iTBS. Conclusion The results indicate that multiple blocks of iTBS elicit dose and time-dependent effects on hippocampus-dependent memory in PD, which may be attributed to changes in c-Fos expression and the power of theta rhythm in the hippocampus.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhongheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
32
|
Botulinum neurotoxin A ameliorates depressive-like behavior in a reserpine-induced Parkinson's disease mouse model via suppressing hippocampal microglial engulfment and neuroinflammation. Acta Pharmacol Sin 2023:10.1038/s41401-023-01058-x. [PMID: 36765267 DOI: 10.1038/s41401-023-01058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Depression is one of the common non-motor symptoms of Parkinson's disease (PD). In the clinic, botulinum neurotoxin A (BoNT/A) has been used to treat depression. In this study, we investigated the mechanisms underlying the anti-depressive effect of BoNT/A in a PD mouse model. Mice were administered reserpine (3 μg/mL in the drinking water) for 10 weeks. From the 10th week, BoNT/A (10 U·kg-1·d-1) was injected into the cheek for 3 consecutive days. We showed that chronic administration of reserpine produced the behavioral phenotypes of depression and neurochemical changes in the substantia nigra pars compacta (SNpc) and striatum. BoNT/A treatment significantly ameliorated the depressive-like behaviors, but did not improve TH activity in SNpc of reserpine-treated mice. We demonstrated that BoNT/A treatment reversed reserpine-induced complement and microglia activation in the hippocampal CA1 region. Furthermore, BoNT/A treatment significantly attenuated the microglial engulfment of presynaptic synapses, thus ameliorating the apparent synapse and spine loss in the hippocampus in the reserpine-treated mice. Moreover, BoNT/A treatment suppressed microglia-mediated expression of pro-inflammatory cytokines TNF-α and IL-1β in reserpine-treated mice. In addition, we showed that BoNT/A (0.1 U/mL) ameliorated reserpine-induced complement and microglia activation in mouse BV2 microglial cells in vitro. We conclude that BoNT/A ameliorates depressive-like behavior in a reserpine-induced PD mouse model through reversing the synapse loss mediated by classical complement induced-microglial engulfment as well as alleviating microglia-mediated proinflammatory responses. BoNT/A ameliorates depressive-like behavior, and reverses synapse loss mediated by classical complement pathway-initiated microglia engulfment as well as alleviates microglia-mediated proinflammatory response in the reserpine-induced Parkinson's disease mouse model.
Collapse
|
33
|
Non-coding RNAs as key players in the neurodegenerative diseases: Multi-platform strategies and approaches for exploring the Genome's dark matter. J Chem Neuroanat 2023; 129:102236. [PMID: 36709005 DOI: 10.1016/j.jchemneu.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A growing amount of evidence in the last few years has begun to unravel that non-coding RNAs have a myriad of functions in gene regulation. Intensive investigation on non-coding RNAs (ncRNAs) has led to exploring their broad role in neurodegenerative diseases (NDs) owing to their regulatory role in gene expression. RNA sequencing technologies and transcriptome analysis has unveiled significant dysregulation of ncRNAs attributed to their biogenesis, upregulation, downregulation, aberrant epigenetic regulation, and abnormal transcription. Despite these advances, the understanding of their potential as therapeutic targets and biomarkers underpinning detailed mechanisms is still unknown. Advancements in bioinformatics and molecular technologies have improved our knowledge of the dark matter of the genome in terms of recognition and functional validation. This review aims to shed light on ncRNAs biogenesis, function, and potential role in NDs. Further deepening of their role is provided through a focus on the most recent platforms, experimental approaches, and computational analysis to investigate ncRNAs. Furthermore, this review summarizes and evaluates well-studied miRNAs, lncRNAs and circRNAs concerning their potential role in pathogenesis and use as biomarkers in NDs. Finally, a perspective on the main challenges and novel methods for the future and broad therapeutic use of ncRNAs is offered.
