1
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
2
|
Luo Y, Xie C, Brocker CN, Fan J, Wu X, Feng L, Wang Q, Zhao J, Lu D, Tandon M, Cam M, Krausz KW, Liu W, Gonzalez FJ. Intestinal PPARα Protects Against Colon Carcinogenesis via Regulation of Methyltransferases DNMT1 and PRMT6. Gastroenterology 2019; 157:744-759.e4. [PMID: 31154022 PMCID: PMC7388731 DOI: 10.1053/j.gastro.2019.05.057] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Many genetic and environmental factors, including family history, dietary fat, and inflammation, increase risk for colon cancer development. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that regulates systemic lipid homeostasis. We explored the role of intestinal PPARα in colon carcinogenesis. METHODS Colon cancer was induced in mice with intestine-specific disruption of Ppara (PparaΔIE), Pparafl/fl (control), and mice with disruption of Ppara that express human PPARA (human PPARA transgenic mice), by administration of azoxymethane with or without dextran sulfate sodium (DSS). Colons were collected from mice and analyzed by immunoblots, quantitative polymerase chain reaction, and histopathology. Liquid chromatography coupled with mass spectrometry-based metabolomic analyses were performed on urine and colons. We used molecular biology and biochemical approaches to study mechanisms in mouse colons, primary intestinal epithelial cells, and colon cancer cell lines. Gene expression data and clinical features of patients with colorectal tumors were obtained from Oncomine, and human colorectal-tumor specimens and adjacent normal tissues were collected and analyzed by immunohistochemistry. RESULTS Levels of Ppara messenger RNA were reduced in colon tumors from mice. PparaΔIE mice developed more and larger colon tumors than control mice following administration of azoxymethane, with or without DSS. Metabolomic analyses revealed increases in methylation-related metabolites in urine and colons from PparaΔIE mice, compared with control mice, following administration of azoxymethane, with or without DSS. Levels of DNA methyltransferase 1 (DNMT1) and protein arginine methyltransferase 6 (PRMT6) were increased in colon tumors from PparaΔIE mice, compared with colon tumors from control mice. Depletion of PPARα reduced the expression of retinoblastoma protein, resulting in increased expression of DNMT1 and PRMT6. DNMT1 and PRMT6 decreased expression of the tumor suppressor genes Cdkn1a (P21) and Cdkn1b (p27) via DNA methylation and histone H3R2 dimethylation-mediated repression of transcription, respectively. Fenofibrate protected human PPARA transgenic mice from azoxymethane and DSS-induced colon cancer. Human colon adenocarcinoma specimens had lower levels of PPARA and retinoblastoma protein and higher levels of DNMT1 and PRMT6 than normal colon tissues. CONCLUSIONS Loss of PPARα from the intestine promotes colon carcinogenesis by increasing DNMT1-mediated methylation of P21 and PRMT6-mediated methylation of p27 in mice. Human colorectal tumors have lower levels of PPARA messenger RNA and protein than nontumor tissues. Agents that activate PPARα might be developed for chemoprevention or treatment of colon cancer.
Collapse
Affiliation(s)
- Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad N. Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xuan Wu
- Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200070, China,Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200072, China
| | - Lijin Feng
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200070, China
| | - Qiong Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jie Zhao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dasheng Lu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mayank Tandon
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiwei Liu
- Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China.
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Correspondence Weiwei Liu. Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200070, China. Tel: +86-21-6630-6905; , Frank J. Gonzalez. Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. Tel: 1-240-760-6875;
| |
Collapse
|
3
|
Watanabe S, Yamaguchi S, Fujii N, Eguchi N, Katsuta H, Sugishima S, Iwasaka T, Kaku T. Nuclear co-expression of p21 and p27 induced effective cell-cycle arrest in T24 cells treated with BCG. Cytotechnology 2019; 71:219-229. [PMID: 30603918 DOI: 10.1007/s10616-018-0278-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/08/2018] [Indexed: 11/26/2022] Open
Abstract
A proposed mechanism underlying the effect of bacillus Calmette-Guérin (BCG) treatment for bladder cancer cells is as follows: BCG-induced crosslinking of cell-surface receptors results in the activation of signaling cascades, including cell-cycle regulators. However, the clinical significance of cell-cycle regulators such as p21 and p27 is controversial. Here we investigated the relationship between BCG exposure and p21 and p27. We used confocal laser microscopy to examine the expression levels of pKi67, p21 and p27 in T24 cells (derived from human urothelial carcinoma) exposed six times to BCG. We performed dual immunofluorescence staining methods for p21 and p27 and observed the localization of nuclear and cytoplasm expressions. We investigated the priority of p27 over p21 regarding nuclear expression by using p27 Stealth RNAi™ (p27-siRNA). With 2-h BCG exposure, the nuclear-expression level of p21 and p27 was highest, while pKi67 was lowest. The percentage of double nuclear-expression of p21 and p27 in BCG cells was significantly higher than that in control cells during the 1st to 6th exposure (P < 0.05), and the expression of pKi67 showed the opposite of this pattern. Approximately 10% of the nuclear p21 was independent of p27, whereas the cytoplasmic p21 was dependent on p27. Our results suggested that the nuclear co-expression of p21 and p27 caused effective cell-cycle arrest, and thus the evaluation of the nuclear co-expression of p21 and p27 might help determine the effectiveness of BCG treatment.
