1
|
Liu FH, Lin XC, Liu YW, Zhang TT, Zhang YB, Xie ZL, Zhan Y, Hu P. Harmine inhibits the proliferation and migration and promotes the apoptosis of colon cancer cells via inhibition of the FAK/AKT and ERK 1/2/CREB signaling pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-13. [PMID: 39001813 DOI: 10.1080/10286020.2024.2361767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/23/2024] [Indexed: 07/15/2024]
Abstract
Harmine is present in a variety of medicinal plants, and its effects on colon cancer cells remain unclear. Here, we found that harmine exhibited significant inhibitory effects on the proliferation of colon cancer cells by inhibiting the phosphorylation levels of the FAK/AKT and ERK1/2/CREB. Furthermore, harmine also inhibited the migration of colon cancer cells and suppressed the expression levels of MMP-2, MMP-9, and VEGF. Additionally, harmine-induced apoptosis in colon cancer cells by regulating the expression of Bcl-2 and Bax. In conclusion, our findings suggest that harmine exerts a significant inhibitory effect on the development of colon cancer cells.
Collapse
Affiliation(s)
- Fu-Hong Liu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Xing-Cheng Lin
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Yu-Wei Liu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Tian-Tian Zhang
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Yang-Bo Zhang
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhuo-Long Xie
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang 330001, China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| |
Collapse
|
2
|
Hu Y, Yu X, Yang L, Xue G, Wei Q, Han Z, Chen H. Research progress on the antitumor effects of harmine. Front Oncol 2024; 14:1382142. [PMID: 38590646 PMCID: PMC10999596 DOI: 10.3389/fonc.2024.1382142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Harmine is a naturally occurring β-carboline alkaloid originally isolated from Peganum harmala. As a major active component, harmine exhibits a broad spectrum of pharmacological properties, particularly remarkable antitumor effects. Recent mechanistic studies have shown that harmine can inhibit cancer cell proliferation and metastasis through epithelial-to-mesenchymal transition, cell cycle regulation, angiogenesis, and the induction of tumor cell apoptosis. Furthermore, harmine reduces drug resistance when used in combination with chemotherapeutic drugs. Despite its remarkable antitumor activity, the application of harmine is limited by its poor solubility and toxic side effects, particularly neurotoxicity. Novel harmine derivatives have demonstrated strong clinical application prospects, but further validation based on drug activity, acute toxicity, and other aspects is necessary. Here, we present a review of recent research on the action mechanism of harmine in cancer treatment and the development of its derivatives, providing new insights into its potential clinical applications and strategies for mitigating its toxicity while enhancing its efficacy.
Collapse
Affiliation(s)
- Yonghua Hu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoli Yu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lei Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gaimei Xue
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qinglin Wei
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Sedky NK, Arafa KK, Abdelhady MMM, Issa MY, Abdel-Kader NM, Mahdy NK, Mokhtar FA, Alfaifi MY, Fahmy SA. Nedaplatin/ Peganum harmala Alkaloids Co-Loaded Electrospun, Implantable Nanofibers: A Chemopreventive Nano-Delivery System for Treating and Preventing Breast Cancer Recurrence after Tumorectomy. Pharmaceutics 2023; 15:2367. [PMID: 37896127 PMCID: PMC10609766 DOI: 10.3390/pharmaceutics15102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, the main pillars in treating breast cancer involve tumorectomy pursued by hormonal, radio, or chemotherapies. Nonetheless, these approaches exhibit severe adverse effects and might suffer from tumor recurrence. Therefore, there is a considerable demand to fabricate an innovative controlled-release nano-delivery system to be implanted after tumor surgical removal to guard against cancer recurrence. In addition, combining platinum-based drugs with phytochemicals is a promising approach to improving the anticancer activity of the chemotherapeutics against tumor cells while minimizing their systemic effects. This study designed polycaprolactone (PCL)-based electrospun nanofiber mats encapsulating nedaplatin (N) and Peganum harmala alkaloid-rich fraction (L). In addition to physicochemical characterization, including average diameters, morphological features, degradation study, thermal stability, and release kinetics study, the formulated nanofibers were assessed in terms of cytotoxicity, where they demonstrated potentiated effects and higher selectivity towards breast cancer cells. The dual-loaded nanofiber mats (N + L@PCL) demonstrated the highest antiproliferative effects against MCF-7 cells with a recorded IC50 of 3.21 µg/mL, as well as the topmost achieved selectivity index (20.45) towards cancer cells amongst all the tested agents (N, L, N@PCL, and L@PCL). This indicates that the dual-loaded nanofiber excelled at conserving the normal breast epithelial cells (MCF-10A). The combined therapy, N + L@PCL treatment, resulted in a significantly higher percent cell population in the late apoptosis and necrosis quartiles as compared to all other treatment groups (p-value of ≤0.001). Moreover, this study of cell cycle kinetics revealed potentiated effects of the dual-loaded nanofiber (N + L@PCL) at trapping more than 90% of cells in the sub-G1 phase and reducing the number of cells undergoing DNA synthesis in the S-phase by 15-fold as compared to nontreated cells; hence, causing cessation of the cell cycle and confirming the apoptosis assay results. As such, our findings suggest the potential use of the designed nanofiber mats as perfect implants to prevent tumor recurrence after tumorectomy.
Collapse
Affiliation(s)
- Nada K. Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
| | - Kholoud K. Arafa
- Drug Design and Discovery Lab, Zewail City for Science, Technology and Innovation, Cairo 12578, Egypt
| | - Manal M. M. Abdelhady
- Clinical Pharmacy Department, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Nour M. Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatma A. Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
4
|
Zani CP, Zani AP, Thomazini CM, Retamiro KM, de Oliveira AR, Gonçalves DL, Sarragiotto MH, Garcia FP, de Oliveira Silva S, Nakamura CV, Ueda-Nakamura T. β-Carboline-α-aminophosphonate Derivative: A Promising Antitumor Agent for Breast Cancer Treatment. Molecules 2023; 28:molecules28093949. [PMID: 37175359 PMCID: PMC10179861 DOI: 10.3390/molecules28093949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of cancer mortality among women worldwide. Considering the limitations of the current treatments available, we analyzed the in vitro cytotoxic potential of ((4-Fluoro-phenyl)-{2-[(1-phenyl-9H-β-carboline-3-carbonyl)-amino]-ethylamino}-methyl)-phosphonic acid dibutyl ester (BCP-1) in breast cancer cells (MCF-7 and MDA-MB-231) and in a non-tumor breast cell line (MCF-10A). BCP-1 has an α-aminophosphonate unit linked to the β-carboline nucleus, and the literature indicates that compounds of these classes have high biological potential. In the present study, the mechanism of action of BCP-1 was investigated through methods of spectrofluorimetry, flow cytometry, and protein expression analysis. It was found that BCP-1 inhibited the proliferation of both cancer cell lines. Furthermore, it induced oxidative stress and cell cycle arrest in G2/M. Upregulation of apoptosis-related proteins such as Bax, cytochrome C, and caspases, as well as a decrease in the anti-apoptotic protein Bcl-2, indicated potential induction of apoptosis in the MDA-MB-231 cells. While in MCF-7 cells, BCP-1 activated the autophagic death pathway, which was demonstrated by an increase in autophagic vacuoles and acidic organelles, in addition to increased expression of LC3I/LC3II and reduced SQSTM1/p62 expression. Further, BCP-1 demonstrated antimetastatic potential by reducing MMP-9 expression and cell migration in both breast cancer cell lines. In conclusion, BCP-1 is a promising candidate for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Caroline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Aline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Cristiane Melissa Thomazini
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Karina Miyuki Retamiro
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Débora Laís Gonçalves
- Department of Chemistry, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Tania Ueda-Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| |
Collapse
|
5
|
Schmich SKP, Keck J, Bonaterra GA, Bertoune M, Adam A, Wilhelm B, Slater EP, Schwarzbach H, Fendrich V, Kinscherf R, Hildebrandt W. Effects of Monoamino-Oxidase-A (MAO-A) Inhibition on Skeletal Muscle Inflammation and Wasting through Pancreatic Ductal Adenocarcinoma in Triple Transgenic Mice. Biomedicines 2023; 11:biomedicines11030912. [PMID: 36979889 PMCID: PMC10046345 DOI: 10.3390/biomedicines11030912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer cachexia describes a syndrome of muscle wasting and lipolysis that is still largely untreatable and negatively impacts prognosis, mobility, and healthcare costs. Since upregulation of skeletal muscle monoamine-oxidase-A (MAO-A), a source of reactive oxygen species, may contribute to cachexia, we investigated the effects of the MAO-inhibitor harmine-hydrochloride (HH, intraperitoneal, 8 weeks) on muscle wasting in a triple-transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC) and wild type (WT) mice. Gastrocnemius and soleus muscle cryo-cross-sections were analyzed for fiber type-specific cross-sectional area (CSA), fraction and capillarization using ATPase- and lectin-stainings. Transcripts of pro-apoptotic, -atrophic, and -inflammatory signals were determined by RT-qPCR. Furthermore, we evaluated the integrity of neuromuscular junction (NMJ, pre-/post-synaptic co-staining) and mitochondrial ultrastructure (transmission electron microscopy). MAO-A expression in gastrocnemius muscle was increased with PDAC vs. WT (immunohistochemistry: p < 0.05; Western blot: by trend). PDAC expectedly reduced fiber CSA and upregulated IL-1β in both calf muscles, while MuRF1 expression increased in soleus muscle only. Although IL-1β decreased, HH caused an additional 38.65% (p < 0.001) decrease in gastrocnemius muscle (IIBX) fiber CSA. Moreover, soleus muscle CSA remained unchanged despite the downregulation of E3-ligases FBXO32 (p < 0.05) and MuRF1 (p < 0.01) through HH. Notably, HH significantly decreased the post-synaptic NMJ area (quadriceps muscle) and glutathione levels (gastrocnemius muscle), thereby increasing mitochondrial damage and centronucleation in soleus and gastrocnemius type IIBX fibers. Moreover, although pro-atrophic/-inflammatory signals are reversed, HH unfortunately fails to stop and rather promotes PDAC-related muscle wasting, possibly via denervation or mitochondrial damage. These differential adverse vs. therapeutic effects warrant studies regarding dose-dependent benefits and risks with consideration of other targets of HH, such as the dual-specificity tyrosine phosphorylation regulated kinases 1A and B (DYRK1A/B).
