1
|
Guo M, Qu X, Cheng S, Wang H, Xue Y, Shen J, Wang D. The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii. INSECT SCIENCE 2025. [PMID: 39822144 DOI: 10.1111/1744-7917.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins. When double-stranded RNA is delivered epidermally, AgSgAbd-2-like is knocked down, resulting in molting defects and mortality. The expression of AgSgAbd-2-like is comparatively low prior to molting and increases following molting. Ecdysone signaling consistently suppresses AgSgAbd-2-like. Histologically, the endocuticle and whole cuticle are thinner in AgSgAbd-2-like RNA interference (RNAi) aphids, which is a leading cause of molting defects and mortality. Furthermore, knockdown of any other homolog of ESGs, including AgSgAbd-4, AgSgAbd-4-like, AgSgAbd-8-like, and AgSgAbd-9-like, results in molting defects and death, like that by AgSgAbd-2-like RNAi. These results indicate that the melon aphid ESGs are conserved in cuticle formation and could be potential targets for RNAi-based pest management.
Collapse
Affiliation(s)
- Mingyu Guo
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xueting Qu
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shenhang Cheng
- School of Synthetic Biology, Shanxi University, Taiyuan, China
| | - Haiqi Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Xue
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Ermolenko E, Sikorskaya T, Grigorchuk V, Gevorgyan T, Rodkina S, Bizikashvili E, Maslennikov S. Patterns of variations in lipid molecular profile during larval development of red king crab, Paralithodes camtschaticus, and Japanese mitten crab, Eriocheir Japonica. Sci Rep 2025; 15:1737. [PMID: 39799183 PMCID: PMC11724842 DOI: 10.1038/s41598-025-85901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
The red king crab, Paralithodes camtschaticus, and the Japanese mitten crab, Eriocheir japonica, are the major commercially valuable species. In addition to their high nutritional value, these crabs are used as objects of ecological research. To extend our knowledge of crustacean biochemistry and provide a more comprehensive model of lipidomic patterns during embryonic and larval development of these crab species, we studied the dynamics of molecular species profiles of reserve lipids such as triacylglycerols (TG) and membrane lipids such as glycerophospholipids (PL). A complete disappearance of TG was observed in zoea IV larvae of E. japonica and zoea III larvae of P. camtschaticus. The appearance of TG at older stages of larval development was accompanied by considerable changes in TG composition. The dynamics of PL with major polyunsaturated fatty acids (PUFA) (20:5n-3, 22:6n-3, and 20:4n-3) during the larval development was species-specific. The obtained results indicate different demands for PUFA in P. camtschaticus and E. japonica, which can be taken into account when selecting optimum diets. The lipidomic approach allows identifying new patterns of lipid changes during crab embryonic development, which may be useful for improvement of aquaculture techniques.
Collapse
Affiliation(s)
- Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
| | - Tatyana Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Valeria Grigorchuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Tigran Gevorgyan
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Svetlana Rodkina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Elena Bizikashvili
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Sergey Maslennikov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| |
Collapse
|
3
|
Benrabaa SAM, Chang SA, Chang ES, Mykles DL. Effects of molting on the expression of ecdysteroid responsive genes in the crustacean molting gland (Y-organ). Gen Comp Endocrinol 2024; 355:114548. [PMID: 38761872 DOI: 10.1016/j.ygcen.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.
Collapse
Affiliation(s)
| | - Sharon A Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| | - Donald L Mykles
- Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA.
| |
Collapse
|
4
|
Landis GN, Bell HS, Peng OK, Fan Y, Yan K, Baybutt B, Tower J. Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila. Cells 2024; 13:1123. [PMID: 38994975 PMCID: PMC11240670 DOI: 10.3390/cells13131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
Mating in female Drosophila melanogaster causes midgut hypertrophy and reduced lifespan, and these effects are blocked by the drug mifepristone. Eip75B is a transcription factor previously reported to have pleiotropic effects on Drosophila lifespan. Because Eip75B null mutations are lethal, conditional systems and/or partial knock-down are needed to study Eip75B effects in adults. Previous studies showed that Eip75B is required for adult midgut cell proliferation in response to mating. To test the possible role of Eip75B in mediating the lifespan effects of mating and mifepristone, a tripartite FLP-recombinase-based conditional system was employed that provides controls for genetic background. Expression of a Hsp70-FLP transgene was induced in third instar larvae by a brief heat pulse. The FLP recombinase catalyzed the recombination and activation of an Actin5C-GAL4 transgene. The GAL4 transcription factor in turn activated expression of a UAS-Eip75B-RNAi transgene. Inhibition of Eip75B activity was confirmed by loss of midgut hypertrophy upon mating, and the lifespan effects of both mating and mifepristone were eliminated. In addition, the negative effects of mifepristone on egg production were eliminated. The data indicate that Eip75B mediates the effects of mating and mifepristone on female midgut hypertrophy, egg production, and lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
5
|
Li Z, Wang L, Yi T, Liu D, Li G, Jin DC. The nuclear receptor gene E75 plays a key role in regulating the molting process of the spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:1-11. [PMID: 38112881 DOI: 10.1007/s10493-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Liang Wang
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| |
Collapse
|
6
|
Choi DY, Mo HH, Park Y. Different development and fecundity between Spodoptera frugiperda USA and China populations, influenced by ecdysone-related genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22074. [PMID: 38288488 DOI: 10.1002/arch.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 02/01/2024]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is one of the most harmful plant pests in the world and is globally distributed from the American continent to the Asian region. The FAW USA population (Sf-USA) and China population (Sf-CHN), which belong to corn strain, showed different developmental periods and fecundity rates in lab conditions. Sf-USA had faster development and higher fecundity compared with Sf-CHN. To examine these differences, transcriptomic data from two FAW populations were analyzed and compared. Twelve gigabytes of transcripts were read from each sample and 21,258 differentially expressed genes (DEGs) were detected. DEGs with log2 fold change ≥ 2 were identified and compared in two populations. In comparison to the Sf-CHN, we discovered that 3471 and 3851 individual DEGs upregulated and downregulated, respectively. Comparing transcriptome profiles for differential gene expression revealed several DEGs, including 39 of ecdysone (E)-, 25 of juvenile hormone-, and 15 of insulin-related genes. We selected six of E-related genes, such as Neverland, Shade, Ecdysone receptor, Ecdysone-inducible protein 74 (E74), E75, and E78 from DEGs. Gene expressions were suppressed by RNA interference to confirm the physiological functions of the selected genes from Sf-USA. The Sf-USA showed developmental retardation and a decrease in fecundity rate by suppression of E-related genes. These findings show that biological characteristics between Sf-USA and Sf-CHN are influenced by E-related genes.