Collapse
|
34
|
Ramalingam N, Jin SX, Moors TE, Fonseca-Ornelas L, Shimanaka K, Lei S, Cam HP, Watson AH, Brontesi L, Ding L, Hacibaloglu DY, Jiang H, Choi SJ, Kanter E, Liu L, Bartels T, Nuber S, Sulzer D, Mosharov EV, Chen WV, Li S, Selkoe DJ, Dettmer U. Dynamic physiological α-synuclein S129 phosphorylation is driven by neuronal activity. NPJ Parkinsons Dis 2023; 9:4. [PMID: 36646701 PMCID: PMC9842642 DOI: 10.1038/s41531-023-00444-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
In Parkinson's disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity. Neuronal activity triggers a sustained increase of pS129 in cultured neurons (200% within 4 h). In accord, brain pS129 is elevated in environmentally enriched mice exhibiting enhanced long-term potentiation. Activity-dependent α-synuclein phosphorylation is S129-specific, reversible, confers no cytotoxicity, and accumulates at synapsin-containing presynaptic boutons. Mechanistically, our findings are consistent with a model in which neuronal stimulation enhances Plk2 kinase activity via a calcium/calcineurin pathway to counteract PP2A phosphatase activity for efficient phosphorylation of membrane-bound α-synuclein. Patch clamping of rat SNCA-/- neurons expressing exogenous wild-type or phospho-incompetent (S129A) α-synuclein suggests that pS129 fine-tunes the balance between excitatory and inhibitory neuronal currents. Consistently, our novel S129A knock-in (S129AKI) mice exhibit impaired hippocampal plasticity. The discovery of a key physiological function for pS129 has implications for understanding the role of α-synuclein in neurotransmission and adds nuance to the interpretation of pS129 as a synucleinopathy biomarker.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Shan-Xue Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tim E Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Luis Fonseca-Ornelas
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuma Shimanaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shi Lei
- Leveragen, Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hugh P Cam
- Leveragen, Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | | | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lai Ding
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dinc Yasat Hacibaloglu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyang Jiang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Se Joon Choi
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
| | - Ellen Kanter
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London, UK
| | - Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - David Sulzer
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
- Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Molecular Therapeutics and Pharmacology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
- Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
| | - Weisheng V Chen
- Leveragen, Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Yao Y, Han W. Proline Metabolism in Neurological and Psychiatric Disorders. Mol Cells 2022; 45:781-788. [PMID: 36324271 PMCID: PMC9676987 DOI: 10.14348/molcells.2022.0115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.
Collapse
Affiliation(s)
- Yuxiao Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| |
Collapse
|
36
|
Pan Y, Zong Q, Li G, Wu Z, Du T, Huang Z, Zhang Y, Ma K. Nuclear localization of alpha-synuclein affects the cognitive and motor behavior of mice by inducing DNA damage and abnormal cell cycle of hippocampal neurons. Front Mol Neurosci 2022; 15:1015881. [PMID: 36438187 PMCID: PMC9684191 DOI: 10.3389/fnmol.2022.1015881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2024] Open
Abstract
Nuclear accumulation of alpha-synuclein (α-syn) in neurons can promote neurotoxicity, which is considered the key factor in the pathogenesis of synucleinopathy. The damage to hippocampus neurons driven by α-syn pathology is also the potential cause of memory impairment in Parkinson's disease (PD) patients. In this study, we examined the role of α-syn nuclear translocation in the cognition and motor ability of mice by overexpressing α-syn in cell nuclei in the hippocampus. The results showed that the overexpression of α-syn in nuclei was able to cause significant pathological accumulation of α-syn in the hippocampus, and quickly lead to memory and motor impairments in mice. It might be that nuclear overexpression of α-syn may cause DNA damage of hippocampal neurons, thereby leading to activation and abnormal blocking of cell cycle, and further inducing apoptosis of hippocampal neurons and inflammatory reaction. Meanwhile, the inflammatory reaction further aggravated DNA damage and formed a vicious circle. Therefore, the excessive nuclear translocation of α-syn in hippocampal neurons may be one of the main reasons for cognitive decline in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
37
|