Collapse
Affiliation(s)
- Simon K. P. Schmich
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Jan Keck
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Gabriel A. Bonaterra
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Mirjam Bertoune
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Anna Adam
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Beate Wilhelm
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Hans Schwarzbach
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Volker Fendrich
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Ralf Kinscherf
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Wulf Hildebrandt
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-2864042; Fax: +49-6421-2868983
| |
Collapse
|
6
|
Hafiz I, Li Z, Wang Z, He H, Tang X, Wang M. Improving the antitumor efficiency against hepatocellular carcinoma by harmine-loaded liposomes with mitochondria targeting and legumain response. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Rashidi M, Mahmoudian E, Mirzaei S, Mazloomi SN, Bazi A, Azadeh H, Mozaffari M. Harmaline downregulates angiogenesis markers and suppresses the growth of 4T1 breast cancer cells in vivo and in vitro. Chem Biol Interact 2022; 365:110087. [PMID: 35963316 DOI: 10.1016/j.cbi.2022.110087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
The anti-angiogenic effects of harmaline, an alkaloid with emerging anti-tumor properties, are under investigation. In the present study, the effects of different doses of harmaline, either alone or in combination with doxorubicin (DOX), were assessed in mice models of breast tumor. Breast tumors were created by the subcutaneous injection of 4T1 cells into Balb/c mice. The mice received either normal saline, harmaline alone (10, 20, or 30 mg/kg), or harmaline (20 mg/kg) + DOX (10 mg/kg). Immunohistochemistry, ELISA, and real-time PCR were conducted to measure target parameters. Harmaline significantly increased tumor cells' sensitivity to DOX as confirmed by a significantly reduced tumor volume in the harmaline + DOX group after 24 days (P < 0.05). Also, the levels of Ki-67 (P < 0.001), MMP-2 (P < 0.001), and VEGF (P < 0.001) significantly decreased while the level of E-cadherin increased (P < 0.001) in the tumor tissues of the mice treated with 20 or 30 mg/kg harmaline or harmaline (20 mg/kg) + DOX (10 mg/kg) compared to the control group. There was a significant reduction in the serum level of IL-4 in tumor-bearing mice treated with harmaline (P < 0.05), and IFN-γ serum level was significantly augmented in all experimental groups compared to the control group (P < 0.05). The genes encoding VEGF, VEGF receptor 2, CD105, and COX2 were significantly down-regulated (P < 0.05 for all) in harmaline-treated (either alone or in combination with DOX) mice. In conclusion, harmaline seems to have the potential to be used as an anticancer agent for treating breast cancer.
Collapse
Affiliation(s)
- Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center,Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Mahmoudian
- Cellular & Molecular Medicine Department, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Rd., Roger Guindon Hall, Ottawa, ON, K1H 8M5, Canada
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyadeh Narges Mazloomi
- The Health of Plant and LivestockProducts Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Bazi
- Department of Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, Rheumatology Division, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mobina Mozaffari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Nasibova T. Cancer Statistics and Anticancer Potential of Peganum harmala Alkaloids: A Review. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i1.3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the most common diseases in the world. Although it develops in various organs and tissues, some species maintain a stable position in the ranking. Although the cancer causes are different, the specific grounds for each type are also noted. Sometimes the increase in incidents and mortality is associated with geographical reasons. Increases in statistics, expensive and chemotherapeutic methods focus on plant-based substances. One of such potential plants is Peganum harmala, which contains alkaloids such as harmine, harmaline, harmol, and harmalol. The effects of these compounds on many cancer cells have been tested, and positive results have been obtained. This fact reinforces the claim that more in-depth research on noted alkaloids is needed.
Collapse
|
9
|
Tarpley M, Oladapo HO, Strepay D, Caligan TB, Chdid L, Shehata H, Roques JR, Thomas R, Laudeman CP, Onyenwoke RU, Darr DB, Williams KP. Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies. Eur J Pharm Sci 2021; 162:105821. [PMID: 33781856 PMCID: PMC8404221 DOI: 10.1016/j.ejps.2021.105821] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is highly expressed in glioma, an aggressive brain tumor, and has been proposed as a therapeutic target for cancer. In the current study, we have used an optimized and validated time-resolved fluorescence energy transfer (TR-FRET)-based DYRK1A assay for high-throughput screening (HTS) in 384-well format. A small-scale screen of the FDA-approved Prestwick drug collection identified the β-carboline, harmine, and four related analogs as DYRK1A inhibitors. Hits were confirmed by dose response and in an orthogonal DYRK1A assay. Harmine's potential therapeutic use has been hampered by its off-target activity for monoamine oxidase A (MAO-A) which impacts multiple nervous system targets. Selectivity profiling of harmine and a broader collection of analogs allowed us to map some divergent SAR (structure-activity relationships) for the DYRK1A and MAO-A activities. The panel of harmine analogs had varying activities in vitro in glioblastoma (GBM) cell lines when tested for anti-proliferative effects using a high content imaging assay. In particular, of the identified analogs, harmol was found to have the best selectivity for DYRK1A over MAO-A and, when tested in a glioma tumor xenograft model, harmol demonstrated a better therapeutic window compared to harmine.
Collapse
Affiliation(s)
- Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Helen O Oladapo
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Dillon Strepay
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Thomas B Caligan
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Hassan Shehata
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Jose R Roques
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Rhashad Thomas
- Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA
| | - Christopher P Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
10
|
Hsieh MC, Lo YS, Chuang YC, Lin CC, Ho HY, Hsieh MJ, Lin JT. Dehydrocrenatidine extracted from Picrasma quassioides induces the apoptosis of nasopharyngeal carcinoma cells through the JNK and ERK signaling pathways. Oncol Rep 2021; 46:166. [PMID: 34165177 PMCID: PMC8218301 DOI: 10.3892/or.2021.8117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an indicator disease in Asia due to its unique geographical and ethnic distribution. Dehydrocrenatidine (DC) is a β-carboline alkaloid abundantly present in Picrasma quassioides (D. Don) Benn, a deciduous shrub or small tree native to temperate regions of southern Asia, and β-carboline alkaloids play anti-inflammatory and antiproliferative roles in various cancers. However, the mechanism and function of DC in human NPC cells remain only partially explored. The present study aimed to examine the cytotoxicity and biochemical role of DC in human NPC cells. The MTT method, cell cycle analysis, DAPI determination, Annexin V/PI double staining, and mitochondrial membrane potential examination were performed to evaluate the effects of DC treatment on human NPC cell lines. In addition, western blotting analysis was used to explore the effect of DC on apoptosis and signaling pathways in related proteins. The analysis results confirmed that DC significantly reduced the viability of NPC cell lines in a dose- and time-dependent manner and induced apoptosis through internal and external apoptotic pathways (including cell cycle arrest, altered mitochondrial membrane potential, and activated death receptors). Western blot analysis illustrated that DC's effect on related proteins in the mitogen-activated protein kinase pathway can induce apoptosis by enhancing ERK phosphorylation and inhibiting Janus kinase (JNK) phosphorylation. Notably, DC induced apoptosis by affecting the phosphorylation of JNK and ERK, and DC and inhibitors (SP600125 and U0126) in combination restored the overexpression of p-JNK and p-ERK. To date, this is the first study to confirm the apoptosis pathway induced by DC phosphorylation of p-JNK and p-REK in human NPC. On the basis of evidence obtained from this study, DC targeting the inhibition of NPC cell lines may be a promising future strategy for NPC treatment.
Collapse
Affiliation(s)
- Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Jen-Tsun Lin
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
11
|
Majtnerova P, Capek J, Petira F, Handl J, Rousar T. Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells. Sci Rep 2021; 11:11921. [PMID: 34099803 PMCID: PMC8184882 DOI: 10.1038/s41598-021-91380-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.