Collapse
Affiliation(s)
- Du-Yeol Choi
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Hyoung-Ho Mo
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Youngjin Park
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
7
|
Wang SS, Wang LL, Pu YX, Liu JY, Wang MX, Zhu J, Shen ZY, Shen XJ, Tang SM. Exorista sorbillans (Diptera: Tachinidae) parasitism shortens host larvae growth duration by regulating ecdysone and juvenile hormone titers in Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7187155. [PMID: 37256698 DOI: 10.1093/jisesa/iead034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
The tachinid fly, Exorista sorbillans, is a notorious ovolarviparous endoparasitoid of the silkworm, Bombyx mori, causing severe damage to silkworm cocoon industry. Silkworm larvae show typically precocious wandering behavior after being parasitized by E. sorbillans; however, the underlying molecular mechanism remains unexplored. Herein, we investigated the changes in the levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) titer, and they both increased in the hemolymph of parasitized silkworms. Furthermore, we verified the expression patterns of related genes, which showed an upregulation of 20E signaling and biosynthesis genes but a significant downregulation of ecdysone oxidase (EO), a 20E inactivation enzyme, in parasitized silkworms. In addition, related genes of the JH signaling were activated in parasitized silkworms, while related genes of the JH degradation pathway were suppressed, resulting in an increase in JH titer. Notably, the precocious wandering behavior of parasitized silkworms was partly recoverable by silencing the transcriptions of BmCYP302A1 or BmCYP307A1 genes. Our findings suggest that the developmental duration of silkworm post parasitism could be shortened by regulation of 20E and JH titers, which may help silkworm to resist the E. sorbillans infestation. These findings provide a basis for deeper insight into the interplay between silkworms and E. sorbillans and may serve as a reference for the development of a novel approach to control silkworm myiasis.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Lei-Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yue-Xia Pu
- Guangxi General Station for Sericulture Technology Popularization, Nanning, Guangxi 530007, China
| | - Ji-Yin Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Mei-Xian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Zhong-Yuan Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Xing-Jia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
8
|
Zheng H, Yan Y, Wei G, Merchant A, Gu Y, Zhou X, Zhu X, Zhang Y, Li X. Functional Characterization of the Nuclear Receptor Gene SaE75 in the Grain Aphid, Sitobion avenae. INSECTS 2023; 14:383. [PMID: 37103198 PMCID: PMC10144623 DOI: 10.3390/insects14040383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Ecdysteroid hormones are key regulators of insect development and metamorphosis. Ecdysone-inducible E75, a major component of insect ecdysone signaling pathway, has been well characterized in holometabolous insects, however, barely in hemimetabolous species. In this study, a total of four full-length E75 cDNAs from the English grain aphid, Sitobion avenae, were identified, cloned, and characterized. The four SaE75 cDNAs contained 3048, 2625, 2505, and 2179 bp open reading frames (ORF), encoding 1015, 874, 856, and 835 amino acids, respectively. Temporal expression profiles showed that SaE75 expression was low in adult stages, while high in pseudo embryo and nymphal stages. SaE75 was differentially expressed between winged and wingless morphs. RNAi-mediated suppression of SaE75 led to substantial biological impacts, including mortality and molting defects. As for the pleiotropic effects on downstream ecdysone pathway genes, SaHr3 (hormone receptor like in 46) was significantly up-regulated, while Sabr-c (broad-complex core protein gene) and Saftz-f1 (transcription factor 1) were significantly down-regulated. These combined results not only shed light on the regulatory role of E75 in the ecdysone signaling pathway, but also provide a potential novel target for the long-term sustainable management of S. avenae, a devastating global grain pest.
Collapse
Affiliation(s)
- Haixia Zheng
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yi Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guohua Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Yaxin Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Wexler J, Pick L, Chipman A. Segmental expression of two ecdysone pathway genes during embryogenesis of hemimetabolous insects. Dev Biol 2023; 498:87-96. [PMID: 36967076 DOI: 10.1016/j.ydbio.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Signaling networks are redeployed across different developmental times and places to generate phenotypic diversity from a limited genetic toolkit. Hormone signaling networks in particular have well-studied roles in multiple developmental processes. In insects, the ecdysone pathway controls critical events in late embryogenesis and throughout post-embryonic development. While this pathway has not been shown to function in the earliest stage of embryonic development in the model insect Drosophila melanogaster, one component of the network, the nuclear receptor E75A, is necessary for proper segment generation in the milkweed bug Oncopeltus fasciatus. Published expression data from several other species suggests possible conservation of this role across hundreds of millions of years of insect evolution. Previous work also demonstrates a second nuclear receptor in the ecdysone pathway, Ftz-F1, plays a role in segmentation in multiple insect species. Here we report tightly linked expression patterns of ftz-F1 and E75A in two hemimetabolous insect species, the German cockroach Blattella germanica and the two-spotted cricket Gryllus bimaculatus. In both species, the genes are expressed segmentally in adjacent cells, but they are never co-expressed. Using parental RNAi, we show the two genes have distinct roles in early embryogenesis. E75A appears necessary for abdominal segmentation in B. germanica, while ftz-F1 is essential for proper germband formation. Our results suggest that the ecdysone network is critical for early embryogenesis in hemimetabolous insects.
Collapse
Affiliation(s)
- Judith Wexler
- Department of Ecology, Evolution and Behavior, The Hebrew University in Jerusalem, Israel; Department of Entomology, University of Maryland, USA.
| | - Leslie Pick
- Department of Entomology, University of Maryland, USA
| | - Ariel Chipman
- Department of Ecology, Evolution and Behavior, The Hebrew University in Jerusalem, Israel
| |
Collapse
|
10
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
11
|
Zhu C, Li H, Xu X, Zhou S, Zhou B, Li X, Xu H, Tian Y, Wang Y, Chu Y, Zhang X, Zhu X. The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage. Front Physiol 2023; 14:1173808. [PMID: 37153230 PMCID: PMC10157483 DOI: 10.3389/fphys.2023.1173808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The honeybees are the most important pollinator in the production of crops and fresh produce. Temperature affects the survival of honeybees, and determines the quality of their development, which is of great significance for beekeeping production. Yet, little was known about how does low temperature stress during development stage cause bee death and any sub-lethal effect on subsequent. Early pupal stage is the most sensitive stage to low temperature in pupal stage. In this study, early pupal broods were exposed to 20°C for 12, 16, 24, and 48 h, followed by incubation at 35°C until emergence. We found that 48 h of low temperature duration cause 70% of individual bees to die. Although the mortality at 12 and 16 h seems not very high, the association learning ability of the surviving individuals was greatly affected. The brain slices of honeybees showed that low temperature treatment could cause the brain development of honeybees to almost stop. Gene expression profiles between low temperature treatment groups (T24, T48) and the control revealed that 1,267 and 1,174 genes were differentially expressed respectively. Functional enrichment analysis of differentially expressed genes showed that the differential expression of Map3k9, Dhrs4, and Sod-2 genes on MAPK and peroxisome signaling pathway caused oxidative damage to the honeybee head. On the FoxO signal pathway, InsR and FoxO were upregulated, and JNK, Akt, and Bsk were downregulated; and on the insect hormone synthesis signal pathway, Phm and Spo genes were downregulated. Therefore, we speculate that low temperature stress affects hormone regulation. It was detected that the pathways related to the nervous system were Cholinergic synapse, Dopaminergic synapse, GABAergic synapse, Glutamatergic synapse, Serotonergic synapse, Neurotrophin signaling pathway, and Synaptic vesicle cycle. This implies that the synaptic development of honeybees is quite possibly greatly affected by low temperature stress. Understanding how low temperature stress affects the physiology of bee brain development and how it affects bee behavior provide a theoretical foundation for a deeper comprehension of the temperature adaptation mechanism that underlies the "stenothermic" development of social insects, and help to improve honeybee management strategies to ensure the healthy of colony.
Collapse
Affiliation(s)
- Chenyu Zhu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinjian Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shujing Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingfeng Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongzhi Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanmingyue Tian
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanxin Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Chu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianlan Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangjie Zhu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xiangjie Zhu,
| |
Collapse
|
12
|
Benrabaa S, Orchard I, Lange AB. A critical role for ecdysone response genes in regulating egg production in adult female Rhodnius prolixus. PLoS One 2023; 18:e0283286. [PMID: 36940230 PMCID: PMC10027210 DOI: 10.1371/journal.pone.0283286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
Ecdysteroids control ovary growth and egg production through a complex gene hierarchy. In the female Rhodnius prolixus, a blood-gorging triatomine and the vector of Chagas disease, we have identified the ecdysone response genes in the ovary using transcriptomic data. We then quantified the expression of the ecdysone response gene transcripts (E75, E74, BR-C, HR3, HR4, and FTZ-F1) in several tissues, including the ovary, following a blood meal. These results confirm the presence of these transcripts in several tissues in R. prolixus and show that the ecdysone response genes in the ovary are mostly upregulated during the first three days post blood meal (PBM). Knockdown of E75, E74, or FTZ-F1 transcripts using RNA interference (RNAi) was used to understand the role of the ecdysone response genes in vitellogenesis and egg production. Knockdown significantly decreases the expression of the transcripts for the ecdysone receptor and Halloween genes in the fat body and the ovaries and reduces the titer of ecdysteroid in the hemolymph. Knockdown of each of these transcription factors typically alters the expression of the other transcription factors. Knockdown also significantly decreases the expression of vitellogenin transcripts, Vg1 and Vg2, in the fat body and ovaries and reduces the number of eggs produced and laid. Some of the laid eggs have an irregular shape and smaller volume, and their hatching rate is decreased. Knockdown also influences the expression of the chorion gene transcripts Rp30 and Rp45. The overall effect of knockdown is a decrease in number of eggs produced and a severe reduction in number of eggs laid and their hatching rate. Clearly, ecdysteroids and ecdysone response genes play a significant role in reproduction in R. prolixus.