Changes in the Neuronal Architecture of the Hippocampus in a 6-Hydroxydopamine-Lesioned Rat Model of Parkinson Disease. Int Neurourol J 2022; 26:S94-105. [PMID: 36503212 PMCID: PMC9767684 DOI: 10.5213/inj.2244252.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Parkinson disease (PD) is a progressive neurodegenerative disorder in which dopaminergic (DAergic) systems are destroyed (particularly in the nigrostriatal system), causing both motor and nonmotor symptoms. Hippocampal neuroplasticity is altered in PD animal models, resulting in nonmotor dysfunctions. However, little is known about the precise mechanism underlying the hippocampal dysfunctions in PD. METHODS Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in adult Sprague Dawley rats. Both motor and nonmotor symptoms alongside the expression of tyrosine hydroxylase (TH) in the substantia nigra and striatum were confirmed in 6-OHDA-lesioned rats. The neuronal architecture in the hippocampus was analyzed by Golgi staining. RESULTS During the 7-8 weeks after infusion, the 6-OHDA-lesioned rats exhibited motor and nonmotor dysfunctions (especially anxiety/depression-like behaviors). Rats with unilateral 6-OHDA infusion displayed reduced TH+ immunoreactivity in the ipsilateral nigrostriatal pathway of the brain. Golgi staining revealed that striatal 6-OHDA infusion significantly decreased the dendritic complexity (i.e., number of crossing dendrites, total dendritic length, and branch points) in the ipsilateral hippocampal conus ammonis 1 (CA1) apical/basal and dentate gyrus (DG) subregions. Additionally, the dendritic spine density and morphology were significantly altered in the CA1 apical/basal and DG subregions following striatal 6-OHDA infusion. However, alteration of microglial and astrocytic distributions did not occur in the hippocampus following striatal 6-OHDA infusion. CONCLUSION The present study provides anatomical evidence that the structural plasticity in the hippocampus is altered in the late phase following striatal 6-OHDA infusion in rats, possibly as a result of the prolonged suppression of the DAergic system, and independent of neuroinflammation.
Collapse
|
38
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
39
|
Palmas MF, Etzi M, Pisanu A, Camoglio C, Sagheddu C, Santoni M, Manchinu MF, Pala M, Fusco G, De Simone A, Picci L, Mulas G, Spiga S, Scherma M, Fadda P, Pistis M, Simola N, Carboni E, Carta AR. The Intranigral Infusion of Human-Alpha Synuclein Oligomers Induces a Cognitive Impairment in Rats Associated with Changes in Neuronal Firing and Neuroinflammation in the Anterior Cingulate Cortex. Cells 2022; 11:cells11172628. [PMID: 36078036 PMCID: PMC9454687 DOI: 10.3390/cells11172628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a complex pathology causing a plethora of non-motor symptoms besides classical motor impairments, including cognitive disturbances. Recent studies in the PD human brain have reported microgliosis in limbic and neocortical structures, suggesting a role for neuroinflammation in the development of cognitive decline. Yet, the mechanism underlying the cognitive pathology is under investigated, mainly for the lack of a valid preclinical neuropathological model reproducing the disease’s motor and non-motor aspects. Here, we show that the bilateral intracerebral infusion of pre-formed human alpha synuclein oligomers (H-αSynOs) within the substantia nigra pars compacta (SNpc) offers a valid model for studying the cognitive symptoms of PD, which adds to the classical motor aspects previously described in the same model. Indeed, H-αSynOs-infused rats displayed memory deficits in the two-trial recognition task in a Y maze and the novel object recognition (NOR) test performed three months after the oligomer infusion. In the anterior cingulate cortex (ACC) of H-αSynOs-infused rats the in vivo electrophysiological activity was altered and the expression of the neuron-specific immediate early gene (IEG) Npas4 (Neuronal PAS domain protein 4) and the AMPA receptor subunit GluR1 were decreased. The histological analysis of the brain of cognitively impaired rats showed a neuroinflammatory response in cognition-related regions such as the ACC and discrete subareas of the hippocampus, in the absence of any evident neuronal loss, supporting a role of neuroinflammation in cognitive decline. We found an increased GFAP reactivity and the acquisition of a proinflammatory phenotype by microglia, as indicated by the increased levels of microglial Tumor Necrosis Factor alpha (TNF-α) as compared to vehicle-infused rats. Moreover, diffused deposits of phospho-alpha synuclein (p-αSyn) and Lewy neurite-like aggregates were found in the SNpc and striatum, suggesting the spreading of toxic protein within anatomically interconnected areas. Altogether, we present a neuropathological rat model of PD that is relevant for the study of cognitive dysfunction featuring the disease. The intranigral infusion of toxic oligomeric species of alpha-synuclein (α-Syn) induced spreading and neuroinflammation in distant cognition-relevant regions, which may drive the altered neuronal activity underlying cognitive deficits.