Collapse
Affiliation(s)
- Pavlina Majtnerova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Filip Petira
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
12
|
El-Readi MZ, Al-Abd AM, Althubiti MA, Almaimani RA, Al-Amoodi HS, Ashour ML, Wink M, Eid SY. Multiple Molecular Mechanisms to Overcome Multidrug Resistance in Cancer by Natural Secondary Metabolites. Front Pharmacol 2021; 12:658513. [PMID: 34093189 PMCID: PMC8176113 DOI: 10.3389/fphar.2021.658513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Plant secondary metabolites (SMs) common natural occurrences and the significantly lower toxicities of many SM have led to the approaching development and use of these compounds as effective pharmaceutical agents; especially in cancer therapy. A combination of two or three of plant secondary metabolites together or of one SM with specific anticancer drugs, may synergistically decrease the doses needed, widen the chemotherapeutic window, mediate more effective cell growth inhibition, and avoid the side effects of high drug concentrations. In mixtures they can exert additive or even synergistic activities. Many SM can effectively increase the sensitivity of cancer cells to chemotherapy. In phytotherapy, secondary metabolites (SM) of medicinal plants can interact with single or multiple targets. The multi-molecular mechanisms of plant secondary metabolites to overcome multidrug resistance (MDR) are highlighted in this review. These mechanisms include interaction with membrane proteins such as P-glycoprotein (P-gp/MDR1); an ATP-binding cassette (ABC) transporter, nucleic acids (DNA, RNA), and induction of apoptosis. P-gp plays an important role in the development of MDR in cancer cells and is involved in potential chemotherapy failure. Therefore, the ingestion of dietary supplements, food or beverages containing secondary metabolites e.g., polyphenols or terpenoids may alter the bioavailability, therapeutic efficacy and safety of the drugs that are P-gp substrates.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy & Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hiba Saeed Al-Amoodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Lotfy Ashour
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
13
|
Fahmy S, Issa MY, Saleh BM, Meselhy MR, Azzazy HMES. Peganum harmala Alkaloids Self-Assembled Supramolecular Nanocapsules with Enhanced Antioxidant and Cytotoxic Activities. ACS OMEGA 2021; 6:11954-11963. [PMID: 34056350 PMCID: PMC8153973 DOI: 10.1021/acsomega.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 05/27/2023]
Abstract
Amphiphilic macrocycles, such as p-sulfonatocalix[6]arenes (p-SC6), have demonstrated great potential in designing synthetic nanovesicles based on self-assembly approaches. These supramolecular nanovesicles are capable of improving the solubility, stability, and biological activity of various drugs. In the present study, the biologically active harmala alkaloid-rich fraction (HARF) was extracted from Peganum harmala L. seeds. Ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC/ESI-MS) analysis of HARF revealed 15 alkaloids. The reversed-phase high-performance liquid chromatography (RP-HPLC) analysis revealed three peaks: peganine, harmol, and harmine. The HARF was then encapsulated in p-SC6 nanocapsules employing a thin-film hydration approach. The designed nanocapsules had an average particle size of 264.8 ± 10.6 nm, and a surface charge of -30.3 ± 2.2 mV. They were able to encapsulate 89.3 ± 1.4, 74.4 ± 1.3, and 76.1 ± 1.7% of the three harmala alkaloids; harmine, harmol, and peganine; respectively. The in vitro drug release experiments showed the potential of the designed nanocapsules to release their cargo at a pH of 5.5 (typical of cancerous tissue). The IC50 values of HARF encapsulated in p-SC6 (H/p-SC6 nanocapsules) were 5 and 2.7 μg/mL against ovarian cancer cells (SKOV-3) and breast adenocarcinoma cells (MCF-7), respectively. The prepared nanocapsules were found to be biocompatible when tested on human skin fibroblasts. Additionally, the antioxidant activity of the designed nanocapsules was 5 times that of the free powder fraction; the IC50 of the H/p-SC6 nanocapsules was 30.1 ± 1.3 μg/mL, and that of the HARF was 169.3 ± 7.2 μg/mL. In conclusion, encapsulation of P. harmala alkaloid-rich fraction into self-assembled p-SC6 significantly increases its antioxidant and cytotoxic activities.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| | - Marwa Y. Issa
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Basma M. Saleh
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Meselhy Ragab Meselhy
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
14
|
Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res 2020; 43:1259-1275. [PMID: 33206346 DOI: 10.1007/s12272-020-01283-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Harmine is isolated from the seeds of the medicinal plant, Peganum harmala L., and has been used for thousands of years in the Middle East and China. Harmine has many pharmacological activities including anti-inflammatory, neuroprotective, antidiabetic, and antitumor activities. Moreover, harmine exhibits insecticidal, antiviral, and antibacterial effects. Harmine derivatives exhibit pharmacological effects similar to those of harmine, but with better antitumor activity and low neurotoxicity. Many studies have been conducted on the pharmacological activities of harmine and harmine derivatives. This article reviews the pharmacological effects and associated mechanisms of harmine. In addition, the structure-activity relationship of harmine derivatives has been summarized.
Collapse
|
15
|
Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12082106. [PMID: 32751160 PMCID: PMC7465136 DOI: 10.3390/cancers12082106] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Jacopo Boni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carlota Rubio-Perez
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
| | - Nuria López-Bigas
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-933-160-144
| |
Collapse
|
16
|
Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus MB, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. J Med Chem 2020; 63:2986-3003. [PMID: 32003560 PMCID: PMC7388697 DOI: 10.1021/acs.jmedchem.9b01379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan A. Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Prasad Kushwaha J, Baidya D, Patil S. Harmine-loaded galactosylated pluronic F68-gelucire 44/14 mixed micelles for liver targeting. Drug Dev Ind Pharm 2019; 45:1361-1368. [PMID: 31096800 DOI: 10.1080/03639045.2019.1620267] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Harmine (HM), a phytoconstituent has wide range of pharmacological activities including antimicrobial, antifungal, antioxidative, and anticancer. HM has shown promising anticancer activity against liver cancer cells. However, poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism, and rapid elimination due to glucuronidation/sulfation limit clinical utility of HM. In order to overcome the drawbacks of HM, the current work reports preparation of HM-loaded galactosylated pluronic F-68 (PF68)-Gelucire® 44/14 (GL44) mixed micelles (HM-MM). 32 factorial design was used to investigate the effect of formulation variables on formation HM-loaded mixed micelles. Solvent evaporation method was used for preparation of HM-MM. The optimized HM-MM was evaluated for size, percent drug entrapped (EE), in vitro HM release, oral bioavailability, and biodistribution in rats. HM-MM with an average size 277.5 ± 3.24 nm had an EE of 86.5 ± 1.51% w/w. HM-MM released HM in a controlled manner. Additionally, HM-MM showed significant enhancement in oral bioavailability (around six-folds) of HM when compared to HM alone. Further, HM-MM showed around sevenfold higher amount of HM in the liver when compared to HM alone revealing efficient drug targeting capability. Such significant improvement in oral bioavailability of HM when formulated into mixed micelles could be attributed to solubilization of hydrophobic HM into micellar core along with P-gp inhibition effect of both galactosylated PF68 and GL44. Thus, the present work highlights galactosylated PF68 and GL44 mixed micelles as an efficient carrier system having drug targeting capability and potential to enhance bioavailability of BCS class II drugs.
Collapse
Affiliation(s)
- Jeetendra Prasad Kushwaha
- a Department of Pharmaceutics, Poona College of Pharmacy , Bharati Vidyapeeth (Deemed to be University) , Pune , India
| | - Debjani Baidya
- a Department of Pharmaceutics, Poona College of Pharmacy , Bharati Vidyapeeth (Deemed to be University) , Pune , India
| | - Sharvil Patil
- a Department of Pharmaceutics, Poona College of Pharmacy , Bharati Vidyapeeth (Deemed to be University) , Pune , India
| |
Collapse
|
18
|
Ding Y, He J, Huang J, Yu T, Shi X, Zhang T, Yan G, Chen S, Peng C. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol 2019; 54:1995-2004. [PMID: 31081045 PMCID: PMC6521938 DOI: 10.3892/ijo.2019.4777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Harmine (HM) is a β-carboline alkaloid found in multiple medicinal plants. It has been used in folk medicine for anticancer therapy; however, the molecular mechanism of HM on human breast cancer remains unclear. Transcriptional co-activator with PDZ-binding motif (TAZ), also known as WW domain-containing transcription regulator 1, serves an important role in the carcinogenesis and progression of breast cancer. The aim of the present study was to elucidate the potential anticancer activity and mechanism of HM in breast cancer, in vitro and in vivo. Cell proliferation was measured using a CCK-8 assay, apoptotic activity was detected by flow cytometry and DAPI staining, and cell migration was examined using a wound healing assay. The expression of proteins, including extracellular signal-regulate kinase (Erk), phosphorylated (p-) Erk, protein kinase B (Akt), p-Akt, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), were determined by western blotting. The mRNA expression of TAZ was detected using reverse transcription-quantitative polymerase chain reaction analysis. The expression of proteins in mouse tumor tissues were examined by immunohistochemistry. HM significantly suppressed cellular proliferation and migration, promoted apoptosis in vitro and inhibited tumor growth in vivo. In addition, HM significantly decreased the expression of TAZ, p-Erk, p-Akt and Bcl-2, but increased that of Bax. The overexpression of TAZ in breast cancer cells inhibited the antitumor effect of HM. In conclusion, HM was found to induce apoptosis and prevent the proliferation and migration of human breast cancer cell lines, possibly via the downregulation of TAZ.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Juan Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tong Yu
- Department of Traditional Chinese Medicine, Humanwell Healthcare (Group) Co., Ltd., Wuhan, Hubei 430075, P.R. China
| | - Xiaoyan Shi
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tianzhu Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ge Yan
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
19
|
Design and Synthesis of a New Soluble Natural β-Carboline Derivative for Preclinical Study by Intravenous Injection. Int J Mol Sci 2019; 20:ijms20061491. [PMID: 30934601 PMCID: PMC6471559 DOI: 10.3390/ijms20061491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022] Open
Abstract
Harmine is a natural β-carboline compound showing several biological activities, including antiproliferative properties, but this soluble natural molecule lacks selectivity. Harmine derivatives were reported to overcome this problem, but they are usually poorly soluble. Here, we designed and synthesized a new 2, 7, 9-trisubstituted molecule (1-methyl-7-(3-methylbutoxy)-9-propyl-2-[(pyridin-2-yl)methyl]-9H-pyrido[3,4-b]indol-2-ium bromide) with a solubility of 1.87 ± 0.07 mg/mL in a simulated injection vehicle. This compound is stable for at least 72 h in acidic and physiological conditions (pH 1.1 and 7.4) as well as in a simulated injection vehicle (physiological liquid + 0.1% Tween80®). Solubility in those media is 1.06 ± 0.08 mg/mL and 1.62 ± 0.13 mg/mL at pH 7.4 and 1. The synthesized molecule displays a significant activity on five different cancer cell lines (IC50 range from 0.2 to 2 µM on A549, MDA-MB-231, PANC-1, T98G and Hs683 cell lines). This compound is also more active on cancer cells (MDA-MB-231) than on normal cells (MCF-10a) at IC50 concentrations. Due to its high activity at low concentration, such solubility values should be sufficient for further in vivo antitumoral activity evaluation via intravenous injection.
