1
|
Tsujimoto T, Ou Y, Suzuki M, Murata Y, Inubushi T, Nagata M, Ishihara Y, Yonei A, Miyashita Y, Asano Y, Sakai N, Sakata Y, Ogino H, Yamashiro T, Kurosaka H. Compromised actin dynamics underlie the orofacial cleft in Baraitser-Winter Cerebrofrontofacial syndrome with a variant in ACTB. Hum Mol Genet 2024:ddae133. [PMID: 39271101 DOI: 10.1093/hmg/ddae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Craniofacial anomalies encompassing the orofacial cleft are associated with > 30% of systemic congenital malformations. Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) is a rare genetic disorder attributed to variants in the actin beta (ACTB) or actin gamma genes that are correlated with a range of craniofacial abnormalities, including cleft lip and/or palate. The underlying pathological mechanism of BWCFF remains elusive, and it is necessary to investigate the etiology of orofacial clefts in patients with BWCFF. In this study, we identified a missense variant (c.1043C > T: p.S348L) in the ACTB gene of a patient with BWCFF and concomitant cleft lip and palate. Furthermore, we performed functional assessments of this variant using various disease models such as the MDCK cell line and Xenopus laevis. These models revealed a compromised capacity of mutated ACTB to localize to the epithelial junction, consequently affecting the behavior of epithelial cells. Additionally, we discovered that the mutated ACTB exhibited an impaired ability to bind PROFILIN1, a critical factor in actin polymerization. This defective ability may contribute to the molecular etiology of aberrant epithelial cell adhesion and migration, resulting in orofacial cleft formation in BWCFF.
Collapse
Affiliation(s)
- Takayuki Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yushi Ou
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Yuka Murata
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayumi Yonei
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norio Sakai
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Health Science, Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Christofidou ED, Tomazou M, Voutouri C, Michael C, Stylianopoulos T, Spyrou GM, Strati K. Oct4 is a gatekeeper of epithelial identity by regulating cytoskeletal organization in skin keratinocytes. Cell Rep 2024; 43:113859. [PMID: 38421873 DOI: 10.1016/j.celrep.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Oct4 is a pioneer transcription factor regulating pluripotency. However, it is not well known whether Oct4 has an impact on epidermal cells. We generated OCT4 knockout clonal cell lines using immortalized human skin keratinocytes to identify a functional role for the protein. Here, we report that Oct4-deficient cells transitioned into a mesenchymal-like phenotype with enlarged size and shape, exhibited accelerated migratory behavior, decreased adhesion, and appeared arrested at the G2/M cell cycle checkpoint. Oct4 absence had a profound impact on cortical actin organization, with loss of microfilaments from the cell membrane, increased puncta deposition in the cytoplasm, and stress fiber formation. E-cadherin, β-catenin, and ZO1 were almost absent from cell-cell contacts, while fibronectin deposition was markedly increased in the extracellular matrix (ECM). Mapping of the transcriptional and chromatin profiles of Oct4-deficient cells revealed that Oct4 controls the levels of cytoskeletal, ECM, and differentiation-related genes, whereas epithelial identity is preserved through transcriptional and non-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
3
|
Cetera M, Sharan R, Hayward-Lara G, Phillips B, Biswas A, Halley M, Beall E, vonHoldt B, Devenport D. Region-specific reversal of epidermal planar polarity in the rosette fancy mouse. Development 2023; 150:dev202078. [PMID: 37622728 PMCID: PMC10499026 DOI: 10.1242/dev.202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The planar cell polarity (PCP) pathway collectively orients cells with respect to a body axis. Hair follicles of the murine epidermis provide a striking readout of PCP activity in their uniform alignment across the skin. Here, we characterize, from the molecular to tissue-scale, PCP establishment in the rosette fancy mouse, a natural variant with posterior-specific whorls in its fur, to understand how epidermal polarity is coordinated across the tissue. We find that rosette hair follicles emerge with reversed orientations specifically in the posterior region, creating a mirror image of epidermal polarity. The rosette trait is associated with a missense mutation in the core PCP gene Fzd6, which alters a consensus site for N-linked glycosylation, inhibiting its membrane localization. Unexpectedly, the Fzd6 trafficking defect does not block asymmetric localization of the other PCP proteins. Rather, the normally uniform axis of PCP asymmetry rotates where the PCP-directed cell movements that orient follicles are reversed, suggesting the PCP axis rotates 180°. Collectively, our multiscale analysis of epidermal polarity reveals PCP patterning can be regionally decoupled to produce posterior whorls in the rosette fancy mouse.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Rishabh Sharan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | | | - Brooke Phillips
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08540, USA
| | - Madalene Halley
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Evalyn Beall
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
4
|
Cetera M, Sharan R, Hayward-Lara G, Phillips B, Biswas A, Halley M, Beall E, vonHoldt B, Devenport D. Region-specific reversal of epidermal planar polarity in the fancy rosette mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550849. [PMID: 37546950 PMCID: PMC10402159 DOI: 10.1101/2023.07.27.550849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The planar cell polarity (PCP) pathway collectively orients thousands of cells with respect to a body axis to direct cellular behaviors that are essential for embryonic morphogenesis. Hair follicles of the murine epidermis provide a striking readout of PCP activity in their uniform alignment along the entire skin surface. Here, we characterize, from the molecular to tissue-scale, PCP establishment in the rosette fancy mouse, a natural variant with posterior-specific whorls in its fur, to understand how epidermal polarity is coordinated across the tissue. We find that embryonic hair follicles of rosette mutants emerge with reversed orientations specifically in the posterior region, creating a mirror image of epidermal polarity. The rosette trait is associated with a missense mutation in the core PCP gene Fzd6 , which alters a consensus site for N-linked glycosylation and inhibits its membrane localization. Unexpectedly, this defect in Fzd6 trafficking, observed across the entire dorsal epidermis, does not interfere with the ability of other core PCP proteins to localize asymmetrically. Rather, the normally uniform axis of PCP asymmetry is disrupted and rotated in the posterior region such that polarity is reflected on either side of a transition zone. The result is a reversal of polarized cell movements that orient nascent follicles, specifically in the posterior of the embryo. Collectively, our multiscale analysis of epidermal polarity reveals PCP patterning can be regionally decoupled to produce the unique posterior whorls of the fancy rosette mouse. Summary Region-specific rotation of the Planar Cell Polarity axis reverses posterior hair follicles in the fancy rosette mouse.
Collapse
|
5
|
Baetz N, Labroo P, Ifediba M, Miller D, Stauffer K, Sieverts M, Nicodemus-Johnson J, Chan E, Robinson I, Miess J, Roth S, Irvin J, Laun J, Mundinger G, Granick MS, Milner S, Garrett C, Li WW, Swanson EW, Smith DJ, Sopko NA. Evaluation in a porcine wound model and long-term clinical assessment of an autologous heterogeneous skin construct used to close full-thickness wounds. Tissue Cell 2023; 83:102126. [PMID: 37295271 DOI: 10.1016/j.tice.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Acute and chronic wounds involving deeper layers of the skin are often not adequately healed by dressings alone and require therapies such as skin grafting, skin substitutes, or growth factors. Here we report the development of an autologous heterogeneous skin construct (AHSC) that aids wound closure. AHSC is manufactured from a piece of healthy full-thickness skin. The manufacturing process creates multicellular segments, which contain endogenous skin cell populations present within hair follicles. These segments are physically optimized for engraftment within the wound bed. The ability of AHSC to facilitate closure of full thickness wounds of the skin was evaluated in a swine model and clinically in 4 patients with wounds of different etiologies. Transcriptional analysis demonstrated high concordance of gene expression between AHSC and native tissues for extracellular matrix and stem cell gene expression panels. Swine wounds demonstrated complete wound epithelialization and mature stable skin by 4 months, with hair follicle development in AHSC-treated wounds evident by 15 weeks. Biomechanical, histomorphological, and compositional analysis of the resultant swine and human skin wound biopsies demonstrated the presence of epidermal and dermal architecture with follicular and glandular structures that are similar to native skin. These data suggest that treatment with AHSC can facilitate wound closure.
Collapse
Affiliation(s)
- Nicholas Baetz
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Pratima Labroo
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Marytheresa Ifediba
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Devin Miller
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Kendall Stauffer
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Michael Sieverts
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | | | - Eric Chan
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Ian Robinson
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - James Miess
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Stephanie Roth
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Jenny Irvin
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Jake Laun
- Department of Plastic Surgery, University of South Florida, Tampa, FL, USA
| | - Gerhard Mundinger
- Department of Surgery, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Mark S Granick
- Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Stephen Milner
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Caroline Garrett
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | | | - Edward W Swanson
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - David J Smith
- Department of Plastic Surgery, University of South Florida, Tampa, FL, USA
| | - Nikolai A Sopko
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Rübsam M, Püllen R, Tellkamp F, Bianco A, Peskoller M, Bloch W, Green KJ, Merkel R, Hoffmann B, Wickström SA, Niessen CM. Polarity signaling balances epithelial contractility and mechanical resistance. Sci Rep 2023; 13:7743. [PMID: 37173371 PMCID: PMC10182030 DOI: 10.1038/s41598-023-33485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.