Collapse
Affiliation(s)
- Samiha Benrabaa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
13
|
Yuan H, Zhang W, Qiao H, Jin S, Jiang S, Xiong Y, Gong Y, Fu H. MnHR4 Functions during Molting of Macrobrachium nipponense by Regulating 20E Synthesis and Mediating 20E Signaling. Int J Mol Sci 2022; 23:ijms232012528. [PMID: 36293382 PMCID: PMC9604295 DOI: 10.3390/ijms232012528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
HR4, a member of the nuclear receptor family, has been extensively studied in insect molting and development, but reports on crustaceans are still lacking. In the current study, the MnHR4 gene was identified in Macrobrachium nipponense. To further improve the molting molecular mechanism of M. nipponense, this study investigated whether MnHR4 functions during the molting process of M. nipponense. The domain, phylogenetic relationship and 3D structure of MnHR4 were analyzed by bioinformatics. Quantitative real-time PCR (qRT-PCR) analysis showed that MnHR4 was highly expressed in the ovary. In different embryo stages, the highest mRNA expression was observed in the cleavage stage (CS). At different individual stages, the mRNA expression of MnHR4 reached its peak on the fifteenth day after hatching (L15). The in vivo injection of 20-hydroxyecdysone (20E) can effectively promote the expression of the MnHR4 gene, and the silencing of the MnHR4 gene increased the content of 20E in M. nipponense. The regulatory role of MnHR4 in 20E synthesis and 20E signaling was further investigated by RNAi. Finally, the function of the MnHR4 gene in the molting process of M. nipponense was studied by counting the molting frequency. After knocking down MnHR4, the molting frequency of M. nipponense decreased significantly. It was proved that MnHR4 plays a pivotal role in the molting process of M. nipponense.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-510-8555-8835
| |
Collapse
|
14
|
Valsala AGR, Asirvadam ED. Bisphenol A acts as developmental agonist in Culex quinquefasciatus Say. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74428-74441. [PMID: 35641747 DOI: 10.1007/s11356-022-21001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Plastic wastes deposited in canals running through Thiruvananthapuram city have created stagnant waters providing breeding sites for mosquitoes. In the present study, plastic waste-derived bisphenol A (BPA) was quantified from four mosquito breeding sites. During summer rain, the concentration of BPA in the stagnant water samples was found to be between 0.86 and 1.14 mg/L, and hence 1 mg/L BPA was considered as the environmentally relevant concentration. In the present study, the effect of BPA on the life cycle and metamorphosis of filarial vector, Culex quinquefasciatus Say was elucidated by rearing larvae in water added with BPA at and above the environmentally relevant concentration viz., 1, 2, and 4 mg/L. The duration required for adult emergence was reduced from 10 to 8.5 days, when the concentration of BPA was increased from 1 to 4 mg/L respectively. Our study revealed that embryonic and larval developments were shortened by BPA treatment. BPA also caused a dose-dependent advancement of 20-hydroxyecdysone (20-E) peaks; phospholipase A2 induction; and upregulation of ecdysone receptor gene, EcRA, and ecdysone inducible gene E75A, which culminated in early pupation. No significant difference in sanguivory and fecundity was observed in adult mosquitoes treated with 1 mg/L of BPA. Our study reveals that BPA is a developmental agonist of C. quinquefasciatus.
Collapse
|
15
|
Havula E, Ghazanfar S, Lamichane N, Francis D, Hasygar K, Liu Y, Alton LA, Johnstone J, Needham EJ, Pulpitel T, Clark T, Niranjan HN, Shang V, Tong V, Jiwnani N, Audia G, Alves AN, Sylow L, Mirth C, Neely GG, Yang J, Hietakangas V, Simpson SJ, Senior AM. Genetic variation of macronutrient tolerance in Drosophila melanogaster. Nat Commun 2022; 13:1637. [PMID: 35347148 PMCID: PMC8960806 DOI: 10.1038/s41467-022-29183-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of ~200 strains derived from a single natural population. Our study demonstrates that D. melanogaster, often considered a "dietary generalist", displays marked genetic variation in survival on different diets, notably on high-sugar diet. Our genetic analysis and functional validation identify several regulators of macronutrient tolerance, including CG10960/GLUT8, Pkn and Eip75B. We also demonstrate a role for the JNK pathway in sugar tolerance and de novo lipogenesis. Finally, we report a role for tailless, a conserved orphan nuclear hormone receptor, in regulating sugar metabolism via insulin-like peptide secretion and sugar-responsive CCHamide-2 expression. Our study provides support for the use of nutrigenomics in the development of personalized nutrition.
Collapse
Affiliation(s)
- E Havula
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - S Ghazanfar
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - N Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - D Francis
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - K Hasygar
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Y Liu
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L A Alton
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - J Johnstone
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - E J Needham
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Pulpitel
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - T Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - H N Niranjan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Shang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Tong
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - N Jiwnani
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - G Audia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A N Alves
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - L Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - G G Neely
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - J Yang
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - V Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - S J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - A M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
16
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Dissecting the Isoform-Specific Roles of FTZ-F1 in the Larval–Larval and Larval–Pupal Ecdyses in Henosepilachna vigintioctopunctata. INSECTS 2022; 13:insects13030228. [PMID: 35323526 PMCID: PMC8951217 DOI: 10.3390/insects13030228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Fushi Tarazu Factor-1 (FTZ-F1) plays a crucial regulatory role in molting in insects. It is hypothesized that, by alternative transcription start and splicing, the FTZ-F1 gene generates two isomers (α- and βFTZ-F1) that exert isoform-specific roles in non-Drosophilid insects. In the present paper, we first unveiled that the same post-transcriptional processing in FTZ-F1 occurred in coleopterans, lepidopterans, dipterans and hymenopterans. We then found that αFTZ-F1 and βFTZ-F1 were actively transcribed throughout the development, from embryo to adult, in Henosepilachna vigintioctopunctata. Moreover, by RNA interference, we confirmed that both FTZ-F1 isoforms act as regulators in larval–larval molting and βFTZ-F1 is involved in the regulation of the larval–pupal transition. Abstract Fushi Tarazu Factor 1 (FTZ-F1), a member of the nuclear receptor superfamily, is the downstream factor of 20-hydroxyecdysone signaling. In Drosophila melanogaster, alternative transcription start and splicing in the FTZ-F1 gene generate αFTZ-F1 and βFTZ-F1 isoforms, which are vital for pair-rule segmentation in early embryogenesis and post-embryonic development, respectively. However, whether the same mRNA isoforms are present and exert the conservative roles remains to be clarified in other insects. In the present paper, we first mined the genomic data of representative insect species and unveiled that the same post-transcriptional processing in FTZ-F1 occurred in coleopterans, lepidopterans, dipterans and hymenopterans. Our expression data in Henosepilachna vigintioctopunctata, a serious polyphagous defoliator damaging a wide range of crops in Solanaceae and Cucurbitaceae, showed that both αFTZ-F1 and βFTZ-F1 were actively transcribed throughout the development, from embryo to adult. The RNA interference-aided knockdown of both isoforms completely arrested larval ecdysis from the third to the fourth instar, in contrast to the depletion of either isoform. In contrast, silencing βFTZ-F1, rather than αFTZ-F1, severely impaired the larval–pupal transformation. We accordingly propose that both FTZ-F1 isoforms are essential but mutually interchangeable for larval–larval molting, while βFTZ-F1 is necessary for the larval–pupal transition and sufficient to exert the role of both FTZ-F1s during larval–pupal metamorphosis in H. vigintioctopunctata.