Collapse
|
20
|
Li Q, He Z, Liu J, Wu J, Tan G, Jiang J, Su Z, Cao M. Paris polyphylla 26 triggers G2/M phase arrest and induces apoptosis in HepG2 cells via inhibition of the Akt signaling pathway. J Int Med Res 2019; 47:1685-1695. [PMID: 30819018 PMCID: PMC6460622 DOI: 10.1177/0300060519826823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives Paris polyphylla 26 (PP-26) is a monomer purified from Paris polyphylla, which has traditionally been used as an antimicrobial, hemostatic, and anticancer agent in China. The anti-proliferation effect and underlying molecular mechanism of PP-26 were investigated in vitro. Methods The effects of PP-26 on various tumor cells were detected by MTT assay. PP-26-affected cell cycle and cell cycle-related proteins in HepG2 cells were detected by flow cytometry and western blotting, respectively. Apoptosis in response to PP-26 was assessed by Hoechst 33258 staining and flow cytometry. PP-26-affected apoptosis-related proteins and Akt signaling were detected by western blotting. The inhibitory effect of PP-26 on HepG2 cells, when combined with 5-fluorouracil (5-FU), was also assessed. Results PP-26 inhibited proliferation of HepG2 cells in a dose-dependent manner by triggering G2/M-phase arrest. Moreover, PP-26 induced apoptosis of HepG2 cells. Expression levels of apoptosis proteins caspase 9, caspase 3, PARP, Bcl-2, Bcl-xL, and Mcl-1 were downregulated, while the expression level of apoptosis protein Bax was upregulated. Expression levels of p-Akt, p-GSK-3β, and p-Foxo3 were downregulated. Combination with PP-26 enhanced 5-FU inhibition of HepG2 cell proliferation. Conclusions PP-26 triggers G2/M-phase arrest and induces apoptosis in HepG2 cells via inhibition of the Akt signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- 1 Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zifan He
- 2 Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| | - Jiming Liu
- 3 Department of General Surgery, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianlong Wu
- 1 Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guixiang Tan
- 4 School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianwei Jiang
- 2 Department of Biochemistry, Medical College, Jinan University, Guangzhou, China
| | - Zexuan Su
- 5 Department of Urology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingrong Cao
- 1 Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Cui G, Shu B, Veeran S, Yuan H, Yi X, Zhong G. Natural β-carboline alkaloids regulate the PI3K/Akt/mTOR pathway and induce autophagy in insect Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:67-77. [PMID: 30765058 DOI: 10.1016/j.pestbp.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The β-carboline alkaloids are a large group of naturally occurring and synthetic indole alkaloids with remarkable pharmacological properties. Furthermore, these alkaloids have also been reported to be effective agents for controlling many pests and plant pathogenic nematodes. However, studies on these potential insecticidal components are scarce. The previous finding that these bioactive compounds can induce programmed cell death in cancer cell lines provided a new insight for exploration of their toxicological mechanisms on insects. In the present study, the cytotoxicity of five natural harmala alkaloids was measured, and the autophagy-inducing effect was confirmed in the Spodoptera frugiperda Sf9 cultured cell line. The results demonstrated that these alkaloids inhibited the proliferation of Sf9 cells in a dose- and time-dependent manner, and the unsaturated β-carboline alkaloids, harmine and harmol, exhibited stronger autophagy induction activity based on monodansylcadaverineand LysoTracker Red staining. Many autophagy-related genes were increased after β-carbolines treatment at the RNA level, and the protein expression of Sf-Atg8 was also confirmed to increase after treatment. In addition, the primary autophagic signaling pathway, the PI3K/Akt/mTOR pathway, was altered during the procedure. Furthermore, experiments with special inhibitors and activators were performed to confirm the effect of β-carbolines on this pathway. The results suggested that the PI3K/Akt/mTOR pathway primarily regulated harmine-induced autophagy in insect cells, and this finding may potentially benefit the application of these promising bioactivity components.
Collapse
Affiliation(s)
- Gaofeng Cui
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Benshui Shu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sethuraman Veeran
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haiqi Yuan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Mello SM, Soubhia PC, Silveira G, Corrêa-Neto NF, Lanaro R, Costa JL, Linardi A. Effect of Ritualistic Consumption of Ayahuasca on Hepatic Function in Chronic Users. J Psychoactive Drugs 2018; 51:3-11. [PMID: 30582439 DOI: 10.1080/02791072.2018.1557355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ayahuasca is a beverage obtained from decoctions of the liana Banisteriopsis caapi plus the shrub Psychotria viridis. This beverage contains a combination of monoamine oxidase inhibitors (harmine, harmaline, and tetrahydroharmine) and N,N-dimethyltryptamine, the main substance responsible for its visionary effect. The ritualistic use of ayahuasca is becoming a global phenomenon. Most members of ayahuasca churches consume this beverage throughout their life, and many reports have discussed the therapeutic potential of this beverage. Ayahuasca is consumed orally, and the liver, as the major organ for the metabolism and detoxification of xenobiotics absorbed from the alimentary tract, may be susceptible to injury by compounds present in the ayahuasca decoction. In this study, we evaluated biochemical parameters related to hepatic damage in the serum of 22 volunteers who consumed ayahuasca twice a month or more for at least one year. There was no significant alteration in the following parameters: alanine aminotransferase, aspartate aminotransferase, bilirubin, creatinine, urea, lactate dehydrogenase, alkaline phosphatase, and gamma glutamyl transferase. These findings indicate that chronic ayahuasca consumption in a religious context apparently does not affect hepatic function.