Collapse
Affiliation(s)
- Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.
| | - Robin Püllen
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Alessandra Bianco
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Peskoller
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University of Cologne, Cologne, Germany
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428, Jülich, Germany
| | - Sara A Wickström
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Carien M Niessen
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
8
|
Hwang PY, Mathur J, Cao Y, Almeida J, Ye J, Morikis V, Cornish D, Clarke M, Stewart SA, Pathak A, Longmore GD. A Cdh3-β-catenin-laminin signaling axis in a subset of breast tumor leader cells control leader cell polarization and directional collective migration. Dev Cell 2023; 58:34-50.e9. [PMID: 36626870 PMCID: PMC10010282 DOI: 10.1016/j.devcel.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/10/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jairaj Mathur
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Yanyang Cao
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jose Almeida
- Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jiayu Ye
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Vasilios Morikis
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Daphne Cornish
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Maria Clarke
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Amit Pathak
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Gregory D Longmore
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
9
|
pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation. Nat Commun 2022; 13:6840. [PMID: 36369429 PMCID: PMC9652315 DOI: 10.1038/s41467-022-34529-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.
Collapse
|
10
|
Ayama-Canden S, Tondo R, Piñeros L, Ninane N, Demazy C, Dieu M, Fattaccioli A, Tabarrant T, Lucas S, Bonifazi D, Michiels C. IGDQ motogenic peptide gradient induces directional cell migration through integrin (αv)β3 activation in MDA-MB-231 metastatic breast cancer cells. Neoplasia 2022; 31:100816. [PMID: 35763908 PMCID: PMC9241093 DOI: 10.1016/j.neo.2022.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
In the context of breast cancer metastasis study, we have shown in an in vitro model of cell migration that IGDQ-exposing (IsoLeu-Gly-Asp-Glutamine type I Fibronectin motif) monolayers (SAMs) on gold sustain the adhesion of breast cancer MDA-MB-231 cells by triggering Focal Adhesion Kinase and integrin activation. Such tunable scaffolds are used to mimic the tumor extracellular environment, inducing and controlling cell migration. The observed migratory behavior induced by the IGDQ-bearing peptide gradient along the surface allows to separate cell subpopulations with a "stationary" or "migratory" phenotype. In this work, we knocked down the integrins α5(β1) and (αv)β since they are already known to be implicated in cell migration. To this aim, a whole proteomic analysis was performed in beta 3 integrin (ITGB3) or alpha 5 integrin (ITGA5) knock-down MDA-MB-231 cells, in order to highlight the pathways implied in the integrin-dependent cell migration. Our results showed that i) ITGB3 depletion influenced ITGA5 mRNA expression, ii) ITGB3 and ITGA5 were both necessary for IGDQ-mediated directional single cell migration and iii) integrin (αv)β3 was activated by IGDQ fibronectin type I motif. Finally, the proteomic analysis suggested that co-regulation of recycling transport of ITGB3 by ITGA5 is potentially necessary for directional IGDQ-mediated cell migration.
Collapse
Affiliation(s)
- Sophie Ayama-Canden
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Rodolfo Tondo
- School of Chemistry, Cardiff University, Park Place, Main Building, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Liliana Piñeros
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Noëlle Ninane
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Catherine Demazy
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Antoine Fattaccioli
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Tijani Tabarrant
- LARN - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Stéphane Lucas
- LARN - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Park Place, Main Building, CF10 3AT, Cardiff, Wales, United Kingdom; Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Carine Michiels
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium.
| |
Collapse
|
11
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Tchoukalova YD, Zacharias SRC, Mitchell N, Madsen C, Myers CE, Gadalla D, Skinner J, Kopaczka K, Gramignoli R, Lott DG. Human amniotic epithelial cell transplantation improves scar remodeling in a rabbit model of acute vocal fold injury: a pilot study. Stem Cell Res Ther 2022; 13:31. [PMID: 35073957 PMCID: PMC8787902 DOI: 10.1186/s13287-022-02701-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/24/2021] [Indexed: 01/22/2023] Open
Abstract
Objective To gain insight into the molecular mechanisms underlying the early stages of vocal fold extracellular matrix (ECM) remodeling after a mid-membranous injury resulting from the use of human amniotic epithelial cells (hAEC), as a novel regenerative medicine cell-based therapy. Methods Vocal folds of six female, New Zealand White rabbits were bilaterally injured. Three rabbits had immediate bilateral direct injection of 1 × 106 hAEC in 100 µl of saline solution (hAEC) and three with 100 µl of saline solution (controls, CTR). Rabbits were euthanized 6 weeks after injury. Proteomic analyses (in-gel trypsin protein digestion, LC–MS/MS, protein identification using Proteome Discoverer and the Uniprot Oryctolagus cuniculus (Rabbit) proteome) and histological analyses were performed. Results hAEC treatment significantly increased the expression of ECM proteins, elastin microfibril interface-located protein 1 (EMILIN-1) and myocilin that are primarily involved in elastogenesis of blood vessels and granulation tissue. A reactome pathway analysis showed increased activity of the anchoring fibril formation by collagen I and laminin, providing mechanical stability and activation of cell signaling pathways regulating cell function. hAEC increased the abundance of keratin 1 indicating accelerated induction of the differentiation programming of the basal epithelial cells and, thereby, improved barrier function. Lastly, upregulation of Rab GDP dissociation inhibitor indicates that hAEC activate the vesicle endocytic and exocytic pathways, supporting the exosome-mediated activation of cell–matrix and cell-to-cell interactions. Conclusions This pilot study suggests that injection of hAEC into an injured rabbit vocal fold favorably alters ECM composition creating a microenvironment that accelerates differentiation of regenerated epithelium and promotes stabilization of new blood vessels indicative of accelerated and improved repair. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02701-w.
Collapse
Affiliation(s)
- Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Stephanie R C Zacharias
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Division of Pediatric Otolaryngology, Phoenix Children's Hospital, Phoenix, AZ, USA.,Division of Laryngology, Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA
| | | | - Cathy Madsen
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Cheryl E Myers
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Dina Gadalla
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jessica Skinner
- Langley Forensic Research Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Katarzyna Kopaczka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - David G Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA. .,Division of Laryngology, Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| |
Collapse
|
13
|
Inubushi T, Fujiwara A, Hirose T, Aoyama G, Uchihashi T, Yoshida N, Shiraishi Y, Usami Y, Kurosaka H, Toyosawa S, Tanaka S, Watabe T, Kogo M, Yamashiro T. Ras signaling and its effector RREB1 are required for the dissociation of MEE cells in palatogenesis. Dis Model Mech 2021; 15:273709. [PMID: 34897389 PMCID: PMC8862740 DOI: 10.1242/dmm.049093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/04/2021] [Indexed: 11/13/2022] Open
Abstract
Cleft palate is one of the major congenital craniofacial birth defects. The etiology underlying the pathogenesis of cleft palate has yet to be fully elucidated. Dissociation of the medial edge epithelium (MEE) at the contacting region of palatal shelves and subsequent migration or apoptosis of MEE cells is required for proper MEE removal. Ras-responsive element-binding protein 1 (RREB1), a RAS transcriptional effector, has recently been shown to play a crucial role in developmental epithelial–mesenchymal transition (EMT), in which loss of epithelial characteristics is an initial step, during mid-gastrulation of embryonic development. Interestingly, the involvement of RREB1 in cleft palate has been indicated in humans. Here, we demonstrated that pan-Ras inhibitor prevents the dissociation of MEE during murine palatal fusion. Rreb1 is expressed in the palatal epithelium during palatal fusion, and knockdown of Rreb1 in palatal organ culture resulted in palatal fusion defects by inhibiting the dissociation of MEE cells. Our present findings provide evidence that RREB1-mediated Ras signaling is required during palatal fusion. Aberrant RREB1-mediated Ras signaling might be involved in the pathogenesis of cleft palate. Summary: RREB1, a known transcriptional factor that acts downstream of Ras signaling, is expressed in the medial edge epithelium (MEE) region and required for the dissociation of MEE during palatal fusion.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ayaka Fujiwara
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takumi Hirose
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Uchihashi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Naoki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yuki Shiraishi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
14
|
Dobrokhotov O, Sunagawa M, Torii T, Mii S, Kawauchi K, Enomoto A, Sokabe M, Hirata H. Anti-Malignant Effect of Tensile Loading to Adherens Junctions in Cutaneous Squamous Cell Carcinoma Cells. Front Cell Dev Biol 2021; 9:728383. [PMID: 34858971 PMCID: PMC8632149 DOI: 10.3389/fcell.2021.728383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Actomyosin contractility regulates various cellular processes including proliferation and differentiation while dysregulation of actomyosin activity contributes to cancer development and progression. Previously, we have reported that actomyosin-generated tension at adherens junctions is required for cell density-dependent inhibition of proliferation of normal skin keratinocytes. However, it remains unclear how actomyosin contractility affects the hyperproliferation ability of cutaneous squamous cell carcinoma (cSCC) cells. In this study, we find that actomyosin activity is impaired in cSCC cells both in vitro and in vivo. External application of tensile loads to adherens junctions by sustained mechanical stretch attenuates the proliferation of cSCC cells, which depends on intact adherens junctions. Forced activation of actomyosin of cSCC cells also inhibits their proliferation in a cell-cell contact-dependent manner. Furthermore, the cell cycle arrest induced by tensile loading to adherens junctions is accompanied by epidermal differentiation in cSCC cells. Our results show that the degree of malignant properties of cSCC cells can be reduced by applying tensile loads to adherens junctions, which implies that the mechanical status of adherens junctions may serve as a novel therapeutic target for cSCC.