Collapse
Affiliation(s)
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, 09040 Cagliari, Italy
| | - Chiara Camoglio
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Michele Santoni
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Maria Francesca Manchinu
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, 09040 Monserrato, Italy
| | - Mauro Pala
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, 09040 Monserrato, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Luca Picci
- Department of Life and Environmental Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
- Correspondence:
| |
Collapse
|
40
|
Cicero CE, Donzuso G, Luca A, Davì M, Baschi R, Mostile G, Giuliano L, Palmucci S, Salerno A, Monastero R, Nicoletti A, Zappia M. Morphometric
MRI
Cortico‐subcortical features in Parkinson’s Disease with mild cognitive impairment. Eur J Neurol 2022; 29:3197-3204. [DOI: 10.1111/ene.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Calogero Edoardo Cicero
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Giulia Donzuso
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Marco Davì
- Department of Biomedicine, Neuroscience and advanced Diagnostics University of Palermo, Via La Loggia 1 Palermo Italy
| | - Roberta Baschi
- Department of Biomedicine, Neuroscience and advanced Diagnostics University of Palermo, Via La Loggia 1 Palermo Italy
| | - Giovanni Mostile
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
- Oasi Research Institute ‐ IRCCS Troina Italy
| | - Loretta Giuliano
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Stefano Palmucci
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Radiodiagnostic and Radiotherapy Unit University of Catania, Via Santa Sofia 78 Catania Italy
| | - Andrea Salerno
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Roberto Monastero
- Department of Biomedicine, Neuroscience and advanced Diagnostics University of Palermo, Via La Loggia 1 Palermo Italy
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| |
Collapse
|
41
|
A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules 2022; 12:biom12070881. [PMID: 35883437 PMCID: PMC9312958 DOI: 10.3390/biom12070881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson’s and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.
Collapse
|
42
|
Bahrami S, Nordengen K, Shadrin AA, Frei O, van der Meer D, Dale AM, Westlye LT, Andreassen OA, Kaufmann T. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat Commun 2022; 13:3436. [PMID: 35705537 PMCID: PMC9200849 DOI: 10.1038/s41467-022-31086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Despite its major role in complex human functions across the lifespan, most notably navigation, learning and memory, much of the genetic architecture of the hippocampal formation is currently unexplored. Here, through multivariate genome-wide association analysis in volumetric data from 35,411 white British individuals, we reveal 177 unique genetic loci with distributed associations across the hippocampal formation. We identify genetic overlap with eight brain disorders with typical onset at different stages of life, where common genes suggest partly age- and disorder-independent mechanisms underlying hippocampal pathology.
Collapse
Affiliation(s)
- Shahram Bahrami
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Anders M Dale
- Department of Radiology, School of Medicine, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
43
|
Awan MUN, Yan F, Mahmood F, Bai L, Liu J, Bai J. The Functions of Thioredoxin 1 in Neurodegeneration. Antioxid Redox Signal 2022; 36:1023-1036. [PMID: 34465198 DOI: 10.1089/ars.2021.0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Thioredoxin 1 (Trx1) is a ubiquitous protein that is found in organisms ranging from prokaryotes to eukaryotes. Trx1 acts as reductases in redox regulation and protects proteins from oxidative aggregation and inactivation. Trx1 helps the cells to cope with various environmental stresses and inhibits programmed cell death. It is beneficial to neuroregeneration and resistance against oxidative stress-associated neuron damage. Trx1 also plays important roles in suppressing neurodegenerative disorders. Recent Advances: Trx1 is a redox regulating protein involved in neuronal protection. According to a previous study, Trx1 expression is increased by nerve growth factor (NGF) and necessary for neurite outgrowth of PC12 cells. Trx1 has been shown to promote the growth of neurons. Trx1 knockout or knockdown has the worse impact on cell viability and survival. Critical Issues: Trx1 has functions in central nervous system. Trx1 plays the defensive roles against oxidative stress in neurodegenerative diseases. Future Directions: In this review, we focus on the structure of Trx1 and basic functions of Trx1. Trx1 plays a neuroprotective role by suppressing endoplasmic reticulum stress in Parkinson's disease. Neurodegenerative diseases have no cure and carry a high cost to the health care system and patient's families. Trx1 may be taken as a new target for neurodegenerative disorder therapy. Further studies of the Trx1 roles and mechanisms on neurodegenerative diseases are needed. Antioxid. Redox Signal. 36, 1023-1036.