Collapse
Affiliation(s)
- Sueli Moreira Mello
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Paula Christiane Soubhia
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Gabriela Silveira
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Nelson Francisco Corrêa-Neto
- b Department of Physiological Sciences , Santa Casa de São Paulo School of Medical Sciences , São Paulo , SP , Brazil
| | - Rafael Lanaro
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - José Luiz Costa
- c Faculty of Pharmaceutical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Alessandra Linardi
- b Department of Physiological Sciences , Santa Casa de São Paulo School of Medical Sciences , São Paulo , SP , Brazil
| |
Collapse
|
23
|
Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. J Med Chem 2018; 61:7687-7699. [PMID: 30059217 PMCID: PMC6350255 DOI: 10.1021/acs.jmedchem.8b00658] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DYRK1A has been implicated as an important drug target in various therapeutic areas, including neurological disorders and oncology. DYRK1A has more recently been shown to be involved in pathways regulating human β-cell proliferation, thus making it a potential therapeutic target for both Type 1 and Type 2 diabetes. Our group, using a high-throughput phenotypic screen, identified harmine that is able to induce β-cell proliferation both in vitro and in vivo. Since harmine has suboptimal kinase selectivity, we sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity, while retaining human β-cell proliferation capability. We carried out the optimization of the 1-position of harmine and synthesized 15 harmine analogues. Six compounds showed excellent DYRK1A inhibition with IC50 in the range of 49.5-264 nM. Two compounds, 2-2 and 2-8, exhibited excellent human β-cell proliferation at doses of 3-30 μM, and compound 2-2 showed improved kinase selectivity as compared to harmine.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ethan A Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
24
|
Combining ligand-based and structure-based drug design approaches to study the structure-activity relationships of a β-carboline derivative series. Struct Chem 2018. [DOI: 10.1007/s11224-018-1141-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zhang J, Zhang Z, Shu B, Cui G, Zhong G. Cytotoxic and Apoptotic Activity of the Novel Harmine Derivative ZC-14 in Sf9 Cells. Int J Mol Sci 2018. [PMID: 29534494 PMCID: PMC5877672 DOI: 10.3390/ijms19030811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Harmine, one of the natural β-carboline alkaloids extracted from Peganum harmala L., exhibits broad spectrum but limited insecticidal ability against many pests. So there is an urgent need to synthesize novel derivatives with high efficiency. In the present study, a new synthetic compound, [1-(2-naphthyl)-3-(2-thioxo-1,3,4-oxadiazol-5-yl) β-carboline] (ZC-14), showed a strong proliferation inhibition effect against the Spodoptera frugiperda Sf9 cell line in a dose-dependent manner. Simultaneously, apoptosis induced by 7.5 μg/mL ZC-14 was confirmed with physiological and biochemical evidence, including typical apoptosis characteristics with shrinkage, apoptotic bodies, nuclear condensation/fragmentation, a clear DNA ladder, and a series of apoptotic rates. In addition, mitochondria were confirmed to be involved in apoptosis induced by ZC-14 accompanied with the loss of mitochondrial membrane potential (Δψm), the release of cytochrome c from mitochondria into the cytosol and increased expression of cleaved-caspase-3. However, harmine could not induce apoptosis at the same concentration. In summary, these data indicated that compound ZC-14 has a higher cytotoxicity than harmine against Sf9 cells. Besides, it exhibited an anti-proliferative effect in Sf9 cells via inducing apoptosis in which the mitochondrial apoptotic pathway plays a crucial role.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Zhijun Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Geng X, Ren Y, Wang F, Tian D, Yao X, Zhang Y, Tang J. Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy. Biochem Biophys Res Commun 2018; 498:99-104. [PMID: 29501493 DOI: 10.1016/j.bbrc.2018.02.205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
Harmine and its analogs have long been considered as anticancer agents. In vitro analyses suggested that intercalating DNA or inhibiting topoisomerase might contribute to the cytotoxic effect of this class of compound. However, this idea has not been rigorously tested in intact cells. By synthesizing novel derivatives, here we demonstrate that harmines did not activate the DNA damage response, a cellular signaling commonly induced by agents that intercalate DNA or inhibit topoisomerase. These findings suggest that mechanisms other than DNA intercalating or topoisomerase inhibiting contribute to the toxicity of harmines in vivo. Using a novel N2-benzyl and N9-arylated alkyl compound 10f that has good solubility and stability as the model, we show that harmines strongly inhibited the growth of cancer cells originated from breast, lung, bone and pancreas, but not that of normal fibroblasts. We further show that 10f induced apoptosis and inhibited autophagy in a dose and time-dependent manner. An apoptosis inhibitor suppressed 10f-induced cell death. Together, our results reveal previously unidentified insights into the anticancer mechanism of harmines, supporting future development of this compound class in the treatment of human cancers.
Collapse
Affiliation(s)
- Xinran Geng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yichang Ren
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fangfang Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
27
|
Özdemir F, Apaydın E, Önder Nİ, Şen M, Ayrım A, Öğünç Y, İncesu Z. Apoptotic effects of ε-viniferin in combination with cis-platin in C6 cells. Cytotechnology 2018; 70:1061-1073. [PMID: 29476302 DOI: 10.1007/s10616-018-0197-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common and lethal forms of primary brain tumors in human adults. Treatment options are limited, and in most cases ineffective. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases like cancer. ε-viniferin is a resveratrol dimer and well known for having antiproliferative and apoptotic effects on cancer cells. Cisplatin is a platinum containing anti-cancer drug. In this study, we aimed to investigate antiproliferative and apoptotic effects of using cis-platin and ε-viniferin alone or in combined treatment of C6 cells. Cell proliferation was detected by WST-1. Mitochondrial membrane potential changes in the cells (ΔΨm) were evaluated using cationic dye JC1. Apoptotic index which is a hallmark of late apoptosis was detected by using Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method and apoptotic alterations were observed by transmission electron microscope (TEM). Activation of caspase-8, -9, -3 in C6 cells at various incubation periods was measured by flow cytometer. Apoptotic index increased at highest level in only combined treatment cells (91.6%) after 48 h incubation. These results were supported by TEM images. Caspase-8 activation in C6 cells increased to a maximum (12.5%) after 6 h by using combined cis-platin/ε-viniferin treatment (13.25/95 μM). Caspase-9 was activated at 44.5% after combined treatment for 24 h. This rate is higher than using cis-platin (14.2%) or ε-viniferin (43.3%) alone. The combined 13.25 μM/cisplatin and 95 μM ε-viniferin treatment caused maximum caspase-3 activation in C6 cells (15.5%) at the end of the 72 h incubation. In conclusion, it was observed that caspase-8, -9, -3 activation which was determined in vitro, trigerred apoptotic mechanism in C6 cells by using low concentrations of combined cis-platin and ε-viniferin.
Collapse
Affiliation(s)
- Filiz Özdemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey.
| | - Elif Apaydın
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Nur İpek Önder
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Mesut Şen
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Aysun Ayrım
- Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, 26480, Eskisehir, Turkey
| | - Yüksel Öğünç
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| | - Zerrin İncesu
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Tepebası, Eskisehir, Turkey
| |
Collapse
|
28
|
Miao JF, Peng YF, Chen S, Gao WJ, Yang QX, Zhu P, Guo J, Tao J, Luo L, Zhang Y, Ling Y. A novel harmine derivative, N-(4-(hydroxycarbamoyl)benzyl)-1-(4- methoxyphenyl)-9H-pyrido[3,4-b]indole-3-carboxamide (HBC), as histone deacetylase inhibitor: in vitro antiproliferation, apoptosis induction, cell cycle arrest, and antimetastatic effects. Eur J Pharmacol 2018; 824:78-88. [PMID: 29428472 DOI: 10.1016/j.ejphar.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 11/18/2022]
Abstract
This study aims to design and synthesize a novel harmine derivative N-(4-(hydroxycarbamoyl) benzyl)-1-(4-methoxyphenyl)-9H-pyrido [3,4-b]indole-3-carboxamide (HBC) as histone deacetylase (HDAC) inhibitor, and evaluate its antitumor activities and anti-metastasis mechanism. HBC not only exerted significant ant-proliferation activity against five human cancer cell lines, especially for HepG2 cell with an IC50 value of 2.21 μM, which is nearly three-fold lower than SAHA (IC50 = 6.26 µM), but also showed selective HDAC1/6 inhibitory effects in vitro. However, HBC had little effect on normal hepatic cells LO2. Furthermore, HBC simultaneously increased the acetylation of histone H3, H4, and α-tubulin, induced hypochromism by electrostatical interaction with CT-DNA, triggered more significant cancer cell apoptosis and cell cycle arrest at G2/M than SAHA by inhibition of both CDK1 and cyclin B in a concentration dependent manner. In addition, scratch and invasion assay showed that HBC also dose-dependently suppressed migration and invasion capacities of highly metastatic HCC HepG2 cells through down-regulated the expression of tumor metastasis related proteins MMP-2 and MMP-9, significantly better than SAHA. Finally, HBC showed low acute toxicity to mice and significant growth inhibition of the hepatoma tumor in vivo. These results demonstrate that novel harmine-based HDAC inhibitor HBC not only exhibited selective HDAC1/6 inhibitory activity and significant in vitro and in vivo antitumor activity, but also possessed DNA binding effect, apoptosis induction, cell cycle arrest effects, and potent anti-metastasis mechanisms, which may hold great promise as therapeutic agent targeting HDAC1/6 for the intervention of human cancers.
Collapse
Affiliation(s)
- Jie-Fei Miao
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yan-Fu Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Shi Chen
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Wei-Jie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Qiu-Xing Yang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Jinhua Tao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Lin Luo
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yanan Zhang
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
29
|
Lei J, Cong S, Song M, Zhang W, Peng G, Li X, Liu Y. Combination of doxorubicin with harmine-loaded liposomes exerting synergistic antitumor efficacy. Drug Dev Ind Pharm 2018; 44:570-581. [PMID: 29260918 DOI: 10.1080/03639045.2017.1405432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Long-circulation (PEGLip), pH-sensitive (PEOzLip), and active targeted liposomes (PEG-TATLip)-loading doxorubicin (DOX) and harmine (HM) were prepared. Their physicochemical properties and antitumor effect were investigated. OBJECTIVES The aims of the present study were to evaluate synergistic antitumor efficacy. MATERIALS AND METHODS Liposomes were prepared by using thin-film dispersion, active drug-loading and target post-insertion method. Subsequently physiochemical properties including particle size distribution, zeta potential, entrapment efficiency (EE), drug-loading content and in-vitro release were determined. Besides, the in vitro cytotoxicity of free drugs and drug-loaded liposomes was explored by using a Sulforhodamine-B Staining assay and the combination index values (CI Value) were calculated. Finally, the cellular uptake experiments by MCF-7cells were carried out via flow cytometry. RESULTS AND DISCUSSION All liposomes enhanced the antitumor effect significantly compared to free drugs. Among liposomes, PEG-TATLip enhanced the antitumor effect significantly compared to others. DOX and HM had moderate synergism with CI Value 0.85 for free drugs, 0.81 for PEGLip, 0.72 for PEOzLip, and 0.84 for PEG-TATLip respectively when the weight ratio of two drugs was 1:2. Moreover, the similarity between DOX and HM such as physicochemical properties, in vitro release modes and in vitro uptake kinetics characteristics when they were in the same formulations proved it possible for them to be delivered together. CONCLUSION Active targeting liposomes were the most effective delivery system as compared with pH-sensitive and long circulation liposomes. Additionally, DOX and HM could be co-delivered in liposomes and they could play moderate synergism effect in antitumor efficacy.