Collapse
Affiliation(s)
- Oleg Dobrokhotov
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Sunagawa
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing. Nat Commun 2021; 12:6349. [PMID: 34732729 PMCID: PMC8566503 DOI: 10.1038/s41467-021-26717-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
An orchestrated wound healing program drives skin repair via collective epidermal cell proliferation and migration. However, the molecular determinants of the tissue microenvironment supporting wound healing remain poorly understood. Herein we discover that proteoglycan Agrin is enriched within the early wound-microenvironment and is indispensable for efficient healing. Agrin enhances the mechanoperception of keratinocytes by augmenting their stiffness, traction stress and fluidic velocity fields in retaliation to bulk substrate rigidity. Importantly, Agrin overhauls cytoskeletal architecture via enhancing actomyosin cables upon sensing geometric stress and force following an injury. Moreover, we identify Matrix Metalloproteinase-12 (MMP12) as a downstream effector of Agrin's mechanoperception. We also reveal a promising potential of a recombinant Agrin fragment as a bio-additive material that assimilates optimal mechanobiological and pro-angiogenic parameters by engaging MMP12 in accelerated wound healing. Together, we propose that Agrin-MMP12 pathway integrates a broad range of mechanical stimuli to coordinate a competent skin wound healing niche.
Collapse
|
16
|
Shim G, Devenport D, Cohen DJ. Overriding native cell coordination enhances external programming of collective cell migration. Proc Natl Acad Sci U S A 2021; 118:e2101352118. [PMID: 34272284 PMCID: PMC8307614 DOI: 10.1073/pnas.2101352118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue-electrical stimulation and electrotaxis-to primary mouse skin monolayers where we can tune cell-cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell-cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin-dependent cell-cell adhesion, either by disrupting the formation of cell-cell junctions with E-cadherin-specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration.
Collapse
Affiliation(s)
- Gawoon Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540;
| |
Collapse
|
17
|
Masre SF, Rath N, Olson MF, Greenhalgh DA. Epidermal ROCK2 induces AKT1/GSK3β/β-catenin, NFκB and dermal tenascin C; but enhanced differentiation and p53/p21 inhibit papilloma. Carcinogenesis 2021; 41:1409-1420. [PMID: 31907522 DOI: 10.1093/carcin/bgz205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
ROCK2 roles in epidermal differentiation and carcinogenesis have been investigated in mice expressing an RU486-inducible, 4HT-activated ROCK2 transgene (K14.creP/lslROCKer). RU486/4HT-mediated ROCKer activation induced epidermal hyperplasia similar to cutaneous oncogenic rasHa (HK1.ras); however ROCKer did not elicit papillomas. Instead, anomalous basal-layer ROCKer expression corrupted normal ROCK2 roles underlying epidermal rigidity/stiffness and barrier maintanance, resulting in premature keratin K1, loricrin and filaggrin expression. Also, hyperproliferative/stress-associated keratin K6 was reduced; possibly reflecting altered ROCK2 roles in epidermal rigidity and keratinocyte flexibility/migration during wound healing. Consistent with increased proliferation, K14.creP/lslROCKer hyperplasia displayed supra-basal-to-basal increases in activated p-AKT1, inactivated p-GSK3β ser9 and membranous/nuclear β-catenin expression together with weak NFκB, which were absent in equivalent HK1.ras hyperplasia. Furthermore, ROCKer-mediated increases in epidermal rigidity via p-MypT1 inactivation/elevated MLC, coupled to anomalous β-catenin expression, induced tenascin C-positive dermal fibroblasts. Alongside an altered ECM, these latent tenascin C-positive dermal fibroblasts may become putative pre-cancer-associated fibroblasts (pre-CAFs) and establish a susceptibility that subsequently contributes to tumour progression. However, anomalous differentiation was also accompanied by an immediate increase in basal-layer p53/p21 expression; suggesting that while ROCK2/AKT1/β-catenin activation increased keratinocyte proliferation resulting in hyperplasia, compensatory p53/p21 and accelerated differentiation helped inhibit papillomatogenesis.
Collapse
Affiliation(s)
- Siti F Masre
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| | - Nicola Rath
- Molecular and Cellular Biology Laboratory, Cancer Research UK, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Ryerson MaRS Research Facility MaRS Discovery District, West Tower 661 University Avenue Toronto, Ontario, Canada
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| |
Collapse
|
18
|
Mentor S, Fisher D. High-Resolution Insights Into the in vitro Developing Blood-Brain Barrier: Novel Morphological Features of Endothelial Nanotube Function. Front Neuroanat 2021; 15:661065. [PMID: 34248507 PMCID: PMC8267063 DOI: 10.3389/fnana.2021.661065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
High-resolution electron microscopy (HREM) imaging of the in vitro blood-brain barrier (BBB), is a promising modality for investigating the dynamic morphological interplay underpinning BBB development. The successful establishment of BBB integrity is grounded in the brain endothelial cells (BEC’s) ability to occlude its paracellular spaces of brain capillaries through the expression of the intercellular tight junction (TJ) proteins. The impermeability of these paracellular spaces are crucial in the regulation of transcellular transport systems to achieve homeostasis of the central nervous system. To-date research describing morphologically, the dynamics by which TJ interaction is orchestrated to successfully construct a specialized barrier remains undescribed. In this study, the application of HREM illuminates the novel, dynamic and highly restrictive BEC paracellular pathway which is founded based on lateral membrane alignment which is the functional imperative for the mechanical juxtapositioning of TJ zones that underpin molecular bonding and sealing of the paracellular space. For the first time, we report on the secretion of a basement membrane in vitro, which allow BECs to orientate themselves into distinct basolateral and apicolateral domains and establish a 3-dimensional BEC construct. We report for the first time, on the expression of nanovesicles bound to the plasma membrane surfaces of the BECs. These membrane-bound vesicles are reported to possess an array of DNA/RNA constituents and chemotaxic properties affecting the formation of nanotubes that span the paracellular space between BECs, facilitating BBB construction, alluding to a functional role in mediating cell-to-cell communication. This study suggests that novel, ultrathin nanotubular (NT) structures are involved in functional roles in bringing into alignment the paracellular space of BECs. Immortalized mouse BECs (b.End3, b.End5) and primary rat cardiac microvascular ECs were used to further validate the in vitro BBB model by profiling variances in peripheral EC monolayer development. These cardiac capillary ECs presented with an opposite topographical profile: large fenestra and intercellular spaces, devoid of morphological ultrastructures. This comparative study alludes to the role of NT facilitation in TJ-induced hemifusion of apicolateral BEC membranes, as a structural event forming the basis for establishing a polarized BBB.
Collapse
Affiliation(s)
- Shireen Mentor
- Neurobiology Research Group, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - David Fisher
- Neurobiology Research Group, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,Adjunct Professor in School of Health Professions, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Cadherin puncta are interdigitated dynamic actin protrusions necessary for stable cadherin adhesion. Proc Natl Acad Sci U S A 2021; 118:2023510118. [PMID: 34099568 DOI: 10.1073/pnas.2023510118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherins harness the actin cytoskeleton to build cohesive sheets of cells using paradoxically weak bonds, but the molecular mechanisms are poorly understood. In one popular model, actin organizes cadherins into large, micrometer-sized clusters known as puncta. Myosin is thought to pull on these puncta to generate strong adhesion. Here, however, we show that cadherin puncta are actually interdigitated actin microspikes generated by actin polymerization mediated by three factors (Arp2/3, EVL, and CRMP-1). The convoluted membranes in these regions give the impression of cadherin clustering by fluorescence microscopy, but the ratio of cadherin to membrane is constant. Nevertheless, these interlocking fingers of membrane are important for adhesion because perturbing their formation disrupts cell adhesion. In contrast, blocking myosin-dependent contractility does not disrupt either the interdigitated microspikes or lateral membrane adhesion. "Puncta" are zones of strong cell-cell adhesion not due to cadherin clustering but that occur because the interdigitated microspikes expand the surface area available for adhesive bond formation and increase the asperity of the cell surface to promote friction between cells.