Collapse
|
18
|
Aksoy E, Raikhel AS. Juvenile hormone regulation of microRNAs is mediated by E75 in the Dengue vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:e2102851118. [PMID: 34266957 PMCID: PMC8307694 DOI: 10.1073/pnas.2102851118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play critical roles in controlling posttranscriptional gene regulation and have a profound effect on mosquito reproduction and metabolism. Juvenile hormone (JH) is critical for achieving reproductive competence in the main vector of human arboviral diseases, Aedes aegypti We report a JH-mediated mechanism governing miRNA expression. Using a transcription factor screen with multiple primary miRNA (pri-miRNA) promoters, we identified that the Ecdysone-induced protein E75 (E75) isoform (E75-RD) induced miRNA gene promoter activity. E75 binding sites were determined in miRNA promoters by means of cell transfection assay. E75-RD was found to be up-regulated by JH, as shown by the JH application and RNA interference (RNAi) of the JH receptor Methoprene-tolerant (Met). Small RNA sequencing from RNAi of Met and E75 displayed an overlapping miRNA cohort, suggesting E75 to be an intermediate component within the JH hierarchical network controlling miRNAs. Further experiments confirmed that E75-RD positively regulates several miRNAs including miR-2940. Reducing miR-2940 resulted in the arrest of follicle development and number of eggs laid. Performing miRNA target predictions and RT-qPCR from antagomir Ant-2940-3p-treated fat body tissues identified the mRNA target Clumsy (AAEL002518) The molecular interaction between this gene target and miR-2940 was confirmed using an in vitro dual luciferase assay in Drosophila S2 cells and in Ae. aegypti Aag2 cell lines. Finally, we performed a phenotypic rescue experiment to demonstrate that miR-2940/Clumsy is responsible for the disruption in egg development. Collectively, these results established the role of JH-mediated E75-RD in regulation of miRNA gene expression during the mosquito reproductive cycle.
Collapse
Affiliation(s)
- Emre Aksoy
- Department of Entomology, University of California, Riverside, CA 92521
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92521
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521;
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
19
|
Jeong TY, Simpson MJ. Endocrine Disruptor Exposure Causes Infochemical Dysregulation and an Ecological Cascade from Zooplankton to Algae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3845-3854. [PMID: 33617259 DOI: 10.1021/acs.est.0c07847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endocrine disruption is intimately linked to controlling the population of pollutant-exposed organisms through reproduction and development dysregulation. This study investigated how endocrine disruption in a predator organism could affect prey species biology through infochemical communication. Daphnia magna and Chlorella vulgaris were chosen as model prey and predator planktons, respectively, and fenoxycarb was used for disrupting the endocrine system of D. magna. Hormones as well as endo- and exometabolomes were extracted from daphnids and algal cells and their culture media and analyzed using liquid chromatography with tandem mass spectrometry. Biomolecular perturbations of D. magna under impaired offspring production and hormone dysregulation were observed. Differential biomolecular responses of the prey C. vulgaris, indicating changes in methylation and infochemical communication, were subsequently observed under the exposure to predator culture media, containing infochemicals released from the reproducibly normal and abnormal D. magna, as results of fenoxycarb exposure. The observed cross-species transfer of the endocrine disruption consequences, initiated from D. magna, and mediated through infochemical communication, demonstrates a novel discovery and emphasizes the broader ecological risk of endocrine disruptors beyond reproduction disruption in target organisms.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Myrna J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
20
|
Sapin GD, Tomoda K, Tanaka S, Shinoda T, Miura K, Minakuchi C. Involvement of the transcription factor E75 in adult cuticular formation in the red flour beetle Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103450. [PMID: 32818622 DOI: 10.1016/j.ibmb.2020.103450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Insect adult metamorphosis generally proceeds with undetectable levels of juvenile hormone (JH). In adult development of the red flour beetle Tribolium castaneum, biosynthesis of adult cuticle followed by its pigmentation and sclerotization occurs, and dark coloration of the cuticle becomes visible in pharate adults. Here, we examined the molecular mechanism of adult cuticular formation in more detail. We noticed that an exogenous JH mimic (JHM) treatment of Day 0 pupae did not inhibit pigmentation or sclerotization, but instead, induced precocious pigmentation of adult cuticle two days in advance. Quantitative RT-PCR analyses revealed that ecdysone-induced protein 75B (E75) is downregulated in JHM-treated pupae. Meanwhile, tyrosine hydroxylase (Th), an enzyme involved in cuticular pigmentation and sclerotization, was precociously induced, whereas a structural cuticular protein CPR27 was downregulated, by exogenous JHM treatment. RNA interference-mediated knockdown of E75 resulted in precocious adult cuticular pigmentation, which resembled the phenotype caused by JHM treatment. Notably, upregulation of Th as well as suppression of CPR27 were observed with E75 knockdown. Meanwhile, JHM treatment suppressed the expression of genes involved in melanin synthesis, such as Yellow-y and Laccase 2, but E75 knockdown did not result in marked reduction in their expression. Taken together, these results provided insights into the regulatory mechanisms of adult cuticular formation; the transcription of genes involved in adult cuticular formation proceeds in a proper timing with undetectable JH, and exogenous JHM treatment disturbs their transcription. For some of these genes such as Th and CPR27, E75 is involved in transcriptional regulation. This study shed light on the molecular mode of action of JHM as insecticides; exogenous JHM treatment disturbed the expression of genes involved in the adult cuticular formation, which resulted in lethality as pharate adults.
Collapse
Affiliation(s)
- Gelyn D Sapin
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Kai Tomoda
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Sayumi Tanaka
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Tetsuro Shinoda
- National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, 305-8634, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Chieka Minakuchi
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan; National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, 305-8634, Japan.
| |
Collapse
|
21
|
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, Richards S. Genome-enabled insights into the biology of thrips as crop pests. BMC Biol 2020; 18:142. [PMID: 33070780 PMCID: PMC7570057 DOI: 10.1186/s12915-020-00862-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
Collapse
Affiliation(s)
- Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Aaron A Baumann
- Virology Section, College of Veterinary Medicine, University of Tennessee, A239 VTH, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, 70013, Heraklion, Greece
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Jonathan E Oliver
- Department of Plant Pathology, University of Georgia - Tifton Campus, Tifton, GA, 31793-5737, USA
| | | | - Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Derek J Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Biology, University of Washington, Seattle, WA, 98105, USA
| | - Clauvis N T Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dong Wei
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | | | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Andrew Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kaylee Hervey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | | | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
23
|
Xie K, Lu Y, Yang K, Huo S, Hong X. Co-infection of Wolbachia and Spiroplasma in spider mite Tetranychus truncatus increases male fitness. INSECT SCIENCE 2020; 27:921-937. [PMID: 31173475 PMCID: PMC7497181 DOI: 10.1111/1744-7917.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 06/03/2019] [Indexed: 05/10/2023]
Abstract
Wolbachia and Spiroplasma are intracellular bacteria that are of great interest to entomologists, because of their ability to alter insect host biology in multiple ways. In the spider mite Tetranychus truncatus, co-infection of Wolbachia and Spiroplasma can induce cytoplasmic incompatibility (CI) and fitness costs; however, little is known about the effect of co-infection at the genetic level and the molecular mechanisms underlying CI. In this study, we explored the influence of the two symbionts on male mite host fitness and used RNA sequencing to generate the transcriptomes of T. truncatus with four different types of infection. In total, we found symbiont-infected lines had a higher hatch proportion than the uninfected line, and the development time of the uninfected line was longer than that of the other lines. Co-infection changed the expression of many genes related to digestion detoxification, reproduction, immunity and oxidation reduction. Our results indicate that co-infection of Wolbachia and Spiroplasma confers multiple effects on their hosts, and helps illuminate the complex interactions between endosymbionts and arthropods.