Collapse
Affiliation(s)
- Jiongxi Lei
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Shuangchen Cong
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Maoyuan Song
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Wenxi Zhang
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Guanghua Peng
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Xinru Li
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Yan Liu
- a Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing , China
| |
Collapse
|
30
|
Zou N, Wei Y, Li F, Yang Y, Cheng X, Wang C. The inhibitory effects of compound Muniziqi granule against B16 cells and harmine induced autophagy and apoptosis by inhibiting Akt/mTOR pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:517. [PMID: 29197358 PMCID: PMC5712103 DOI: 10.1186/s12906-017-2017-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/19/2017] [Indexed: 12/27/2022]
Abstract
Background Compound Muniziqi granule (MNZQ) is a multi-component herbal preparation and a popular traditional Uighur medicine used in China for treating endocrine disorder-induced acne, chloasma, dysmenorrhea, menopausal syndrome, and melanoma. Harmine presented in MNZQ has been confirmed potential anticancer effect on the B16 cells among others. The purpose of this study is to explore the inhibitory effects of MNZQ against B16 cells and mechanism of autophagy and apoptosis induced by harmine in B16 cells. Methods The cell viability was calculated by CCK8 assay. The in vitro tyrosinase activity was determined by spectrophotometry. The harmine-induced autophagy was demonstrated by electron microscopy and MDC staining. Flow cytometry was used to measure cell death and cell cycle distribution. All proteins expression was assessed by western blot. Results MNZQ and some herb extracts contained in preparation displayed inhibitory effects on B16 cells but without inhibition on mushroom tyrosinase compared with kojic acid. The formation of autophagosome was markedly induced by harmine with the accretion of LC3-II and the degeneration of p62 in B16 cells, which indicated that harmine was an autophagy inducer. Cell death and sub-G2 population suggested that harmine could induce cell death. Particularly, 3-MA, an autophagy inhibitor, was discovered to prevent harmine-induced decrease of the cell viability and cell cycle arrest on G2 phase, indicating that autophagy was vital to the cell death. In addition, the results indicated that harmine could inhibit the phosphorylation of Akt and mTOR, which might mediate autophagy. Conclusion Harmine could induce autophagy and apoptosis by inhibiting Akt/mTOR pathway in B16 cells. Harmine might be a promising therapeutic agent for treatment of melanoma in MNZQ.
Collapse
|
31
|
Gao J, Zhu H, Wan H, Zou X, Ma X, Gao G. Harmine suppresses the proliferation and migration of human ovarian cancer cells through inhibiting ERK/CREB pathway. Oncol Rep 2017; 38:2927-2934. [PMID: 28901502 DOI: 10.3892/or.2017.5952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the sixth most common cause of cancer related death among Western women. Recent studies show that harmine, a small-molecular β-carboline alkaloid present in medicinal plants, displayed obvious anticancer effects in several cancer cells. However, the effect of harmine on ovarian cancer is not well understood. In the present study, the effect of harmine on the cell proliferation and migration of ovarian cancer SKOV-3 cells and the underlying mechanism were investigated. Our results indicated that harmine significantly suppressed the proliferation of SKOV-3 cells in a dose-dependent manner. Interestingly, it also inhibited the epidermal growth factor (EGF)-induced proliferation of SKOV-3 cells. Moreover, the migration of SKOV-3 cells was markedly inhibited by harmine treatment. Further study showed that harmine inhibited not only the basal phosphorylation level of extra-cellular signal-regulated kinase 1/2 (ERK1/2) and cyclic adenosine monophosphate response element-binding protein (CREB) but also EGF-induced ERK1/2 and CREB phosphorylation. Finally, harmine significantly suppressed the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP) family MMP-2, and MMP-9. In conclusion, our data revealed that harmine inhibited the proliferation and migration of SKOV-3 cells, which might be mediated by ERK/CREB pathway. These findings elucidate that harmine may act as a potential therapeutic drug for ovarian cancer treatment.
Collapse
Affiliation(s)
- Jun Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Hong Wan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xia Zou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Guolan Gao
- Department of Obstetrics and Gynecology, Aviation General Hospital of China Medical University, Beijing, P.R. China
| |
Collapse
|
32
|
Venkataramana Reddy PO, Mishra S, Tantak MP, Nikhil K, Sadana R, Shah K, Kumar D. Design, synthesis and in vitro cytotoxicity studies of novel β-carbolinium bromides. Bioorg Med Chem Lett 2017; 27:1379-1384. [PMID: 28254167 PMCID: PMC6368682 DOI: 10.1016/j.bmcl.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 11/30/2022]
Abstract
A series of novel β-carbolinium bromides has been synthesized from easily accessible β-carbolines and 1-aryl-2-bromoethanones. The newly synthesized compounds were evaluated for their in vitro anticancer activity. Among the synthesized derivatives, compounds 16l, 16o and 16s exhibited potent anticancer activity with IC50 values of <10μM against tested cancer cell lines. The most potent analogue 16l was broadly active against all the tested cancer cell lines (IC50=3.16-7.93μM). In order to test the mechanism of cell death, we exposed castration resistant prostate cancer cell line (C4-2) to compounds 16l and 16s, which resulted in increased levels of cleaved PARP1 and AO/EB staining, indicating that β-carbolinium salts induce apoptosis in these cells. Additionally, the most potent β-carbolines 16l and 16s were found to inhibit tubulin polymerization.
Collapse
Affiliation(s)
- P O Venkataramana Reddy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Shriprada Mishra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Mukund P Tantak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Kumar Nikhil
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Rachna Sadana
- Department of Natural Sciences, University of Houston - Downtown, Houston, TX 77002, United States
| | - Kavita Shah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
33
|
Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents. Sci Rep 2016; 6:33204. [PMID: 27625151 PMCID: PMC5021947 DOI: 10.1038/srep33204] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a–g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment.
Collapse
|
34
|
Yu XJ, Sun K, Tang XH, Zhou CJ, Sun H, Yan Z, Fang L, Wu HW, Xie YK, Gu B. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer. Oncol Lett 2016; 12:983-988. [PMID: 27446381 DOI: 10.3892/ol.2016.4696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) serves an important role in the carcinogenesis and progression of gastric cancer. Harmine (HM) and paclitaxel (PTX) are reported as promising drug candidates for cancer therapy, but whether a synergistic anti-tumor effect of HM combined with PTX exists in human gastric cancer remains unknown. The present study evaluated the effects of HM and/or PTX on cell proliferation and apoptosis in a gastric cancer cell line, SGC-7901. HM and PTX inhibited cell proliferation in a dose-dependent manner. Both HM and PTX alone induced apoptosis in gastric cancer cells. The combination of HM and PTX exerted synergistic effects on proliferation inhibition and apoptosis induction in SGC-7901 cells, with down-regulation of COX-2, PCNA and Bcl-2 and up-regulation of Bax expression. The results indicated that combination chemotherapy using HM with PTX exerts an anti-tumor effect for treating gastric cancer. The combination of the two drugs inhibits gastric cancer development more effectively than each drug alone through down-regulation of COX-2 expression.
Collapse
Affiliation(s)
- Xiao-Juan Yu
- Department of Emergency, People's Hospital of Taizhou, Jiangsu 225300, P.R. China
| | - Kun Sun
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Xiao-He Tang
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Cun-Jin Zhou
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Hui Sun
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Zhe Yan
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Ling Fang
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Hong-Wen Wu
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Yi-Kui Xie
- Department of Gastroenterology, First Hospital of Zibo, Shandong 255200, P.R. China
| | - Bin Gu
- Department of Emergency, People's Hospital of Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
35
|
Jin Y, Duan LX, Xu XL, Ge WJ, Li RF, Qiu XJ, Song Y, Cao SS, Wang JG. Mechanism of apoptosis induction in human hepatocellular carcinoma cells following treatment with a gecko peptides mixture. Biomed Rep 2016; 5:73-78. [PMID: 27330750 DOI: 10.3892/br.2016.664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the apoptotic effect and molecular mechanisms of gecko peptides mixture (GPM) on the human liver carcinoma HepG2 cell line in vitro. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed to identify the dose- (0.10, 0.15, 0.20, 0.25 and 0.30 mg/ml) and time-dependent (24, 48 and 72 h) inhibitory effect of GPM on HepG2 cells and their proliferation. Hoechst 33258 staining was carried out to detect the nuclear change coupled with apoptosis induced by GPM. Western blotting was used to evaluate apoptosis-related protein expression changes induced by GPM, including caspase, cytochrome c (Cyt c) and apoptosis-inducing factor (AIF). MTT results showed that GPM significantly inhibited the proliferation of HepG2 cells in a dose- and time-dependent manner. Hoechst 33258 staining demonstrated that GPM induced typical apoptotic morphological changes, while western blotting analysis revealed that GPM increased caspase-3, caspase-9, Cyt c and AIF protein expression levels in HepG2 cells treated with 0.06 or 0.08 mg/ml for 24 h. In conclusion, GPM could induce apoptosis by activating the intrinsic mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Ying Jin
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Leng-Xin Duan
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xin-Li Xu
- Department of School Infirmary Pharmacy, South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Wen-Jing Ge
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Rui-Fang Li
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiang-Jun Qiu
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ying Song
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shan-Shan Cao
- Department of Pharmacy, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jian-Gang Wang
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
36
|
LIU JIMING, LI QIANG, LIU ZHILONG, LIN LIUMING, ZHANG XIANGQIANG, CAO MINGRONG, JIANG JIANWEI. Harmine induces cell cycle arrest and mitochondrial pathway-mediated cellular apoptosis in SW620 cells via inhibition of the Akt and ERK signaling pathways. Oncol Rep 2016; 35:3363-70. [DOI: 10.3892/or.2016.4695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/17/2016] [Indexed: 11/06/2022] Open
|
37
|
Tian YQ, Hu GW, Guo MQ. Components and Anti-HepG2 Activity Comparison of Lycopodium Alkaloids from Four Geographic Origins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:4631843. [PMID: 27022402 PMCID: PMC4789059 DOI: 10.1155/2016/4631843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
Lycopodium japonicum Thunb. has attracted great interests due to its rich alkaloids with significant anticancer activity. However, significant chemical differences often exist in a plant species from different geographic origins and affect its quality and bioactivities. Thus, it is urgent to reveal their chemical and biological distinctions at the molecular level. In this context, a comparative chemical analysis of LAs using HPLC-UV-ESI-MS/MS was firstly conducted and resulted in the detection of 46 LAs, 28 of which were identified, and a series of unique LAs markers, such as peaks 2, 9, 10, and 11, were further found to be characteristic LAs and selected as markers from four different origins for their quality control. In parallel, the comparative bioactivity assay revealed that the total LAs from Hubei province exhibited much higher inhibitory rate at 65.95% against HepG2 cells than those at 26.72%, 20.26%, and 33.62% for Kenya, Guangxi province, and Zhejiang province in China, respectively. To this end, significant chemical fingerprinting differences and discrepancies in bioactivity of LAs were explored firstly, which could provide valuable information for quality control and further activity studies on LAs from different sources and promote their better pharmaceutical applications in the future as well.