Collapse
Affiliation(s)
- Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Faisal Mahmood
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jingyu Liu
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
44
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
45
|
Zhao H, Tsai CC, Zhou M, Liu Y, Chen YL, Huang F, Lin YC, Wang JJ. Deep learning based diagnosis of Parkinson's Disease using diffusion magnetic resonance imaging. Brain Imaging Behav 2022; 16:1749-1760. [PMID: 35285004 DOI: 10.1007/s11682-022-00631-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/31/2022]
Abstract
The diagnostic performance of a combined architecture on Parkinson's disease using diffusion tensor imaging was evaluated. A convolutional neural network was trained from multiple parcellated brain regions. A greedy algorithm was proposed to combine the models from individual regions into a complex one. Total 305 Parkinson's disease patients (aged 59.9±9.7 years old) and 227 healthy control subjects (aged 61.0±7.4 years old) were enrolled from 3 retrospective studies. The participants were divided into training with ten-fold cross-validation (N = 432) and an independent blind dataset (N = 100). Diffusion-weighted images were acquired from a 3T scanner. Fractional anisotropy and mean diffusivity were calculated and was subsequently parcellated into 90 cerebral regions of interest based on the Automatic Anatomic Labeling template. A convolutional neural network was implemented which contained three convolutional blocks and a fully connected layer. Each convolutional block consisted of a convolutional layer, activation layer, and pooling layer. This model was trained for each individual region. A greedy algorithm was implemented to combine multiple regions as the final prediction. The greedy algorithm predicted the area under curve of 94.1±3.2% from the combination of fractional anisotropy from 22 regions. The model performance analysis showed that the combination of 9 regions is equivalent. The best area under curve was 74.7±5.4% from the right postcentral gyrus. The current study proposed an architecture of convolutional neural network and a greedy algorithm to combine from multiple regions. With diffusion tensor imaging, the algorithm showed the potential to distinguish patients with Parkinson's disease from normal control with satisfactory performance.
Collapse
Affiliation(s)
- Hengling Zhao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Mingyi Zhou
- School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Yipeng Liu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China.
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Fan Huang
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Yu-Chun Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan. .,Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan. .,Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
46
|
Nano-MgO composites containing plasmid DNA to silence SNCA gene displays neuroprotective effects in Parkinson's rats induced by 6-hydroxydopamine. Eur J Pharmacol 2022; 922:174904. [DOI: 10.1016/j.ejphar.2022.174904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
47
|
Yildizhan K, Çinar R, Naziroğlu M. The involvement of TRPM2 on the MPP +-induced oxidative neurotoxicity and apoptosis in hippocampal neurons from neonatal mice: protective role of resveratrol. Neurol Res 2022; 44:636-644. [PMID: 35019826 DOI: 10.1080/01616412.2022.2027644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is an age-related chronic neurodegenerative disease. Although PD is known to be a result of damage to hippocampal neurons, its molecular mechanism has yet to be completely clarified. The neurodegeneration in hippocampal neurons has been suggested to include excessive production of reactive oxygen species (ROS). Mitochondrial dysfunction and disruption of intracellular Ca2+ homeostasis play the most important role in the increase in ROS production for the cells. Remarkably, it is stated in the literature that especially the change of Ca2+ homeostasis triggers neuronal degeneration. TRPM2 is a unique calcium-permeable nonselective cation channel, and densest in the numberless neuronal population. The current study aims to elucidate the effect of antioxidant resveratrol (Resv) on TRPM2-mediated oxidative stress (OS) induced by 1-methyl-4-phenylpyridinium (MPP) exposure in the primary mouse hippocampal neurons. The neurons were divided into four groups as Control, Resv , MPP, and MPP+ Resv. In the current results, the activation of TRPM2 was observed in primary hippocampal neurons with MPP incubation. TRPM2 channel expression levels in the MPP group increased in hippocampal neurons after MPP exposure. In addition, intracellular free Ca2+ concentration and TRPM2 channel currents were highest in MPP groups, although they were decreased by the Resv treatment. In addition, mitochondrial membrane depolarization, ROS, caspase-3, caspase-9, and apoptosis values induced by MPP decreased with resveratrol treatment. In conclusion, in our study, we observed that the dysregulation of OS-induced TRPM2 channel activation in hippocampal neurons exposed to MPP caused apoptotic cell death in neurons, while the use of resveratrol had a protective effect by reducing OS resources in the environment.