Collapse
Affiliation(s)
- Kang Xie
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Yi‐Jia Lu
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Kun Yang
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Shi‐Mei Huo
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Xiao‐Yue Hong
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
24
|
Zipper L, Jassmann D, Burgmer S, Görlich B, Reiff T. Ecdysone steroid hormone remote controls intestinal stem cell fate decisions via the PPARγ-homolog Eip75B in Drosophila. eLife 2020; 9:e55795. [PMID: 32773037 PMCID: PMC7440922 DOI: 10.7554/elife.55795] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Developmental studies revealed fundamental principles on how organ size and function is achieved, but less is known about organ adaptation to new physiological demands. In fruit flies, juvenile hormone (JH) induces intestinal stem cell (ISC) driven absorptive epithelial expansion balancing energy uptake with increased energy demands of pregnancy. Here, we show 20-Hydroxy-Ecdysone (20HE)-signaling controlling organ homeostasis with physiological and pathological implications. Upon mating, 20HE titer in ovaries and hemolymph are increased and act on nearby midgut progenitors inducing Ecdysone-induced-protein-75B (Eip75B). Strikingly, the PPARγ-homologue Eip75B drives ISC daughter cells towards absorptive enterocyte lineage ensuring epithelial growth. To our knowledge, this is the first time a systemic hormone is shown to direct local stem cell fate decisions. Given the protective, but mechanistically unclear role of steroid hormones in female colorectal cancer patients, our findings suggest a tumor-suppressive role for steroidal signaling by promoting postmitotic fate when local signaling is deteriorated.
Collapse
Affiliation(s)
- Lisa Zipper
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Denise Jassmann
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Sofie Burgmer
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Bastian Görlich
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Tobias Reiff
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorfGermany
| |
Collapse
|
25
|
Temporal Coordination of Collective Migration and Lumen Formation by Antagonism between Two Nuclear Receptors. iScience 2020; 23:101335. [PMID: 32682323 PMCID: PMC7366032 DOI: 10.1016/j.isci.2020.101335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 06/26/2020] [Indexed: 02/01/2023] Open
Abstract
During development, cells undergo multiple, distinct morphogenetic processes to form a tissue or organ, but how their temporal order and time interval are determined remain poorly understood. Here we show that the nuclear receptors E75 and DHR3 regulate the temporal order and time interval between the collective migration and lumen formation of a coherent group of cells named border cells during Drosophila oogenesis. We show that E75, in response to ecdysone signaling, antagonizes the activity of DHR3 during border cell migration, and DHR3 is necessary and sufficient for the subsequent lumen formation that is critical for micropyle morphogenesis. DHR3's lumen-inducing function is mainly mediated through βFtz-f1, another nuclear receptor and transcription factor. Furthermore, both DHR3 and βFtz-f1 are required for chitin secretion into the lumen, whereas DHR3 is sufficient for chitin secretion. Lastly, DHR3 and βFtz-f1 suppress JNK signaling in the border cells to downregulate cell adhesion during lumen formation. E75 antagonizes DHR3's function in inducing lumen formation of border cells (BCs) E75 and DHR3 temporally coordinate collective migration and lumen formation of BCs DHR3 is required and sufficient for chitin secretion into the lumen DHR3 and βFtz-f1 downregulate JNK signaling and cell adhesion in the BCs
Collapse
|
26
|
Zhang Z, Yao D, Yang P, Zheng Z, Aweya JJ, Lun J, Ma H, Zhang Y. Nuclear receptor E75 is a transcription suppressor of the Litopenaeus vannamei small subunit hemocyanin gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103662. [PMID: 32122820 DOI: 10.1016/j.dci.2020.103662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Hemocyanin is a respiratory protein that possesses multiple physiological and immunological functions in shrimp. However, the transcriptional regulation of the hemocyanin gene is still poorly understood. Here, the nuclear receptor E75 of Litopenaeus vannamei (LvE75) was identified as one of the transcriptional regulators that modulates the transcription of the small molecular weight hemocyanin gene of L. vannamei (LvHMCs) by inhibiting its core promoter activity in a Dual-luciferase assay. In silico analysis revealed that the core promoter (designated HsP3), which is located at +1517/+1849 bp of LvHMCs contained a putative E75 binding motif ("ACGGAAT", spanning +1812/+1818 bp). Further, LvE75 was shown to inhibit the core promoter activity by direct binding. Importantly, in vivo silencing of LvE75 resulted in a significant upregulation in the mRNA and protein expression of LvHMCs gene. Taken together, our present results provide direct evidence that LvE75 is a transcriptional suppressor of the LvHMCs gene expression.
Collapse
Affiliation(s)
- Zhaoxue Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Peikui Yang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jingsheng Lun
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
27
|
Hernandez J, Pick L, Reding K. Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence. EvoDevo 2020; 11:9. [PMID: 32337018 PMCID: PMC7178596 DOI: 10.1186/s13227-020-00154-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, Drosophila melanogaster, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, Oncopeltus fasciatus (order: Hemiptera)—close outgroup to holometabolous insects—is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult. Results Here we present the harlequin bug, Murgantia histrionica, as a new hemipteran model species. Murgantia—a member of the stink bug family Pentatomidae which shares a common ancestor with Oncopeltus ~ 200 mya—is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use Murgantia to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to Oncopeltus. Specifically, PRGs even-skipped, odd-skipped, paired and sloppy-paired are initially expressed in PR-stripes in Drosophila and a number of holometabolous insects but in segmental-stripes in Oncopeltus. We found that these genes are likewise expressed in segmental-stripes in Murgantia, while runt displays partial PR-character in both species. Also like Oncopeltus, E75A is expressed in a clear PR-pattern in blastoderm- and germband-stage Murgantia embryos, although it plays no role in segmentation in Drosophila. Thus, genes diagnostic of the split between holometabolous insects and Oncopeltus are expressed in an Oncopeltus-like fashion during Murgantia development. Conclusions The similarity in gene expression between Murgantia and Oncopeltus suggests that Oncopeltus is not a sole outlier species in failing to utilize orthologs of Drosophila PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of E75A in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.
Collapse
Affiliation(s)
- Jessica Hernandez
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| |
Collapse
|
28
|
Zeng J, Huynh N, Phelps B, King-Jones K. Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint. PLoS Biol 2020; 18:e3000609. [PMID: 32097403 PMCID: PMC7041797 DOI: 10.1371/journal.pbio.3000609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment. During Drosophila development, the time window when larvae assess their readiness for metamorphosis is marked by slowing of cell growth in the prothoracic gland that produces the molting hormone; cell growth (via DNA endoreplication) then increases, allowing the production of the amount of hormone required to trigger metamorphosis. This study shows that these processes depend on the transcription factor Snail.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nhan Huynh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Brian Phelps
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
29
|
Reding K, Chen M, Lu Y, Cheatle Jarvela AM, Pick L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 2019; 146:dev181453. [PMID: 31444220 PMCID: PMC6765130 DOI: 10.1242/dev.181453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
The discovery of pair-rule genes (PRGs) in Drosophila revealed the existence of an underlying two-segment-wide prepattern directing embryogenesis. The milkweed bug Oncopeltus fasciatus, a hemimetabolous insect, is a more representative arthropod: most of its segments form sequentially after gastrulation. Here, we report the expression and function of orthologs of the complete set of nine Drosophila PRGs in Oncopeltus Seven Of-PRG-orthologs are expressed in stripes in the primordia of every segment, rather than every other segment; Of-runt is PR-like and several orthologs are also expressed in the segment addition zone. RNAi-mediated knockdown of Of-odd-skipped, paired and sloppy-paired impacted all segments, with no indication of PR-like register. We confirm that Of-E75A is expressed in PR-like stripes, although it is not expressed in this way in Drosophila, demonstrating the existence of an underlying PR-like prepattern in Oncopeltus These findings reveal that a switch occurred in regulatory circuits, leading to segment formation: while several holometabolous insects are 'Drosophila-like', using PRG orthologs for PR patterning, most Of-PRGs are expressed segmentally in Oncopeltus, a more basally branching insect. Thus, an evolutionarily stable phenotype - segment formation - is directed by alternate regulatory pathways in diverse species.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Mengyao Chen
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Yong Lu
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Alys M Cheatle Jarvela
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
30
|
A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion. Nat Commun 2019; 10:1955. [PMID: 31028268 PMCID: PMC6486587 DOI: 10.1038/s41467-019-09943-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Organisms adapt their metabolism and growth to the availability of nutrients and oxygen, which are essential for development, yet the mechanisms by which this adaptation occurs are not fully understood. Here we describe an RNAi-based body-size screen in Drosophila to identify such mechanisms. Among the strongest hits is the fibroblast growth factor receptor homolog breathless necessary for proper development of the tracheal airway system. Breathless deficiency results in tissue hypoxia, sensed primarily in this context by the fat tissue through HIF-1a prolyl hydroxylase (Hph). The fat relays its hypoxic status through release of one or more HIF-1a-dependent humoral factors that inhibit insulin secretion from the brain, thereby restricting systemic growth. Independently of HIF-1a, Hph is also required for nutrient-dependent Target-of-rapamycin (Tor) activation. Our findings show that the fat tissue acts as the primary sensor of nutrient and oxygen levels, directing adaptation of organismal metabolism and growth to environmental conditions. The mechanisms by which organisms adapt their growth according to the availability of oxygen are incompletely understood. Here the authors identify the Drosophila fat body as a tissue regulating growth in response to oxygen sensing via a mechanism involving Hph inhibition, HIF1-a activation and insulin secretion.