Collapse
|
20
|
Rajakylä EK, Lehtimäki JI, Acheva A, Schaible N, Lappalainen P, Krishnan R, Tojkander S. Assembly of Peripheral Actomyosin Bundles in Epithelial Cells Is Dependent on the CaMKK2/AMPK Pathway. Cell Rep 2021; 30:4266-4280.e4. [PMID: 32209483 DOI: 10.1016/j.celrep.2020.02.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the maintenance of intercellular junctions are associated with loss of epithelial barrier function and consequent pathological conditions, including invasive cancers. Epithelial integrity is dependent on actomyosin bundles at adherens junctions, but the origin of these junctional bundles is incompletely understood. Here we show that peripheral actomyosin bundles can be generated from a specific actin stress fiber subtype, transverse arcs, through their lateral fusion at cell-cell contacts. Importantly, we find that assembly and maintenance of peripheral actomyosin bundles are dependent on the mechanosensitive CaMKK2/AMPK signaling pathway and that inhibition of this route leads to disruption of tension-maintaining actomyosin bundles and re-growth of stress fiber precursors. This results in redistribution of cellular forces, defects in monolayer integrity, and loss of epithelial identity. These data provide evidence that the mechanosensitive CaMKK2/AMPK pathway is critical for the maintenance of peripheral actomyosin bundles and thus dictates cell-cell junctions through cellular force distribution.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Niccole Schaible
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
21
|
Ninomiya K, Ohta K, Yamashita K, Mizuno K, Ohashi K. PLEKHG4B enables actin cytoskeletal remodeling during epithelial cell-cell junction formation. J Cell Sci 2021; 134:224080. [PMID: 33310911 DOI: 10.1242/jcs.249078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Cell-cell junction formation requires actin cytoskeletal remodeling. Here, we show that PLEKHG4B, a Rho-guanine nucleotide exchange factor (Rho-GEF), plays a crucial role in epithelial cell-cell junction formation. Knockdown of PLEKHG4B decreased Cdc42 activity and tended to increase RhoA activity in A549 cells. A549 monolayer cells showed 'closed junctions' with closely packed actin bundles along the cell-cell contacts, but PLEKHG4B knockdown suppressed closed junction formation, and PLEKHG4B-knockdown cells exhibited 'open junctions' with split actin bundles located away from the cell-cell boundary. In Ca2+-switch assays, PLEKHG4B knockdown delayed the conversion of open junctions to closed junctions and β-catenin accumulation at cell-cell junctions. Furthermore, PLEKHG4B knockdown abrogated the reduction in myosin activity normally seen in the later stage of junction formation. The aberrant myosin activation and impairments in closed junction formation in PLEKHG4B-knockdown cells were reverted by ROCK inhibition or LARG/PDZ-RhoGEF knockdown. These results suggest that PLEKHG4B enables actin remodeling during epithelial cell-cell junction maturation, probably by reducing myosin activity in the later stage of junction formation, through suppressing LARG/PDZ-RhoGEF and RhoA-ROCK pathway activities. We also showed that annexin A2 participates in PLEKHG4B localization to cell-cell junctions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Komaki Ninomiya
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kai Ohta
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kazunari Yamashita
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan .,Institute of Liberal Arts and Sciences, Tohoku University, Kawauchi, Sendai, Miyagi 980-8576, Japan
| | - Kazumasa Ohashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan .,Department of Chemistry, Graduate School of Science, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
22
|
Hirata H, Dobrokhotov O, Sokabe M. Coordination between Cell Motility and Cell Cycle Progression in Keratinocyte Sheets via Cell-Cell Adhesion and Rac1. iScience 2020; 23:101729. [PMID: 33225242 PMCID: PMC7662878 DOI: 10.1016/j.isci.2020.101729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
Regulations of cell motility and proliferation are essential for epithelial development and homeostasis. However, it is not fully understood how these cellular activities are coordinated in epithelial collectives. In this study, we find that keratinocyte sheets exhibit time-dependent coordination of collective cell movement and cell cycle progression after seeding cells. Cell movement and cell cycle progression are coordinately promoted by Rac1 in the “early phase” (earlier than ∼30 h after seeding cells), which is not abrogated by increasing the initial cell density to a saturated level. The Rac1 activity is gradually attenuated in the “late phase” (later than ∼30 h after seeding cells), leading to arrests in cell motility and cell cycle. Intact adherens junctions are required for normal coordination between cell movement and cell cycle progression in both early and late phases. Our results unveil a novel basis for integrating motile and proliferative behaviors of epithelial collectives. Cell motility and cell cycle progression in keratinocyte sheets are temporally coordinated Rac1 promotes both cell motility and cell cycle progression in keratinocyte sheets Arrest of cell motility and cell cycle is associated with Rac1 deactivation Adherens junction is required for coordinating cell motility and cell cycle
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Oleg Dobrokhotov
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
23
|
Zheng Y, Fan Q, Eddy CZ, Wang X, Sun B, Ye F, Jiao Y. Modeling multicellular dynamics regulated by extracellular-matrix-mediated mechanical communication via active particles with polarized effective attraction. Phys Rev E 2020; 102:052409. [PMID: 33327171 DOI: 10.1103/physreve.102.052409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023]
Abstract
Collective cell migration is crucial to many physiological and pathological processes such as embryo development, wound healing, and cancer invasion. Recent experimental studies have indicated that the active traction forces generated by migrating cells in a fibrous extracellular matrix (ECM) can mechanically remodel the ECM, giving rise to bundlelike mesostructures bridging individual cells. Such fiber bundles also enable long-range propagation of cellular forces, leading to correlated migration dynamics regulated by the mechanical communication among the cells. Motivated by these experimental discoveries, we develop an active-particle model with polarized effective attractions (APPA) to investigate emergent multicellular migration dynamics resulting from ECM-mediated mechanical communications. In particular, the APPA model generalizes the classic active-Brownian-particle (ABP) model by imposing a pairwise polarized attractive force between the particles, which depends on the instantaneous dynamic states of the particles and mimics the effective mutual pulling between the cells via the fiber bundle bridge. The APPA system exhibits enhanced aggregation behaviors compared to the classic ABP system, and the contrast is more apparent at lower particle densities and higher rotational diffusivities. Importantly, in contrast to the classic ABP system where the particle velocities are not correlated for all particle densities, the high-density phase of the APPA system exhibits strong dynamic correlations, which are characterized by the slowly decaying velocity correlation functions with a correlation length comparable to the linear size of the high-density phase domain (i.e., the cluster of particles). The strongly correlated multicellular dynamics predicted by the APPA model is subsequently verified in in vitro experiments using MCF-10A cells. Our studies indicate the importance of incorporating ECM-mediated mechanical coupling among the migrating cells for appropriately modeling emergent multicellular dynamics in complex microenvironments.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christopher Z Eddy
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
24
|
Yamamoto S, Kurosaka H, Miura J, Aoyama G, Sarper SE, Oka A, Inubushi T, Nakatsugawa K, Usami Y, Toyosawa S, Yamashiro T. Observation of the Epithelial Cell Behavior in the Nasal Septum During Primary Palate Closure in Mice. Front Physiol 2020; 11:538835. [PMID: 33123019 PMCID: PMC7566916 DOI: 10.3389/fphys.2020.538835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Epithelial fusion is critical in palatogenesis, and incomplete fusion results in various type of facial cleft, depending on the region that fails to fuse. In mammalian palatogenesis, the bilateral secondary palatal processes fuse in the middle of the face to form the secondary palate. Later, the dorsal side of the secondary palatal shelves fuses with the nasal septum to complete palatogenesis. Importantly, the anterior border of the secondary palatal shelf fuses with the primary palate, which is located at the anterior and ventral border of the nasal septum. While numerous studies have investigated the mechanism of fusion between secondary palatal shelves, very little is known about how the primary palate touches and fuses with the secondary palatal shelves. In this study, we investigate the possible epithelial cell behaviors on the surface of the primary palate using palatal explant cultures of K14-GFP mice. A time-lapse observation of the GFP-labeled epithelium and an SEM analysis revealed that the extrusion epithelium appeared at the region corresponding to the fusing area and expanded rostrally on the nasal septum surface in the absence of the secondary palatal processes. Unlike on the secondary palate surface, cellular migration and subsequent autonomous mesenchymal exposure were not evident on the nasal septum or the primary palate. TUNEL staining revealed that these extrusion epithelia were undergoing apoptosis. These findings indicated that extrusion with apoptosis was autonomously initiated at the presumptive region of the fusion without contact with the opposing secondary palate.
Collapse
Affiliation(s)
- Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Dental Hospital, Osaka University, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Safiye Esra Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ayaka Oka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Kohei Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Mei L, Espinosa de Los Reyes S, Reynolds MJ, Leicher R, Liu S, Alushin GM. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020; 9:62514. [PMID: 32969337 PMCID: PMC7588232 DOI: 10.7554/elife.62514] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton mediates mechanical coupling between cells and their tissue microenvironments. The architecture and composition of actin networks are modulated by force; however, it is unclear how interactions between actin filaments (F-actin) and associated proteins are mechanically regulated. Here we employ both optical trapping and biochemical reconstitution with myosin motor proteins to show single piconewton forces applied solely to F-actin enhance binding by the human version of the essential cell-cell adhesion protein αE-catenin but not its homolog vinculin. Cryo-electron microscopy structures of both proteins bound to F-actin reveal unique rearrangements that facilitate their flexible C-termini refolding to engage distinct interfaces. Truncating α-catenin’s C-terminus eliminates force-activated F-actin binding, and addition of this motif to vinculin confers force-activated binding, demonstrating that α-catenin’s C-terminus is a modular detector of F-actin tension. Our studies establish that piconewton force on F-actin can enhance partner binding, which we propose mechanically regulates cellular adhesion through α-catenin. All of the cells in our bodies rely on cues from their surrounding environment to alter their behavior. As well sending each other chemical signals, such as hormones, cells can also detect pressure and physical forces applied by the cells around them. These physical interactions are coordinated by a network of proteins called the cytoskeleton, which provide the internal scaffold that maintains a cell’s shape. However, it is not well understood how forces transmitted through the cytoskeleton are converted into mechanical signals that control cell behavior. The cytoskeleton is primarily made up protein filaments called actin, which are frequently under tension from external and internal forces that push and pull on the cell. Many proteins bind directly to actin, including adhesion proteins that allow the cell to ‘stick’ to its surroundings. One possibility is that when actin filaments feel tension, they convert this into a mechanical signal by altering how they bind to other proteins. To test this theory, Mei et al. isolated and studied an adhesion protein called α-catenin which is known to interact with actin. This revealed that when tiny forces – similar to the amount cells experience in the body – were applied to actin filaments, this caused α-catenin and actin to bind together more strongly. However, applying the same level of physical force did not alter how well actin bound to a similar adhesion protein called vinculin. Further experiments showed that this was due to differences in a small, flexible region found on both proteins. Manipulating this region revealed that it helps α-catenin attach to actin when a force is present, and was thus named a ‘force detector’. Proteins that bind to actin are essential in all animals, making it likely that force detectors are a common mechanism. Scientists can now use this discovery to identify and manipulate force detectors in other proteins across different cells and animals. This may help to develop drugs that target the mechanical signaling process, although this will require further understanding of how force detectors work at the molecular level.