Collapse
Affiliation(s)
- Yong-Qiang Tian
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
38
|
Comparative Analysis of Amaryllidaceae Alkaloids from Three Lycoris Species. Molecules 2015; 20:21854-69. [PMID: 26690108 PMCID: PMC6332018 DOI: 10.3390/molecules201219806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 01/24/2023] Open
Abstract
The major active constituents from Amaryllidaceae family were reported to be Amaryllidaceae alkaloids (AAs), which exhibited a wide spectrum of biological activities, such as anti-tumor, anti-viral, and acetyl-cholinesterase-inhibitory activities. In order to better understand their potential as a source of bioactive AAs and the phytochemical variations among three different species of Lycoris herbs, the HPLC fingerprint profiles of Lycorisaurea (L. aurea), L. radiata, and L. guangxiensis were firstly determined and compared using LC-UV and LC-MS/MS. As a result, 39 peaks were resolved and identified as AAs, of which nine peaks were found in common for all these three species, while the other 30 peaks could be revealed as characteristic AAs for L. aurea, L. radiata and L. guangxiensis, respectively. Thus, these AAs can be used as chemical markers for the identification and quality control of these plant species. To further reveal correlations between chemical components and their pharmaceutical activities of these species at the molecular level, the bioactivities of the total AAs from the three plant species were also tested against HepG2 cells with the inhibitory rate at 78.02%, 84.91% and 66.81% for L. aurea, L. radiata and L. guangxiensis, respectively. This study firstly revealed that the three species under investigation were different not only in the types of AAs, but also in their contents, and both contributed to their pharmacological distinctions. To the best of our knowledge, the current research provides the most detailed phytochemical profiles of AAs in these species, and offers valuable information for future valuation and exploitation of these medicinal plants.
Collapse
|
39
|
Hashemi Sheikh Shabani S, Seyed Hasan Tehrani S, Rabiei Z, Tahmasebi Enferadi S, Vannozzi GP. Peganum harmala L.'s anti-growth effect on a breast cancer cell line. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2015; 8:138-143. [PMID: 28352583 PMCID: PMC4980734 DOI: 10.1016/j.btre.2015.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022]
Abstract
This research was done to evaluate the induction of apoptosis in MDA-MB-231 breast cancer cell line by Peganum harmala's extract, in which a significant amount of ß-carbolines is included. The apoptosis incidence was assessed through Annexin-V-Flous kit. The expressions of genes through which intrinsic apoptosis pathway are involved, Bax, Bcl-2, Bid, and Puma, over the genes the expressions of which are linked to extrinsic apoptosis pathway, TRAIL, Caspase8, p21, and p53, were examined by RT-PCR and Real-time PCR. The results demonstrate that the extract decreases the growth rate of the cancer cell line through inducing apoptosis mechanism. As long as the expression of anti-apoptosis Bcl-2 gen reduced dramatically, an over-expression in Bax and Puma genes was monitored indicating activation of intrinsic apoptosis pathway. A notable over-expression observed with TRAIL and Caspase8 genes as well as Bid gene. The latter is an intermediate for both intrinsic and extrinsic pathways of apoptosis.
Collapse
Affiliation(s)
| | | | - Zohreh Rabiei
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Gian Paolo Vannozzi
- Dipartimenti di Sienze Agraria, Universita degli Studi di Udine, Udine, Italy
| |
Collapse
|
40
|
Zhang P, Huang CR, Wang W, Zhang XK, Chen JJ, Wang JJ, Lin C, Jiang JW. Harmine Hydrochloride Triggers G2 Phase Arrest and Apoptosis in MGC-803 Cells and SMMC-7721 Cells by Upregulating p21, Activating Caspase-8/Bid, and Downregulating ERK/Bad Pathway. Phytother Res 2015; 30:31-40. [PMID: 26549417 DOI: 10.1002/ptr.5497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/20/2015] [Accepted: 09/27/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Peng Zhang
- Department of Microbiology and Immunology, Medical College; Jinan University; Guangzhou 510630 China
| | - Chun-rong Huang
- Department of Nephrology; First Affiliated Hospital of Jinan University; Guangzhou 510630 China
| | - Wei Wang
- Department of Laboratory; Foshan Fourth People's Hospital; Foshan 528000 Guangdong Province China
| | - Xia-kai Zhang
- Department of General Surgery; First Affiliated Hospital of Jinan University; Guangzhou 510630 China
- Department of General Surgery; The First People's Hospital of Nanyang City; Nanyang 473000 China
| | - Jia-jin Chen
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| | - Juan-juan Wang
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| | - Chen Lin
- Department of Microbiology and Immunology, Medical College; Jinan University; Guangzhou 510630 China
| | - Jian-wei Jiang
- Department of Biochemistry, Medical College; Jinan University; Guangzhou 510630 China
| |
Collapse
|
41
|
Meinguet C, Masereel B, Wouters J. Preparation and characterization of a new harmine-based antiproliferative compound in complex with cyclodextrin: Increasing solubility while maintaining biological activity. Eur J Pharm Sci 2015; 77:135-40. [DOI: 10.1016/j.ejps.2015.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/19/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
|
42
|
Sun K, Tang XH, Xie YK. Paclitaxel combined with harmine inhibits the migration and invasion of gastric cancer cells through downregulation of cyclooxygenase-2 expression. Oncol Lett 2015; 10:1649-1654. [PMID: 26622726 DOI: 10.3892/ol.2015.3425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/20/2015] [Indexed: 01/13/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) has a critical role in the invasiveness and metastasis of gastric cancer. In addition, paclitaxel (PTX) and harmine (HM) were reported to be potential therapeutic drug candidates for cancer therapy; however, the synergistic antitumor effect of PTX and HM combined treatment on the human gastric cancer cells remains to be elucidated. The aim of the present study was to evaluate the effects of PTX and/or HM on the cell migration and invasion in two human gastric cancer cell lines, SGC-7901 and MKN-45. MTT assay was used to detect the growth inhibition induced by PTX and HM. The Transwell assay was employed to assess the effects of PTX and HM on the cell migration and invasion. The expression levels of COX-2 and matrix metalloproteinase-9 (MMP-9) were analyzed by western blot analysis. The results demonstrated that PTX and HM inhibited cell proliferation in a dose-dependent manner. Individually PTX and HM were able to inhibit the migration and invasion of two human gastric cancer cells; however, the combination of PTX and HM exerted synergistic effects on migration and invasion inhibition, with downregulation of COX-2 and matrix metalloproteinase (MMP)-9. In conclusion, the results of the present study indicated that combination chemotherapy using PTX with HM exerted an antitumor effect, which may be implicated for the treatment of gastric cancer. Of note, the combination of the two drugs inhibited migration and invasion more effectively compared with each drug alone, the mechanism of which proceeded via the downregulation of COX-2 expression.