Collapse
|
31
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019. [PMID: 30935422 DOI: 10.1101/201731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019; 20:64. [PMID: 30935422 PMCID: PMC6444547 DOI: 10.1186/s13059-019-1660-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Zhou K, Zhou F, Jiang S, Huang J, Yang Q, Yang L, Jiang S. Ecdysone inducible gene E75 from black tiger shrimp Penaeus monodon: Characterization and elucidation of its role in molting. Mol Reprod Dev 2019; 86:265-277. [PMID: 30618055 DOI: 10.1002/mrd.23101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022]
Abstract
Molting is controlled by ecdysteroids, which are synthesized and secreted by the Y-organ in crustaceans. Ecdysone inducible gene, E75, is an early-response gene in the 20-hydroxyecdysone (20E) signaling pathway, with crucial roles in arthropod development. Complementary DNA (cDNA) encoding Penaeus monodon E75 (PmE75) was cloned using RT-PCR and RACE. PmE75 cDNA was 3526 bp long and encoded a 799-amino acid protein. Tissue distribution analysis showed that PmE75 was expressed ubiquitously in selected tissues, and was relatively abundant in the epidermis, muscle, and hepatopancreas. Developmental expression revealed that PmE75 was expressed throughout its life cycle. Silencing PmE75 significantly decreased PmE75 expression. Shrimps injected with PBS and dsGFP started molting on Day 7 and had almost completed molting on Day 9, whereas dsPmE75-injected shrimp presented no signs of molting. These results suggested that PmE75 might be involved in molting. In situ hybridization results support this hypothesis. To explore the role of 20E and eyestalks in the regulation of molting in P. monodon, exogenous 20E injection and eyestalk ablation (ESA) were performed, and showed that 20E can induce the transcription and expression of PmE75 in the hepatopancreas, epidermis, and muscle, which were significantly elevated after ESA. These results provide further insights into our understanding of molting.
Collapse
Affiliation(s)
- Kaimin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Falin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Qibin Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lishi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
34
|
Li CJ, Yun XP, Yu XJ, Li B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. INSECT SCIENCE 2018; 25:418-428. [PMID: 28101904 DOI: 10.1111/1744-7917.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/18/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
Circadian rhythms are endogenous oscillations with a period of about 24 h driven by a circadian clock. So far, variable oscillators have been found in insects. To explore the circadian clock of Tribolium castaneum, we cloned the clock gene timeless (Tctimeless). Its open reading frame is 3240 bp in length and consists of 10 exons. Tctimeless is highly expressed in the late pupal stage. Tissue-specific expression analysis in late adult stages revealed high expression of Tctimeless in the head, epidermis, fat body and accessory glands. Silencing of Tctimeless by RNA interference (RNAi) at the late larval stages caused a failure to initiate eclosion. Tctimeless knockdown in late pupal stages led to a gender-independent decline in egg production and progeny survival. As a core clock gene, Tctimeless exhibited one expression peak in the middle of the circadian day. Knockdown of Tctimeless disrupted daily expression patterns of Tccycle, Tcclock, Tcperiod and itself, while Tctimeless and Tcperiod expression patterns over the circadian day were also perturbed when Tccycle or Tcclock is suppressed by RNAi. This study identified a complex transcriptional relationship among circadian clock genes in T. castaneum.
Collapse
Affiliation(s)
- Cheng-Jun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao-Pei Yun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Juan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
35
|
Xu X, Zhang YN, Peng S, Wu J, Deng D, Zhou Z. Effects of Microcystis aeruginosa on the expression of nuclear receptor genes in Daphnia similoides sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:344-352. [PMID: 29306189 DOI: 10.1016/j.ecoenv.2017.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Nuclear receptor (NR) genes form a conserved superfamily, which is involved in organism metabolism, reproduction, development, homeostasis, and resource allocation. Microcystis aeruginosa can inhibit the growth and reproduction of Daphnia. However, whether M. aeruginosa can affect the expression of Daphnia NR genes is unknown. In total, 18 NRs were identified in this study based on previous Daphnia similoides sinensis transcriptome data. In treatments containing M. aeruginosa, the gene expression of the NR1 subfamily (E75a, E75b, HR3, HR96, NHR-1, HR97a, HR97g, and NHR97) and the NR2 subfamily (RXR, TLL, PNR, and SVP) were down-regulated 59% and 79%, respectively. In treatments containing M. aeruginosa, although the expression of 78% of the genes showed a similar trend in clones 1 and 2, the expression of 42% of the genes in clone 3 showed the opposite trend compared to clones 1 and 2, suggesting that the adaptability and molecular mechanism differ in individuals with different Microcystis tolerance genotypes.
Collapse
Affiliation(s)
- Xiaoxue Xu
- School of Resources and Environmental Engineering, Anhui University, 230601, Hefei, Anhui, China; School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China
| | - Ya-Nan Zhang
- School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China
| | - Shuixiu Peng
- School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China
| | - Jianxun Wu
- School of Resources and Environmental Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Daogui Deng
- School of Life Science, Huaibei Normal University, 235000 Huaibei, Anhui, China.
| | - Zhongze Zhou
- School of Resources and Environmental Engineering, Anhui University, 230601, Hefei, Anhui, China.
| |
Collapse
|
36
|
Gouveia D, Bonneton F, Almunia C, Armengaud J, Quéau H, Degli-Esposti D, Geffard O, Chaumot A. Identification, expression, and endocrine-disruption of three ecdysone-responsive genes in the sentinel species Gammarus fossarum. Sci Rep 2018; 8:3793. [PMID: 29491422 PMCID: PMC5830573 DOI: 10.1038/s41598-018-22235-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
Taking advantage of a large transcriptomic dataset recently obtained in the sentinel crustacean amphipod Gammarus fossarum, we developed an approach based on sequence similarity and phylogenetic reconstruction to identify key players involved in the endocrine regulation of G. fossarum. Our work identified three genes of interest: the nuclear receptors RXR and E75, and the regulator broad-complex (BR). Their involvement in the regulation of molting and reproduction, along with their sensitivity to chemical contamination were experimentally assessed by studying gene expression during the female reproductive cycle, and after laboratory exposure to model endocrine disrupting compounds (EDCs): pyriproxyfen, tebufenozide and piperonyl butoxide. RXR expression suggested a role of this gene in ecdysis and post-molting processes. E75 presented two expression peaks that suggested a role in vitellogenesis, and molting. BR expression showed no variation during molting/reproductive cycle. After exposure to the three EDCs, a strong inhibition of the inter-molt E75 peak was observed with tebufenozide, and an induction of RXR after exposure to pyriproxyfen and piperonyl butoxide. These results confirm the implication of RXR and E75 in hormonal regulation of female reproductive cycles in G. fossarum and their sensitivity towards EDCs opens the possibility of using them as specific endocrine disruption biomarkers.