Collapse
Affiliation(s)
- Kenan Yildizhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Ramazan Çinar
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Naziroğlu
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey
| |
Collapse
|
48
|
OUP accepted manuscript. Nutr Rev 2022; 80:2002-2016. [DOI: 10.1093/nutrit/nuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Mapping Actuarial Criteria for Parkinson’s Disease-Mild Cognitive Impairment onto Data-Driven Cognitive Phenotypes. Brain Sci 2021; 12:brainsci12010054. [PMID: 35053799 PMCID: PMC8773733 DOI: 10.3390/brainsci12010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Prevalence rates for mild cognitive impairment in Parkinson’s disease (PD-MCI) remain variable, obscuring the diagnosis’ predictive utility of greater dementia risk. A primary factor of this variability is inconsistent operationalization of normative cutoffs for cognitive impairment. We aimed to determine which cutoff was optimal for classifying individuals as PD-MCI by comparing classifications against data-driven PD cognitive phenotypes. Participants with idiopathic PD (n = 494; mean age 64.7 ± 9) completed comprehensive neuropsychological testing. Cluster analyses (K-means, Hierarchical) identified cognitive phenotypes using domain-specific composites. PD-MCI criteria were assessed using separate cutoffs (−1, −1.5, −2 SD) on ≥2 tests in a domain. Cutoffs were compared using PD-MCI prevalence rates, MCI subtype frequencies (single/multi-domain, executive function (EF)/non-EF impairment), and validity against the cluster-derived cognitive phenotypes (using chi-square tests/binary logistic regressions). Cluster analyses resulted in similar three-cluster solutions: Cognitively Average (n = 154), Low EF (n = 227), and Prominent EF/Memory Impairment (n = 113). The −1.5 SD cutoff produced the best model of cluster membership (PD-MCI classification accuracy = 87.9%) and resulted in the best alignment between PD-MCI classification and the empirical cognitive profile containing impairments associated with greater dementia risk. Similar to previous Alzheimer’s work, these findings highlight the utility of comparing empirical and actuarial approaches to establish concurrent validity of cognitive impairment in PD.
Collapse
|
50
|
Ma J, Sun W, Chen S, Wang Z, Zheng J, Shi X, Li M, Li D, Gu Q. The long noncoding RNA GAS5 potentiates neuronal injury in Parkinson's disease by binding to microRNA-150 to regulate Fosl1 expression. Exp Neurol 2021; 347:113904. [PMID: 34755654 DOI: 10.1016/j.expneurol.2021.113904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been the focus of recent studies of neurodegenerative disorders, including Parkinson's disease (PD). However, the specific mechanism of action of growth arrest-specific 5 (GAS5) in PD has not yet been characterized. First, the GSE8030 and GSE16658 datasets were analyzed to obtain differentially expressed genes (DEGs), followed by the development of a PD mouse model. The effects of shRNA targeting fos-like antigen-1 (shFosl1) and microRNA (miR)-150 agomiR on PD mouse behavior and neuronal injury were evaluated in vitro and in vivo. After the determination of target lncRNAs using bioinformatics tools, cell models were developed in SH-SY5Y and N2a cells using MPP+ to verify the effects of GAS5, miR-150 and Fosl1 on cell viability. Knockdown of Fosl1 and GAS5 or overexpression of miR-150 alleviated neuronal injury in mice after MPTP treatment and significantly increased the activity of SH-SY5Y and N2a cells after MPP treatment. GAS5 bound to miR-150, while miR-150 targeted Fosl1. Fosl1 activated the PTEN/AKT/mTOR pathway, thus promoting apoptosis and inhibiting neuronal activity in the PD model. Overall, our findings illuminated that GAS5 accelerated PD progression by targeting the miR-150/Fosl1 axis.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China.
| | - Wenhua Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Zhidong Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Mingjian Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| | - Qi Gu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, Henan, PR China
| |
Collapse
|