Collapse
Affiliation(s)
- Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States
| | | | - Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| | - Rachel Leicher
- Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States.,Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| |
Collapse
|
26
|
Mogollón I, Ahtiainen L. Live Tissue Imaging Sheds Light on Cell Level Events During Ectodermal Organ Development. Front Physiol 2020; 11:818. [PMID: 32765297 PMCID: PMC7378809 DOI: 10.3389/fphys.2020.00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic development of ectodermal organs involves a very dynamic range of cellular events and, therefore, requires advanced techniques to visualize them. Ectodermal organogenesis proceeds in well-defined sequential stages mediated by tissue interactions. Different ectodermal organs feature shared morphological characteristics, which are regulated by conserved and reiterative signaling pathways. A wealth of genetic information on the expression patterns and interactions of specific signaling pathways has accumulated over the years. However, the conventional developmental biology methods have mainly relied on two-dimensional tissue histological analyses at fixed time points limiting the possibilities to follow the processes in real time on a single cell resolution. This has complicated the interpretation of cause and effect relationships and mechanisms of the successive events. Whole-mount tissue live imaging approaches are now revealing how reshaping of the epithelial sheet for the initial placodal thickening, budding morphogenesis and beyond, involve coordinated four dimensional changes in cell shapes, well-orchestrated cell movements and specific cell proliferation and apoptosis patterns. It is becoming evident that the interpretation of the reiterative morphogenic signals takes place dynamically at the cellular level. Depending on the context, location, and timing they drive different cell fate choices and cellular interactions regulating a pattern of behaviors that ultimately defines organ shapes and sizes. Here we review how new tissue models, advances in 3D and live tissue imaging techniques have brought new understanding on the cell level behaviors that contribute to the highly dynamic stages of morphogenesis in teeth, hair and related ectodermal organs during development, and in dysplasia contexts.
Collapse
Affiliation(s)
- Isabel Mogollón
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Laura Ahtiainen
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
28
|
Zheng Y, Nan H, Liu Y, Fan Q, Wang X, Liu R, Liu L, Ye F, Sun B, Jiao Y. Modeling cell migration regulated by cell extracellular-matrix micromechanical coupling. Phys Rev E 2020; 100:043303. [PMID: 31770879 DOI: 10.1103/physreve.100.043303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 01/24/2023]
Abstract
Cell migration in fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response, and cancer progression. During migration, individual cells can generate active pulling forces via actomyosin contraction, which are transmitted to the ECM fibers through focal adhesion complexes, remodel the ECM, and eventually propagate to and can be sensed by other cells in the system. The microstructure and physical properties of the ECM can also significantly influence cell migration, e.g., via durotaxis and contact guidance. Here, we develop a computational model for two-dimensional cell migration regulated by cell-ECM micromechanical coupling. Our model explicitly takes into account a variety of cellular-level processes, including focal adhesion formation and disassembly, active traction force generation and cell locomotion due to actin filament contraction, transmission and propagation of tensile forces in the ECM, as well as the resulting ECM remodeling. We validate our model by accurately reproducing single-cell dynamics of MCF-10A breast cancer cells migrating on collagen gels and show that the durotaxis and contact guidance effects naturally arise as a consequence of the cell-ECM micromechanical interactions considered in the model. Moreover, our model predicts strongly correlated multicellular migration dynamics, which are resulted from the ECM-mediated mechanical coupling among the migrating cell and are subsequently verified in in vitro experiments using MCF-10A cells. Our computational model provides a robust tool to investigate emergent collective dynamics of multicellular systems in complex in vivo microenvironment and can be utilized to design in vitro microenvironments to guide collective behaviors and self-organization of cells.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yanping Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.,Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
29
|
Xie S, Skotheim JM. A G1 Sizer Coordinates Growth and Division in the Mouse Epidermis. Curr Biol 2020; 30:916-924.e2. [PMID: 32109398 PMCID: PMC7158888 DOI: 10.1016/j.cub.2019.12.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Cell size homeostasis is often achieved by coupling cell-cycle progression to cell growth. Growth has been shown to drive cell-cycle progression in bacteria and yeast through "sizers," wherein cells of varying birth size divide at similar final sizes [1-3], and "adders," wherein cells increase in size a fixed amount per cell cycle [4-6]. Intermediate control phenomena are also observed, and even the same organism can exhibit different control phenomena depending on growth conditions [2, 7, 8]. Although studying unicellular organisms in laboratory conditions may give insight into their growth control in the wild, this is less apparent for studies of mammalian cells growing outside the organism. Sizers, adders, and intermediate phenomena have been observed in vitro [9-12], but it is unclear how this relates to mammalian cell proliferation in vivo. To address this question, we analyzed time-lapse images of the mouse epidermis taken over 1 week during normal tissue turnover [13]. We quantified the 3D volume growth and cell-cycle progression of single cells within the mouse skin. In dividing epidermal stem cells, we found that cell growth is coupled to division through a sizer operating largely in the G1 phase of the cell cycle. Thus, although the majority of tissue culture studies have identified adders, our analysis demonstrates that sizers are important in vivo and highlights the need to determine their underlying molecular origin.
Collapse
Affiliation(s)
- Shicong Xie
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
31
|
Nakhoul NL, Tu CL, Brown KL, Islam MT, Hodges AG, Abdulnour-Nakhoul SM. Calcium-sensing receptor deletion in the mouse esophagus alters barrier function. Am J Physiol Gastrointest Liver Physiol 2020; 318:G144-G161. [PMID: 31709833 PMCID: PMC6985844 DOI: 10.1152/ajpgi.00021.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calcium-sensing receptor (CaSR) is the molecular sensor by which cells respond to small changes in extracellular Ca2+ concentrations. CaSR has been reported to play a role in glandular and fluid secretion in the gastrointestinal tract and to regulate differentiation and proliferation of skin keratinocytes. CaSR is present in the esophageal epithelium, but its role in this tissue has not been defined. We deleted CaSR in the mouse esophagus by generating keratin 5 CreER;CaSRFlox+/+compound mutants, in which loxP sites flank exon 7 of CaSR gene. Recombination was initiated with multiple tamoxifen injections, and we demonstrated exon 7 deletion by PCR analysis of genomic DNA. Quantitative real-time PCR and Western blot analyses showed a significant reduction in CaSR mRNA and protein expression in the knockout mice (EsoCaSR-/-) as compared with control mice. Microscopic examination of EsoCaSR-/- esophageal tissues showed morphological changes including elongation of the rete pegs, abnormal keratinization and stratification, and bacterial buildup on the luminal epithelial surface. Western analysis revealed a significant reduction in levels of adherens junction proteins E-cadherin and β catenin and tight junction protein claudin-1, 4, and 5. Levels of small GTPase proteins Rac/Cdc42, involved in actin remodeling, were also reduced. Ussing chamber experiments showed a significantly lower transepithelial resistance in knockout (KO) tissues. In addition, luminal-to-serosal-fluorescein dextran (4 kDa) flux was higher in KO tissues. Our data indicate that CaSR plays a role in regulating keratinization and cell-cell junctional complexes and is therefore important for the maintenance of the barrier function of the esophagus.NEW & NOTEWORTHY The esophageal stratified squamous epithelium maintains its integrity by continuous proliferation and differentiation of the basal cells. Here, we demonstrate that deletion of the calcium-sensing receptor, a G protein-coupled receptor, from the basal cells disrupts the structure and barrier properties of the epithelium.