Collapse
Affiliation(s)
- D Gouveia
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - F Bonneton
- IGFL, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - C Almunia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - J Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - H Quéau
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - D Degli-Esposti
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - O Geffard
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - A Chaumot
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, F-69625, Villeurbanne, France.
| |
Collapse
|
37
|
Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci U S A 2017; 115:139-144. [PMID: 29255055 PMCID: PMC5776822 DOI: 10.1073/pnas.1716897115] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vertebrates, steroid hormones regulate developmental transition from juveniles to adults. Insect steroid hormone, 20-hydroxyecdysone (20E), coordinates with juvenile hormone (JH) to regulate metamorphosis; however, the precise cross-talk mechanism is not well understood. Here, we report that JH and 20E antagonize each other’s biosynthesis in a major endocrine organ of Drosophila larvae: JH suppresses ecdysone biosynthesis and inhibits metamorphosis, whereas 20E suppresses JH biosynthesis and promotes metamorphosis. These data answer a long-standing question on how the mutual antagonism between the two major insect hormones regulates metamorphosis and may help to understand the hormonal regulation of developmental transition in mammals. In both vertebrates and insects, developmental transition from the juvenile stage to adulthood is regulated by steroid hormones. In insects, the steroid hormone, 20-hydroxyecdysone (20E), elicits metamorphosis, thus promoting this transition, while the sesquiterpenoid juvenile hormone (JH) antagonizes 20E signaling to prevent precocious metamorphosis during the larval stages. However, not much is known about the mechanisms involved in cross-talk between these two hormones. In this study, we discovered that in the ring gland (RG) of Drosophila larvae, JH and 20E control each other’s biosynthesis. JH induces expression of a Krüppel-like transcription factor gene Kr-h1 in the prothoracic gland (PG), a portion of the RG that produces the 20E precursor ecdysone. By reducing both steroidogenesis autoregulation and PG size, high levels of Kr-h1 in the PG inhibit ecdysteriod biosynthesis, thus maintaining juvenile status. JH biosynthesis is prevented by 20E in the corpus allatum, the other portion of the RG that produces JH, to ensure the occurrence of metamorphosis. Hence, antagonistic actions of JH and 20E within the RG determine developmental transitions in Drosophila. Our study proposes a mechanism of cross-talk between the two major hormones in the regulation of insect metamorphosis.
Collapse
|
38
|
Manning L, Sheth J, Bridges S, Saadin A, Odinammadu K, Andrew D, Spencer S, Montell D, Starz-Gaiano M. A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mech Dev 2017; 148:56-68. [PMID: 28610887 PMCID: PMC5758037 DOI: 10.1016/j.mod.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/30/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Cell migration is essential during animal development. In the Drosophila ovary, the steroid hormone ecdysone coordinates nutrient sensing, growth, and the timing of morphogenesis events including border cell migration. To identify downstream effectors of ecdysone signaling, we profiled gene expression in wild-type follicle cells compared to cells expressing a dominant negative Ecdysone receptor or its coactivator Taiman. Of approximately 400 genes that showed differences in expression, we validated 16 candidate genes for expression in border and centripetal cells, and demonstrated that seven responded to ectopic ecdysone activation by changing their transcriptional levels. We found a requirement for seven putative targets in effective cell migration, including two other nuclear hormone receptors, a calcyphosine-encoding gene, and a prolyl hydroxylase. Thus, we identified multiple new genetic regulators modulated at the level of transcription that allow cells to interpret information from the environment and coordinate cell migration in vivo.
Collapse
Affiliation(s)
- Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States; UNC Chapel Hill, NC, United States
| | - Jinal Sheth
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Stacey Bridges
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Kamsi Odinammadu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Deborah Andrew
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Denise Montell
- University of Santa Barbara, Santa Barbara, CA, United States.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
39
|
Sugahara R, Tanaka S, Shiotsuki T. RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria. Dev Biol 2017; 429:71-80. [DOI: 10.1016/j.ydbio.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
40
|
Kaieda Y, Masuda R, Nishida R, Shimell M, O'Connor MB, Ono H. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster. Dev Biol 2017; 430:166-176. [PMID: 28782527 DOI: 10.1016/j.ydbio.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression.
Collapse
Affiliation(s)
- Yuya Kaieda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ryota Masuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ritsuo Nishida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
41
|
Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4142-4157. [PMID: 28355071 PMCID: PMC6135102 DOI: 10.1021/acs.est.7b00480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| | | | - Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV). P.O. Box 5003, N-1432 Ås, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| |
Collapse
|
42
|
Collins DH, Mohorianu I, Beckers M, Moulton V, Dalmay T, Bourke AFG. MicroRNAs Associated with Caste Determination and Differentiation in a Primitively Eusocial Insect. Sci Rep 2017; 7:45674. [PMID: 28361900 PMCID: PMC5374498 DOI: 10.1038/srep45674] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/02/2017] [Indexed: 01/08/2023] Open
Abstract
In eusocial Hymenoptera (ants, bees and wasps), queen and worker adult castes typically arise via environmental influences. A fundamental challenge is to understand how a single genome can thereby produce alternative phenotypes. A powerful approach is to compare the molecular basis of caste determination and differentiation along the evolutionary trajectory between primitively and advanced eusocial species, which have, respectively, relatively undifferentiated and strongly differentiated adult castes. In the advanced eusocial honeybee, Apis mellifera, studies suggest that microRNAs (miRNAs) play an important role in the molecular basis of caste determination and differentiation. To investigate how miRNAs affect caste in eusocial evolution, we used deep sequencing and Northern blots to isolate caste-associated miRNAs in the primitively eusocial bumblebee Bombus terrestris. We found that the miRNAs Bte-miR-6001-5p and -3p are more highly expressed in queen- than in worker-destined late-instar larvae. These are the first caste-associated miRNAs from outside advanced eusocial Hymenoptera, so providing evidence for caste-associated miRNAs occurring relatively early in eusocial evolution. Moreover, we found little evidence that miRNAs previously shown to be associated with caste in A. mellifera were differentially expressed across caste pathways in B. terrestris, suggesting that, in eusocial evolution, the caste-associated role of individual miRNAs is not conserved.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew Beckers
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
43
|
Kasumovic MM, Chen Z, Wilkins MR. Australian black field crickets show changes in neural gene expression associated with socially-induced morphological, life-history, and behavioral plasticity. BMC Genomics 2016; 17:827. [PMID: 27776492 PMCID: PMC5078956 DOI: 10.1186/s12864-016-3119-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecological and evolutionary model organisms have provided extensive insight into the ecological triggers, adaptive benefits, and evolution of life-history driven developmental plasticity. Despite this, we still have a poor understanding of the underlying genetic changes that occur during shifts towards different developmental trajectories. The goal of this study is to determine whether we can identify underlying gene expression patterns that can describe the different life-history trajectories individuals follow in response to social cues of competition. To do this, we use the Australian black field cricket (Teleogryllus commodus), a species with sex-specific developmental trajectories moderated by the density and quality of calls heard during immaturity. In this study, we manipulated the social information males and females could hear by rearing individuals in either calling or silent treatments. We next used RNA-Seq to develop a reference transcriptome to study changes in brain gene expression at two points prior to sexual maturation. RESULTS We show accelerated development in both sexes when exposed to calling; changes were also seen in growth, lifespan, and reproductive effort. Functional relationships between genes and phenotypes were apparent from ontological enrichment analysis. We demonstrate that increased investment towards traits such as growth and reproductive effort were often associated with the expression of a greater number of genes with similar effect, thus providing a suite of candidate genes for future research in this and other invertebrate organisms. CONCLUSIONS Our results provide interesting insight into the genomic underpinnings of developmental plasticity and highlight the potential of a genomic exploration of other evolutionary theories such as condition dependence and sex-specific developmental strategies.