Collapse
Affiliation(s)
- Kun Sun
- Department of Gastroenterology, The First Hospital of Zibo, Zibo, Shandong 255200, P.R. China
| | - Xiao-He Tang
- Department of Gastroenterology, The First Hospital of Zibo, Zibo, Shandong 255200, P.R. China
| | - Yi-Kui Xie
- Department of Gastroenterology, The First Hospital of Zibo, Zibo, Shandong 255200, P.R. China
| |
Collapse
|
43
|
Meinguet C, Bruyère C, Frédérick R, Mathieu V, Vancraeynest C, Pochet L, Laloy J, Mortier J, Wolber G, Kiss R, Masereel B, Wouters J. 3D-QSAR, design, synthesis and characterization of trisubstituted harmine derivatives with in vitro antiproliferative properties. Eur J Med Chem 2015; 94:45-55. [PMID: 25747498 DOI: 10.1016/j.ejmech.2015.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 11/18/2022]
Abstract
Apolar trisubstituted derivatives of harmine show high antiproliferative activity on diverse cancer cell lines. However, these molecules present a poor solubility making these compounds poorly bioavailable. Here, new compounds were synthesized in order to improve solubility while retaining antiproliferative activity. First, polar substituents have shown a higher solubility but a loss of antiproliferative activity. Second, a Comparative Molecular Field Analysis (CoMFA) model was developed, guiding the design and synthesis of eight new compounds. Characterization has underlined the in vitro antiproliferative character of these compounds on five cancerous cell lines, combining with a high solubility at physiological pH, making these molecules druggable. Moreover, targeting glioma treatment, human intestinal absorption and blood brain penetration have been calculated, showing high absorption and penetration properties.
Collapse
Affiliation(s)
- Céline Meinguet
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium.
| | - Céline Bruyère
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Raphaël Frédérick
- Medicinal Chemistry Research Group (CMFA), University of Louvain (UCL), 73, Avenue Mounier, 1200 Bruxelles, Belgium
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Christelle Vancraeynest
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Julie Laloy
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Jérémie Mortier
- Institute of Pharmacy, Freie Universität Berlin, 2+4 Königin Luise Straβe, 14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, 2+4 Königin Luise Straβe, 14195 Berlin, Germany
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Bernard Masereel
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Johan Wouters
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
44
|
Zheng X, Lv J, Shen Q, Chen Y, Zhou Q, Zhang W, Zhu X. Synergistic effect of pyrrolidine dithiocarbamate and cisplatin in human cervical carcinoma. Reprod Sci 2014; 21:1319-25. [PMID: 24594834 DOI: 10.1177/1933719114525272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We aimed to delineate how pyrrolidine dithiocarbamate (PDTC) affects nuclear factor κB (NF-κB) and to determine its antitumor activity alone and in combination with cisplatin in human cervical cancer SiHa cells. The SiHa cells were treated with various concentrations of PDTC and/or cisplatin at various time intervals. Cell proliferation and apoptosis were determined using a water-soluble tetrazolium salt 8 assay and flow cytometry. Electrophoretic mobility shift assay was used to assess NF-κB activity. Pyrrolidine dithiocarbamate (2.5-100 µmol/L) was found to inhibit the growth of SiHa cell lines. Cisplatin (0.01-20.0 μg/mL) and PDTC (2.5-20.0 µmol/L) combined demonstrated additive inhibitive effects on cell growth and increased the level of apoptosis. In addition, PDTC blocked cisplatin-induced activation of NF-κB, leading to enhanced apoptosis and increased chemosensitivity to cisplatin. Taken together, PDTC has significant potential as a chemotherapy agent, alone or in combination with cisplatin.
Collapse
Affiliation(s)
- Xiaodong Zheng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China Department of Obstetrics and Gynecology, the People's Hospital of Wenzhou, Wenzhou 325000, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qi Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yumei Chen
- Department of Obstetrics and Gynecology, the People's Hospital of Wenzhou, Wenzhou 325000, China
| | - Qingfeng Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
45
|
Zhang H, Sun K, Ding J, Xu H, Zhu L, Zhang K, Li X, Sun W. Harmine induces apoptosis and inhibits tumor cell proliferation, migration and invasion through down-regulation of cyclooxygenase-2 expression in gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:348-355. [PMID: 24176842 DOI: 10.1016/j.phymed.2013.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/28/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Kun Sun
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Jing Ding
- Department of Respiratory Medicine, the Affiliated Nanjing Children Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Huae Xu
- Department of Pharmacy, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Lingjun Zhu
- Department of Oncology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China.
| | - Weihao Sun
- Department of Geriatric Gastroenterology, the First Affiliated Hospital to Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
46
|
Abstract
OBJECTIVES Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. METHODS An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. RESULTS At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca's pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. CONCLUSION The proposed model, based on the molecular and cellular biology of ayahuasca's known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca's possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer.
Collapse
Affiliation(s)
- Eduardo E Schenberg
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil; Instituto Plantando Consciencia, São Paulo, Brazil
| |
Collapse
|
47
|
Liu H, Han D, Liu Y, Hou X, Wu J, Li H, Yang J, Shen C, Yang G, Fu C, Li X, Che H, Ai J, Zhao S. Harmine hydrochloride inhibits Akt phosphorylation and depletes the pool of cancer stem-like cells of glioblastoma. J Neurooncol 2013; 112:39-48. [PMID: 23392846 DOI: 10.1007/s11060-012-1034-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/26/2012] [Indexed: 01/01/2023]
Abstract
Harmine hydrochloride (Har-hc), a derivative from Harmine which is a natural extractive from plants, has been considered for treatment of kinds of cancers and cerebral diseases. In this study, we found that Har-hc clearly decreased cell viability, induced apoptosis and inhibited Akt phosphorylation in glioblastoma cell lines. Moreover, Har-hc had the ability to inhibit self-renewal and promote differentiation of glioblastoma stem like cells (GSLCs) accompanied by inhibition of Akt phosphorylation. Especially, we demonstrated that Har-hc inhibited neurosphere formation of human primary GSLCs. In vivo test also confirmed Har-hc decreased the tumorigenicity of GSLCs. Thus we conclude that Har-hc has potent anti-cancer effects in glioblastoma cells, which is at least partially via inhibition of Akt phosphorylation. Administration of Har-hc may act as a new approach to glioblastoma treatment.
Collapse
Affiliation(s)
- Huailei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Dai F, Chen Y, Song Y, Huang L, Zhai D, Dong Y, Lai L, Zhang T, Li D, Pang X, Liu M, Yi Z. A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PLoS One 2012; 7:e52162. [PMID: 23300602 PMCID: PMC3531399 DOI: 10.1371/journal.pone.0052162] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/14/2012] [Indexed: 12/14/2022] Open
Abstract
Activation of p53 effectively inhibits tumor angiogenesis that is necessary for tumor growth and metastasis. Reactivation of the p53 by small molecules has emerged as a promising new strategy for cancer therapy. Several classes of small-molecules that activate the p53 pathway have been discovered using various approaches. Here, we identified harmine (β-carboline alkaloid) as a novel activator of p53 signaling involved in inhibition of angiogenesis and tumor growth. Harmine induced p53 phosphorylation and disrupted the p53-MDM2 interaction. Harmine also prevented p53 degradation in the presence of cycloheximide and activated nuclear accumulation of p53 followed by increasing its transcriptional activity in endothelial cells. Moreover, harmine not only induced endothelial cell cycle arrest and apoptosis, but also suppressed endothelial cell migration and tube formation as well as induction of neovascularity in a mouse corneal micropocket assay. Finally, harmine inhibited tumor growth by reducing tumor angiogenesis, as demonstrated by a xenograft tumor model. Our results suggested a novel mechanism and bioactivity of harmine, which inhibited tumor growth by activating the p53 signaling pathway and blocking angiogenesis in endothelial cells.
Collapse
Affiliation(s)
- Fujun Dai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (ZY); (ML); (YC)
| | - Yajuan Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong Zhai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanmin Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Lai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas, United States of America
- * E-mail: (ZY); (ML); (YC)
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (ZY); (ML); (YC)
| |
Collapse
|
50
|
Liu XA. Effects of salvianolic acid B on in vitro growth inhibition and apoptosis induction of retinoblastoma cells. Int J Ophthalmol 2012; 5:272-6. [PMID: 22773971 DOI: 10.3980/j.issn.2222-3959.2012.03.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/02/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To observe the effects of salvianolic acid B (SalB) on in vitro growth inhibition and apoptosis induction of retinoblastoma HXO-RB44 cells. METHODS The effects of SalB on the HXO-RB44 cells proliferation in vitro were observed by MTT colorimetric method. The morphological changes of apoptosis before and after the treatment of SalB were observed by Hoechst 33258 fluorescent staining method. Apoptosis rate and cell cycle changes of HXO-RB44 cells were detected by flow cytometer at 48 hours after treated by SalB. The expression changes of Caspase-3 protein in HXO-RB44 cells were detected by Western Blot. RESULTS SalB significantly inhibited the growth of HXO-RB44 cells, while the inhibition was in a concentration-and time-dependent manner. The results of fluorescent staining method indicated that HXO-RB44 cells showed significant phenomenon of apoptosis including karyorrhexis, fragmentation and the formation of apoptotic bodies, etc. after 24, 48 and 72 hours co-culturing of SalB and HXO-RB44 cells. The results of flow cytometer showed that the apoptosis rate and the proportion of cells in S phase were gradually increased at 48 hours and 72 hours after treated by different concentrations of SalB. Western Blot strip showed that the expression of Caspase-3 protein in HXO-RB44 cells was gradually increased with the increase of the concentration of SalB. CONCLUSION SalB can significantly affect on HXO-RB44 cells growth inhibition and apoptosis induction which may be achieved through the up-regulation of Caspase-3 expression and the induction of cell cycle arrest.
Collapse
Affiliation(s)
- Xing-An Liu
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou 450003, Henan Province, China
| |
Collapse
|