Collapse
Affiliation(s)
- Nazih L. Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chia-Ling Tu
- 3Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California
| | - Karen L. Brown
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - M. Toriqul Islam
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anna G. Hodges
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange M. Abdulnour-Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana,4Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| |
Collapse
|
32
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
33
|
Talabot-Ayer D, Mermoud L, Borowczyk J, Drukala J, Wolnicki M, Modarressi A, Boehncke WH, Brembilla N, Palmer G. Interleukin-38 interacts with destrin/actin-depolymerizing factor in human keratinocytes. PLoS One 2019; 14:e0225782. [PMID: 31770407 PMCID: PMC6879167 DOI: 10.1371/journal.pone.0225782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 01/20/2023] Open
Abstract
Interleukin (IL)-38 is a member of the IL-1 family of cytokines, which was proposed to exert anti-inflammatory effects. IL-38 is constitutively expressed in the skin, where keratinocytes are the main producing cells. Little information is currently available concerning IL-38 biology. Here, we investigated the subcellular localization and interaction partners of the IL-38 protein in human keratinocytes. IL-38 expression was reduced in primary keratinocytes grown in monolayer (2D) cultures. We thus used IL-38 overexpressing immortalized normal human keratinocytes (NHK/38) to study this cytokine in cell monolayers. In parallel, differentiation of primary human keratinocytes in an in vitro reconstructed human epidermis (RHE) 3D model allowed us to restore endogenous IL-38 expression. In NHK/38 cells and in RHE, IL-38 was mainly cell-associated, rather than released into culture supernatants. Intracellular IL-38 was preferentially, although not exclusively, cytoplasmic. Similarly, in normal human skin sections, IL-38 was predominantly cytoplasmic in the epidermis and essentially excluded from keratinocyte nuclei. A yeast two-hybrid screen identified destrin/actin-depolymerizing factor (DSTN) as a potential IL-38-interacting molecule. Co-immunoprecipitation and proximity ligation assay confirmed this interaction. We further observed partial co-localization of IL-38 and DSTN in NHK/38 cells. Endogenous IL-38 and DSTN were also co-expressed in all epidermal layers in RHE and in normal human skin. Finally, IL-38 partially co-localized with F-actin in NHK/38 cells, in particular along the cortical actin network and in filopodia. In conclusion, IL-38 is found predominantly in the cytoplasm of human keratinocytes, where it interacts with DSTN. The functional relevance of this interaction remains to be investigated.
Collapse
Affiliation(s)
- Dominique Talabot-Ayer
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
| | - Loïc Mermoud
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
| | - Julia Borowczyk
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Justyna Drukala
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Michal Wolnicki
- Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Ali Modarressi
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospitals of Geneva, University of Geneva School of Medicine, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Nicolo Brembilla
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Gaby Palmer
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
34
|
aPKCi triggers basal extrusion of luminal mammary epithelial cells by tuning contractility and vinculin localization at cell junctions. Proc Natl Acad Sci U S A 2019; 116:24108-24114. [PMID: 31699818 PMCID: PMC6883778 DOI: 10.1073/pnas.1906779116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that an oncogenic mammary epithelial cell surrounded by normal cells can extrude basally in vivo and invade surrounding tissues without formation of a primary tumor. Here, we show that overexpression of the key polarity protein atypical protein kinase C ι (aPKCi) is sufficient for triggering basally oriented epithelial cell extrusion and early cell invasion into the mammary gland stroma. Moreover, we highlight the importance of the difference between the mechanical properties of aPKCi-overexpressing cells and those of the normal surrounding cells associated with the decrease of vinculin at the cell junction, which triggers cell segregation, the first step toward promoting and controlling the direction of cell extrusion. Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell–substratum contacts. Overall, this study shows that a balance between cell contractility and cell–cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.
Collapse
|
35
|
Laurin M, Gomez NC, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. eLife 2019; 8:e50226. [PMID: 31556874 PMCID: PMC6768663 DOI: 10.7554/elife.50226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023] Open
Abstract
During mammalian embryogenesis, extensive cellular remodeling is needed for tissue morphogenesis. As effectors of cytoskeletal dynamics, Rho GTPases and their regulators are likely involved, but their daunting complexity has hindered progress in dissecting their functions. We overcome this hurdle by employing high throughput in utero RNAi-mediated screening to identify key Rho regulators of skin morphogenesis. Our screen unveiled hitherto unrecognized roles for Rho-mediated cytoskeletal remodeling events that impact hair follicle specification, differentiation, downgrowth and planar cell polarity. Coupling our top hit with gain/loss-of-function genetics, interactome proteomics and tissue imaging, we show that RHOU, an atypical Rho, governs the cytoskeletal-junction dynamics that establish columnar shape and planar cell polarity in epidermal progenitors. Conversely, RHOU downregulation is required to remodel to a conical cellular shape that enables hair bud invagination and downgrowth. Our findings underscore the power of coupling screens with proteomics to unravel the physiological significance of complex gene families.
Collapse
Affiliation(s)
- Melanie Laurin
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John Levorse
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Ataman Sendoel
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Megan Sribour
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
36
|
Nakatsugawa K, Kurosaka H, Inubushi T, Aoyama G, Isogai Y, Usami Y, Toyosawa S, Yamashiro T. Stage- and tissue-specific effect of cyclophosphamide during tooth development. Eur J Orthod 2019; 41:519-530. [PMID: 30715254 DOI: 10.1093/ejo/cjz002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the toxic effect of cyclophosphamide (CPA) in the development of rodent molars. METHODS CPA was administered intraperitoneally in postnatal mice between Day 1 and Day 10, and the morphological phenotype was evaluated at Day 26 using micro-computed tomography and histological analysis, including cell proliferation and cell death analyses. RESULTS M3 molars of the mice who received 100 mg/kg CPA treatment at Day 6 or M2 molars who received treatment at Day 1 resulted in tooth agenesis or marked hypoplasia. Histological observation demonstrated that CPA treatment at Day 6 resulted in shrinkage of the M3 tooth germs, with a significant reduction in the proliferation of apoptotic cells. Conversely, CPA exposure at Day 2, which occurs at around the bud stage of M3, resulted in crown and root hypoplasia, with reduced numbers of cusp and root. In addition, CPA exposure at Day 10, which is the late bell stage of M3, induced root shortening; however, it did not affect crown morphogenesis. LIMITATIONS The timing of CPA administration is limited to after birth. Therefore, its effect during the early stages of M1 and M2 could not be investigated. CONCLUSION Defective phenotypes were evident in both crown and roots due to the effect of CPA. Interestingly, the severity of the phenotypes was associated with the developmental stages of the tooth germs at the time of CPA administration. The cap/early bell stage is the most susceptive timing for tooth agenesis, whereas the late bell stage is predominantly affected in terms of root formation by CPA administration.
Collapse
Affiliation(s)
- Kohei Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yukako Isogai
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
37
|
Nan H, Zheng Y, Lin YH, Chen S, Eddy CZ, Tian J, Xu W, Sun B, Jiao Y. Absorbing-active transition in a multi-cellular system regulated by a dynamic force network. SOFT MATTER 2019; 15:6938-6945. [PMID: 31432887 DOI: 10.1039/c9sm01244c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collective cell migration in 3D extracellular matrix (ECM) is crucial to many physiological and pathological processes. Migrating cells can generate active pulling forces via actin filament contraction, which are transmitted to the ECM fibers and lead to a dynamically evolving force network in the system. Here, we elucidate the role of this force network in regulating collective cell behaviors using a minimal active-particle-on-network (APN) model, in which active particles can pull the fibers and hop between neighboring nodes of the network following local durotaxis. Our model reveals a dynamic transition as the particle number density approaches a critical value, from an "absorbing" state containing isolated stationary small particle clusters, to an "active" state containing a single large cluster undergoing constant dynamic reorganization. This reorganization is dominated by a subset of highly dynamic "radical" particles in the cluster, whose number also exhibits a transition at the same critical density. The transition is underlaid by the percolation of "influence spheres" due to the particle pulling forces. Our results suggest a robust mechanism based on ECM-mediated mechanical coupling for collective cell behaviors in 3D ECM.
Collapse
Affiliation(s)
- Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Yiheng H Lin
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Shenzhen Middle School, Shenzhen 518001, P. R. China
| | - Shaohua Chen
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 Bus 2450, Leuven, Belgium
| | - Christopher Z Eddy
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA.
| | - Jianxiang Tian
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Department of Physics, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenxiang Xu
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China.
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA.