Collapse
Affiliation(s)
- Michael M Kasumovic
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia.
| | - Zhiliang Chen
- Systems Biology Initiative, UNSW, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, UNSW, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| |
Collapse
|
44
|
The nuclear receptor E75 from the swimming crab, Portunus trituberculatus: cDNA cloning, transcriptional analysis, and putative roles on expression of ecdysteroid-related genes. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:69-77. [DOI: 10.1016/j.cbpb.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/24/2023]
|
45
|
Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:10-23. [PMID: 27180725 DOI: 10.1016/j.ibmb.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The arthropod-specific hormone family of ecdysteroids plays an important role in regulating diverse physiological processes, such as moulting and metamorphosis, reproduction, diapause and innate immunity. Ecdysteroids mediate their response by binding to a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). In this study we investigated the role of EcR and RXR in metamorphosis and development of the desert locust, Schistocerca gregaria. The desert locust is a voracious, phytophagous, swarming pest that can ruin crops and harvests in some of the world's poorest countries. A profound knowledge of the ecdysteroid signalling pathway can be used in the development of more target-specific insecticides to combat this harmful plague insect. Here we report an in-depth profiling study of the transcript levels of EcR and RXR, as well as its downstream response genes, in different tissues isolated throughout the last larval stage of a hemimetabolous insect, showing a clear correlation with circulating ecdysteroid titres. Using RNA interference (RNAi), the role of SgEcR/SgRXR in moulting and development was investigated. We have proven the importance of the receptor components for successful moulting of locust nymphs into the adult stage. Some SgEcR/SgRXR knockdown females were arrested in the last larval stage, and 65 % of them initiated vitellogenesis and oocyte maturation, which normally only occurs in adults. Furthermore, our results clearly indicate that at the peak of ecdysteroid synthesis, on day six of the last larval stage, knockdown of SgEcR/SgRXR is affecting the transcript levels of the Halloween genes, Spook, Shadow and Shade.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
46
|
Gu SH, Hsieh YC, Lin PL. Stimulation of orphan nuclear receptor HR38 gene expression by PTTH in prothoracic glands of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2016; 90:8-16. [PMID: 27090809 DOI: 10.1016/j.jinsphys.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
A complex signaling network appears to be involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). Less is known about the genomic action of PTTH signaling. In the present study, we investigated the effect of PTTH on the expression of Bombyx mori HR38, an immediate early gene (IEG) identified in insect systems. Our results showed that treatment of B. mori PGs with PTTH in vitro resulted in a rapid increase in HR38 expression. Injection of PTTH into day-5 last instar larvae also greatly increased HR38 expression, verifying the in vitro effect. Cycloheximide did not affect induction of HR38 expression, suggesting that protein synthesis is not required for PTTH's effect. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor (U0126), and a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), partially inhibited PTTH-stimulated HR38 expression, implying the involvement of both the ERK and PI3K signaling pathways. When PGs were treated with agents that directly elevate the intracellular Ca(2+) concentration (either A23187 or thapsigargin), an increase in HR38 expression was also detected, indicating that Ca(2+) is involved in PTTH-stimulated HR38 gene expression. A Western blot analysis showed that PTTH treatment increased the HR38 protein level, and protein levels showed a dramatic increase during the later stages of the last larval instar. Expression of HR38 transcription in response to PTTH appeared to undergo development-specific changes. Treatment with ecdysone in vitro did not affect HR38 expression. However, 20-hydroxyecdysone treatment decreased HR38 expression. Taken together, these results demonstrate that HR38 is a PTTH-stimulated IEG that is, at least in part, induced through Ca(2+)/ERK and PI3K signaling. The present study proposes a potential cross talk mechanism between PTTH and ecdysone signaling to regulate insect development and lays a foundation for a better understanding of the mechanisms of PTTH's actions.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Yun-Chih Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
47
|
Li K, Tian L, Guo Z, Guo S, Zhang J, Gu SH, Palli SR, Cao Y, Li S. 20-Hydroxyecdysone (20E) Primary Response Gene E75 Isoforms Mediate Steroidogenesis Autoregulation and Regulate Developmental Timing in Bombyx. J Biol Chem 2016; 291:18163-75. [PMID: 27365399 DOI: 10.1074/jbc.m116.737072] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Indexed: 11/06/2022] Open
Abstract
The temporal control mechanisms that precisely control animal development remain largely elusive. The timing of major developmental transitions in insects, including molting and metamorphosis, is coordinated by the steroid hormone 20-hydroxyecdysone (20E). 20E involves feedback loops to maintain pulses of ecdysteroid biosynthesis leading to its upsurge, whereas the underpinning molecular mechanisms are not well understood. Using the silkworm Bombyx mori as a model, we demonstrated that E75, the 20E primary response gene, mediates a regulatory loop between ecdysteroid biosynthesis and 20E signaling. E75 isoforms A and C directly bind to retinoic acid receptor-related response elements in Halloween gene promoter regions to induce gene expression thus promoting ecdysteroid biosynthesis and developmental transition, whereas isoform B antagonizes the transcriptional activity of isoform A/C through physical interaction. As the expression of E75 isoforms is differentially induced by 20E, the E75-mediated regulatory loop represents a fine autoregulation of steroidogenesis, which contributes to the precise control of developmental timing.
Collapse
Affiliation(s)
- Kang Li
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China, the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Tian
- the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China, the Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhongjian Guo
- the Institute of Life Sciences, Jiangsu University, Zhengjiang 212013, Jiangsu, China
| | - Sanyou Guo
- the Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhen Zhang
- the Research Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Shi-Hong Gu
- the Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, and
| | - Subba R Palli
- the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Yang Cao
- the Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Sheng Li
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China, the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,
| |
Collapse
|
48
|
Ou Q, Zeng J, Yamanaka N, Brakken-Thal C, O'Connor MB, King-Jones K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep 2016; 16:247-262. [PMID: 27320926 DOI: 10.1016/j.celrep.2016.05.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/01/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022] Open
Abstract
Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Jie Zeng
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Naoki Yamanaka
- Institute for Integrative Genome Biology, Center for Disease Vector Research, and Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Brakken-Thal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
49
|
Guo WC, Liu XP, Fu KY, Shi JF, Lü FG, Li GQ. Nuclear receptor ecdysone-induced protein 75 is required for larval-pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say). INSECT MOLECULAR BIOLOGY 2016; 25:44-57. [PMID: 26542892 DOI: 10.1111/imb.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development. In this study, three Leptinotarsa decemlineata Ecdysone-induced protein 75 (LdE75) cDNAs (LdE75A, B and C) were cloned from L. decemlineata. The three LdE75 isoforms were highly expressed just before or right after each moult. Within the fourth larval instar, they showed a small rise and a big peak 40 and 80 h after ecdysis. The expression peaks of the three LdE75s coincided with the peaks of circulating 20E levels. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdE75 expression in the day 1 final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene, Shade (LdSHD), repressed the expression of LdE75. Moreover, Hal upregulated the expression of the three LdE75s in LdSHD-silenced larvae. Thus, 20E pulses activate the transcription of LdE75s. Furthermore, ingesting dsE75-1 and dsE75-2 from a common fragment of the three isoforms successfully knocked down these LdE75s, and caused developmental arrest. Finally, knocking down LdE75s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered the 20E titre and affected the expression of two 20E-response genes. Silencing LdE75s also induced the expression of a JH biosynthesis gene, increased JH titre and activated the transcription of a JH early-inducible gene. Thus, Ld E75s are required for larval-pupal metamorphosis and act mainly by modulating 20E and JH titres and mediating their signalling pathways.
Collapse
Affiliation(s)
- W-C Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - X-P Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J-F Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F-G Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Niwa YS, Niwa R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev Growth Differ 2016; 58:94-105. [PMID: 26667894 PMCID: PMC11520982 DOI: 10.1111/dgd.12248] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/11/2015] [Indexed: 01/11/2023]
Abstract
The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates.
Collapse
Affiliation(s)
- Yuko S Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
- PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, 332-0012, Saitama, Japan
| |
Collapse
|