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
38
|
Butler MB, Short NE, Maniou E, Alexandre P, Greene NDE, Copp AJ, Galea GL. Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. J Cell Sci 2019; 132:jcs.230300. [PMID: 31182644 PMCID: PMC6633395 DOI: 10.1242/jcs.230300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular generation of mechanical forces required to close the presumptive spinal neural tube, the 'posterior neuropore' (PNP), involves interkinetic nuclear migration (INM) and apical constriction. Both processes change the apical surface area of neuroepithelial cells, but how they are biomechanically integrated is unknown. Rho kinase (Rock; herein referring to both ROCK1 and ROCK2) inhibition in mouse whole embryo culture progressively widens the PNP. PNP widening is not caused by increased mechanical tension opposing closure, as evidenced by diminished recoil following laser ablation. Rather, Rock inhibition diminishes neuroepithelial apical constriction, producing increased apical areas in neuroepithelial cells despite diminished tension. Neuroepithelial apices are also dynamically related to INM progression, with the smallest dimensions achieved in cells positive for the pan-M phase marker Rb phosphorylated at S780 (pRB-S780). A brief (2 h) Rock inhibition selectively increases the apical area of pRB-S780-positive cells, but not pre-anaphase cells positive for phosphorylated histone 3 (pHH3+). Longer inhibition (8 h, more than one cell cycle) increases apical areas in pHH3+ cells, suggesting cell cycle-dependent accumulation of cells with larger apical surfaces during PNP widening. Consequently, arresting cell cycle progression with hydroxyurea prevents PNP widening following Rock inhibition. Thus, Rock-dependent apical constriction compensates for the PNP-widening effects of INM to enable progression of closure.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Max B Butler
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nina E Short
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Paula Alexandre
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK .,Comparative Bioveterinary Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
39
|
FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature 2019; 571:408-412. [PMID: 31243370 PMCID: PMC6661172 DOI: 10.1038/s41586-019-1318-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/22/2019] [Indexed: 01/08/2023]
Abstract
Mutations in the FOXA1 transcription factor define a unique subset of prostate cancers but the functional consequences of these mutations and whether they confer gain or loss of function is unknown1-9. By annotating the FOXA1 mutation landscape from 3086 human prostate cancers, we define two hotspots in the forkhead domain: Wing2 (~50% of all mutations) and R219 (~5%), a highly conserved DNA contact residue. Clinically, Wing2 mutations are seen in adenocarcinomas at all stages, whereas R219 mutations are enriched in metastatic tumors with neuroendocrine histology. Interrogation of the biologic properties of FOXA1WT and 14 FOXA1 mutants revealed gain-of-function in mouse prostate organoid proliferation assays. 12 of these mutants, as well as FOXA1WT, promoted an exaggerated pro-luminal differentiation program whereas two different R219 mutants blocked luminal differentiation and activate a mesenchymal and neuroendocrine transcriptional program. ATAC-seq of FOXA1WT and representative Wing2 and R219 mutants revealed dramatic, mutant-specific changes in open chromatin at thousands of genomic loci, together with novel sites of FOXA1 binding and associated increases in gene expression. Of note, peaks in R219 mutant expressing cells lack the canonical core FOXA1 binding motifs (GTAAAC/T) but are enriched for a related, non-canonical motif (GTAAAG/A), which is preferentially activated by R219 mutant FOXA1 in reporter assays. Thus, FOXA1 mutations alter its normal pioneering function through perturbation of normal luminal epithelial differentiation programs, providing further support to the role of lineage plasticity in cancer progression.
Collapse
|
40
|
Aoyama G, Kurosaka H, Oka A, Nakatsugawa K, Yamamoto S, Sarper SE, Usami Y, Toyosawa S, Inubushi T, Isogai Y, Yamashiro T. Observation of Dynamic Cellular Migration of the Medial Edge Epithelium of the Palatal Shelf in vitro. Front Physiol 2019; 10:698. [PMID: 31244674 PMCID: PMC6562562 DOI: 10.3389/fphys.2019.00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/20/2019] [Indexed: 12/22/2022] Open
Abstract
Palatal fusion is a critical step during palatogenesis. In this fusing interface, the epithelial sheets need to be removed in order to achieve mesenchymal continuity. Epithelial cellular migration is one of the possible mechanisms, and live imaging of the labeled epithelium could provide direct evidence for it. However, the removal of medial edge epithelium (MEE) between the bilateral processes takes place in the middle of the dorso-ventral axis of the palatal shelf, and thus it is challenging to capture the cellular behavior directly. Here, we evaluate cellular behavior of MEE cells using a live imaging technique with a mouse model which expresses GFP under the promoter of Keratin14 (K14-GFP) and unpaired palatal shelf culture. Using this approach, we successfully obtained live images of epithelial behavior and detected epithelial cell migration on the surface of the secondary palatal shelf without touching of the opposing shelf. Additionally, the pattern of epithelial elimination resulted in oval-shaped exposed mesenchyme, which recapitulated the situation during secondary palate fusion in vivo. Detailed image processing revealed that most of the MEE migrated in an outward direction at the boundary regions as the oval shape of the exposed mesenchyme expanded. The migration was preceded by the bulging of MEE, and disappearance of GFP signals was not evident in bulging or migrating MEE at the boundary regions. Furthermore, the MEE migration and the subsequent mesenchymal exposure were disturbed by application of ROCK inhibitor. Together, these findings indicated that epithelial cell migration contributed importantly to the MEE removal and the subsequent exposure of the underlying mesenchyme. Furthermore, they indicated that the migration of epithelial cells was regulated in a time- and space-specific manner, since unpaired palatal shelf culture exhibited these cellular behaviors even in the absence of the opposing shelf. Altogether, present data indicated that this new experimental system combining live imaging with GFP-labeled epithelium mice and unpaired palatal shelf culture enabled direct visualization of cellular migration of MEE in vitro and could be a powerful tool to investigate its cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ayaka Oka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Kohei Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Safiye Esra Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yukako Isogai
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
41
|
LPA Induces Keratinocyte Differentiation and Promotes Skin Barrier Function through the LPAR1/LPAR5-RHO-ROCK-SRF Axis. J Invest Dermatol 2019; 139:1010-1022. [DOI: 10.1016/j.jid.2018.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
|
42
|
Hwang PY, Brenot A, King AC, Longmore GD, George SC. Randomly Distributed K14 + Breast Tumor Cells Polarize to the Leading Edge and Guide Collective Migration in Response to Chemical and Mechanical Environmental Cues. Cancer Res 2019; 79:1899-1912. [PMID: 30862718 DOI: 10.1158/0008-5472.can-18-2828] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/27/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Collective cell migration is an adaptive, coordinated interactive process involving cell-cell and cell-extracellular matrix (ECM) microenvironmental interactions. A critical aspect of collective migration is the sensing and establishment of directional movement. It has been proposed that a subgroup of cells known as leader cells localize at the front edge of a collectively migrating cluster and are responsible for directing migration. However, it is unknown how and when leader cells arrive at the front edge and what environmental cues dictate leader cell development and behavior. Here, we addressed these questions by combining a microfluidic device design that mimics multiple tumor microenvironmental cues concurrently with biologically relevant primary, heterogeneous tumor cell organoids. Prior to migration, breast tumor leader cells (K14+) were present throughout a tumor organoid and migrated (polarized) to the leading edge in response to biochemical and biomechanical cues. Impairment of either CXCR4 (biochemical responsive) or the collagen receptor DDR2 (biomechanical responsive) abrogated polarization of leader cells and directed collective migration. This work demonstrates that K14+ leader cells utilize both chemical and mechanical cues from the microenvironment to polarize to the leading edge of collectively migrating tumors. SIGNIFICANCE: These findings demonstrate that pre-existing, randomly distributed leader cells within primary tumor organoids use CXCR4 and DDR2 to polarize to the leading edge and direct migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Audrey Brenot
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ashley C King
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Gregory D Longmore
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri. .,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri.,Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
43
|
Shuzui E, Kim MH, Kino-oka M. Anomalous cell migration triggers a switch to deviation from the undifferentiated state in colonies of human induced pluripotent stems on feeder layers. J Biosci Bioeng 2019; 127:246-255. [DOI: 10.1016/j.jbiosc.2018.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
|
44
|
A steroid alkaloid derivative 02F04 upregulates thymic stromal lymphopoietin expression slowly and continuously through a novel Gq/11-ROCK-ERK1/2 signaling pathway in mouse keratinocytes. Cell Signal 2019; 57:58-64. [PMID: 30664940 DOI: 10.1016/j.cellsig.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/24/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), a master switch of allergic inflammation, plays an important role in the pathogenesis of allergic diseases. Although many compounds upregulate TSLP expression in vivo or in vitro, most of them are pollutants or toxicants. In the previous study, for the first time, we found that a steroid alkaloid derivative 02F04, which has a unique skeletal structure compared with other TSLP-inducing chemicals, significantly induced TSLP production in mouse keratinocytes. However, it is not investigated thoroughly that how 02F04 produces TSLP and why. In this study, we did a detailed investigation on the inducible effect and underlying molecular mechanism of 02F04 on TSLP production. We found that the peak time of TSLP mRNA level induced by 02F04 at 48 h led to a slow and continuous TSLP production in PAM212 cells. Besides, 02F04-induced TSLP production was significantly suppressed by inhibitors of Rho-associated protein kinase (ROCK), guanine nucleotide-binding protein subunit alpha q/11 (Gq/11) and extracellular signal-regulated kinase 1/2 (ERK1/2) at not only protein but also mRNA levels, and by siRNA-mediated knockdown of Gq or G11. This suggested that ROCK, Gq/11 and ERK1/2 signaling pathways were involved in 02F04-induced TSLP production. Increase in the level of p-ERK1/2 induced by 02F04 was suppressed by both inhibitors of ROCK and Gq/11, indicating that ROCK and Gq/11 molecules were located at the upstream of ERK1/2 to regulate 02F04-induced TSLP production. Gq/11 was located at the upstream of ROCK because the specific Gq/11 inhibitor of YM-254890 significantly reduced 02F04-induced actin stress fiber formation. Taken together, 02F04 upregulates a slow and continuous TSLP production through a novel Gq/11-ROCK-ERK1/2 signaling pathway. The thorough understanding the effect and mechanism of 02F04 on TSLP production is expected to supply it as a novel TSLP-regulating compound and a potential new tool for investigating the role of TSLP in allergic disorders.
Collapse
|
45
|
Bhoyar S, Godet I, DiGiacomo JW, Gilkes DM. A software tool for the quantification of metastatic colony growth dynamics and size distributions in vitro and in vivo. PLoS One 2018; 13:e0209591. [PMID: 30589908 PMCID: PMC6307751 DOI: 10.1371/journal.pone.0209591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
The majority of cancer-related deaths are due to metastasis, hence improved methods to biologically and computationally model metastasis are required. Computational models rely on robust data that is machine-readable. The current methods used to model metastasis in mice involve generating primary tumors by injecting human cells into immune-compromised mice, or by examining genetically engineered mice that are pre-disposed to tumor development and that eventually metastasize. The degree of metastasis can be measured using flow cytometry, bioluminescence imaging, quantitative PCR, and/or by manually counting individual lesions from metastatic tissue sections. The aforementioned methods are time-consuming and do not provide information on size distribution or spatial localization of individual metastatic lesions. In this work, we describe and provide a MATLAB script for an image-processing based method designed to obtain quantitative data from tissue sections comprised of multiple subpopulations of disseminated cells localized at metastatic sites in vivo. We further show that this method can be easily adapted for high throughput imaging of live or fixed cells in vitro under a multitude of conditions in order to assess clonal fitness and evolution. The inherent variation in mouse studies, increasing complexity in experimental design which incorporate fate-mapping of individual cells, result in the need for a large cohort of mice to generate a robust dataset. High-throughput imaging techniques such as the one that we describe will enhance the data that can be used as input for the development of computational models aimed at modeling the metastatic process.
Collapse
Affiliation(s)
- Soumitra Bhoyar
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Inês Godet
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Josh W. DiGiacomo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Daniele M. Gilkes
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lay K, Yuan S, Gur-Cohen S, Miao Y, Han T, Naik S, Pasolli HA, Larsen SB, Fuchs E. Stem cells repurpose proliferation to contain a breach in their niche barrier. eLife 2018; 7:41661. [PMID: 30520726 PMCID: PMC6324878 DOI: 10.7554/elife.41661] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Adult stem cells are responsible for life-long tissue maintenance. They reside in and interact with specialized tissue microenvironments (niches). Using murine hair follicle as a model, we show that when junctional perturbations in the niche disrupt barrier function, adjacent stem cells dramatically change their transcriptome independent of bacterial invasion and become capable of directly signaling to and recruiting immune cells. Additionally, these stem cells elevate cell cycle transcripts which reduce their quiescence threshold, enabling them to selectively proliferate within this microenvironment of immune distress cues. However, rather than mobilizing to fuel new tissue regeneration, these ectopically proliferative stem cells remain within their niche to contain the breach. Together, our findings expose a potential communication relay system that operates from the niche to the stem cells to the immune system and back. The repurposing of proliferation by these stem cells patch the breached barrier, stoke the immune response and restore niche integrity.
Collapse
Affiliation(s)
- Kenneth Lay
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shaopeng Yuan
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shiri Gur-Cohen
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Yuxuan Miao
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Tianxiao Han
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shruti Naik
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - H Amalia Pasolli
- Electron Microscopy Shared Resource, Howard Hughes Medical Institute, Janelia Research Campus, Virginia, United States
| | - Samantha B Larsen
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
47
|
Flexible fate determination ensures robust differentiation in the hair follicle. Nat Cell Biol 2018; 20:1361-1369. [PMID: 30420661 PMCID: PMC6314017 DOI: 10.1038/s41556-018-0232-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
Tissue homeostasis is sustained by stem cell self-renewal and differentiation. How stem cells coordinately differentiate into multiple cell types is largely unclear. Recent studies underline the heterogeneity among stem cells or common progenitors, suggesting that coordination occurs at the stem cell/progenitor level1-4. Here, by tracking and manipulating the same stem cells and their progeny at the single-cell level in live mice, we uncover an unanticipated flexibility of homeostatic stem cell differentiation in hair follicles. Although stem cells have been shown to be flexible upon injury, we demonstrate that hair germ stem cells at the single-cell level can flexibly establish all of the differentiation lineages even in uninjured conditions. Furthermore, stem cell-derived hair progenitors in the structure called matrix, previously thought to be unipotent, flexibly change differentiation outcomes as a consequence of unexpected dynamic relocation. Finally, the flexible cell fate determination mechanism maintains normal differentiation and tissue architecture against an ectopic differentiation stimulus induced by Wnt activation. This work provides a model of continual fate channelling and late commitment of stem cells to achieve coordinated differentiation and robust tissue architecture.
Collapse
|
48
|
Wang F, Chen S, Liu HB, Parent CA, Coulombe PA. Keratin 6 regulates collective keratinocyte migration by altering cell-cell and cell-matrix adhesion. J Cell Biol 2018; 217:4314-4330. [PMID: 30389720 PMCID: PMC6279382 DOI: 10.1083/jcb.201712130] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 01/21/2023] Open
Abstract
Keratin 6 (K6) isoforms are induced in wound-proximal keratinocytes after injury to skin. Paradoxically, absence of K6 isoforms leads to faster directional cell migration. Wang et al. report that K6 promotes collective keratinocyte migration by interacting with desmoplakin and myosin IIA and stabilizing cell adhesion. The a and b isoforms of keratin 6 (K6), a type II intermediate filament (IF) protein, are robustly induced upon injury to interfollicular epidermis. We previously showed that complete loss of K6a/K6b stimulates keratinocyte migration, correlating with enhanced Src activity. In this study, we demonstrate that this property is cell autonomous, depends on the ECM, and results from elevated speed, enhanced directionality, and an increased rate of focal adhesion disassembly. We show that myosin IIA interacts with K6a/K6b, that its levels are markedly reduced in Krt6a/Krt6b-null keratinocytes, and that inhibiting myosin ATPase activity normalizes the enhanced migration potential of Krt6a/Krt6b-null cells. Desmoplakin, which mediates attachment of IFs to desmosomes, is also expressed at reduced levels and is mislocalized to the nucleus in Krt6a/Krt6b-null cells, correlating with defects in cell adhesion. These findings reveal that K6a/K6b modulate keratinocyte migration by regulating cell–matrix and cell–cell adhesion and highlight a role for keratins in collective cell migration.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Hans B Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI .,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
49
|
Mesa KR, Kawaguchi K, Cockburn K, Gonzalez D, Boucher J, Xin T, Klein AM, Greco V. Homeostatic Epidermal Stem Cell Self-Renewal Is Driven by Local Differentiation. Cell Stem Cell 2018; 23:677-686.e4. [PMID: 30269903 PMCID: PMC6214709 DOI: 10.1016/j.stem.2018.09.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022]
Abstract
Maintenance of adult tissues depends on sustained activity of resident stem cell populations, but the mechanisms that regulate stem cell self-renewal during homeostasis remain largely unknown. Using an imaging and tracking approach that captures all epidermal stem cell activity in large regions of living mice, we show that self-renewal is locally coordinated with epidermal differentiation, with a lag time of 1 to 2 days. In both homeostasis and upon experimental perturbation, we find that differentiation of a single stem cell is followed by division of a direct neighbor, but not vice versa. Finally, we show that exit from the stem cell compartment is sufficient to drive neighboring stem cell self-renewal. Together, these findings establish that epidermal stem cell self-renewal is not the constitutive driver of homeostasis. Instead, it is precisely tuned to tissue demand and responds directly to neighbor cell differentiation.
Collapse
Affiliation(s)
- Kailin R Mesa
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kyogo Kawaguchi
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Universal Biology Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katie Cockburn
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - David Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jonathan Boucher
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
50
|
ZNF185 is a p63 target gene critical for epidermal differentiation and squamous cell carcinoma development. Oncogene 2018; 38:1625-1638. [PMID: 30337687 PMCID: PMC6755960 DOI: 10.1038/s41388-018-0509-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 01/04/2023]
Abstract
Development and maintenance of healthy stratified epithelia require the coordination of complex transcriptional programmes. The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and homeostasis. Analysis of the p63-dependent transcriptome indicated that one important aspect of p63 functions in epithelial development is the regulation of cell–cell and cell–matrix adhesion programmes. However, limited knowledge exists on the relevant cell–cell adhesion molecules involved in physiological epithelial formation. Similarly, limited data are available to understand if deregulation of the cell–cell adhesion programme is important in tumour formation. Here, using the epidermis as an experimental model with the RNA sequencing approach, we identify a novel p63-regulated gene induced during differentiation, ZNF185. ZNF185 is an actin-cytoskeleton-associated Lin-l 1, Isl-1 and Mec-3 (LIM) domain-containing protein, whose function is poorly known. We found that p63 binds to a specific enhancer region, promoting its expression to sustain epithelial differentiation. ZNF185 silencing strongly impaired keratinocyte differentiation according to gene array analysis. ZNF185 is detected at the cell–cell periphery where it physically interacts with E-cadherin, indicating that it is important to maintain epithelial integrity beyond its pro-differentiation role. Interestingly, poorly differentiated, including head and neck, cervical and oesophageal, squamous cell carcinomas display loss of ZNF185 expression. Together, these studies reinforce that p63 is a crucial gene for maintaining epithelial tissue integrity and support the deregulation of the cell-cell adhesion programme,which plays a critical role in carcinoma development.
Collapse
|