Collapse
Affiliation(s)
- Sumiko Watanabe
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan.
| | - Shota Yamaguchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Naoto Fujii
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Natsuki Eguchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Hitoshi Katsuta
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Setsuo Sugishima
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Tsuyoshi Iwasaka
- Department of Obstetrics and Gynecology, Takagi Hospital, 141-11, Sakemi, Okawa City, Fukuoka, 831-0016, Japan
| | - Tsunehisa Kaku
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| |
Collapse
|
4
|
Successful development of squamous cell carcinoma and hyperplasia in RGEN-mediated p27 KO mice after the treatment of DMBA and TPA. Lab Anim Res 2018; 34:118-125. [PMID: 30310408 PMCID: PMC6170220 DOI: 10.5625/lar.2018.34.3.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
To evaluate the carcinogenicity of p27 knockout (KO) mice with RNA-guided endonuclease (RGENs)-mediated p27 mutant exon I gene (IΔ), alterations in the carcinogenic phenotypes including tumor spectrum, tumor suppressor proteins, apoptotic proteins and cell cycle regulators were observed in p27 (IΔ) KO mice after treatment with 7,12-Dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA)(DT) for 5 months. The target region (544~571 nt) in exon I of the p27 gene was successfully disrupted in p27 (IΔ) KO mice using the RGEN-induced non-homologous end joining (NHEJ) technique. After DT exposure for 5 months, a few solid tumors (identified as squamous cell carcinoma) developed on the surface of back skin of DT-treated p27 (IΔ) KO mice. Also, squamous cell hyperplasia with chronic inflammation was detected in the skin dermis of DT-treated p27 (IΔ) KO mice, while the Vehicle+p27 (IΔ) KO mice and WT mice maintained their normal histological skin structure. A significant increase was observed in the expression levels of tumor suppressor protein (p53), apoptotic proteins (Bax, Bcl-2 and Caspase-3) and cell-cycle regulator proteins (Cyclin D1, CDK2 and CDK4) in the skin of DT-treated p27 (IΔ) KO mice, although their enhancement ratio was varied. Taken together, the results of the present study suggest that squamous cell carcinoma and hyperplasia of skin tissue can be successfully developed in new p27 (IΔ) KO mice produced by RGEN-induced NHEJ technique following DT exposure for 5 months.
Collapse
|
5
|
Khan F, Ricks-Santi LJ, Zafar R, Kanaan Y, Naab T. Expression of p27 and c-Myc by immunohistochemistry in breast ductal cancers in African American women. Ann Diagn Pathol 2018; 34:170-174. [PMID: 29715580 PMCID: PMC6008231 DOI: 10.1016/j.anndiagpath.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/30/2017] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Proteins p27 and c-Myc are both key players in the cell cycle. While p27, a tumor suppressor, inhibits progression from G1 to S phase, c-Myc, a proto-oncogene, plays a key role in cell cycle regulation and apoptosis. The objective of our study was to determine the association between expression of c-Myc and the loss of p27 by immunohistochemistry (IHC) in the four major subtypes of breast cancer (BC) (Luminal A, Luminal B, HER2, and Triple Negative) and with other clinicopathological factors in a population of 202 African-American (AA) women. MATERIALS AND METHODS Tissue microarrays (TMAs) were constructed from FFPE tumor blocks from primary ductal breast carcinomas in 202 AA women. Five micrometer sections were stained with a mouse monoclonal antibody against p27 and a rabbit monoclonal antibody against c-Myc. The sections were evaluated for intensity of nuclear reactivity (1-3) and percentage of reactive cells; an H-score was derived from the product of these measurements. RESULTS Loss of p27 expression and c-Myc overexpression showed statistical significance with ER negative (p < 0.0001), PR negative (p < 0.0001), triple negative (TN) (p < 0.0001), grade 3 (p = 0.038), and overall survival (p = 0.047). There was no statistical significant association between c-Myc expression/p27 loss and luminal A/B and Her2 overexpressing subtypes. CONCLUSION In our study, a statistically significant association between c-Myc expression and p27 loss and the triple negative breast cancers (TNBC) was found in AA women. A recent study found that constitutive c-Myc expression is associated with inactivation of the axin 1 tumor suppressor gene. p27 inhibits cyclin dependent kinase2/cyclin A/E complex formation. Axin 1 and CDK inhibitors may represent possible therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Farhan Khan
- Department of Pathology, Howard University College of Medicine, Washington, DC, United States.
| | - Luisel J Ricks-Santi
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Rabia Zafar
- Department of Pathology, Howard University College of Medicine, Washington, DC, United States
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC, United States
| | - Tammey Naab
- Department of Pathology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
6
|
Georgescu MM, Gagea M, Cote G. NHERF1/EBP50 Suppresses Wnt-β-Catenin Pathway-Driven Intestinal Neoplasia. Neoplasia 2017; 18:512-23. [PMID: 27566107 PMCID: PMC5018097 DOI: 10.1016/j.neo.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
NHERF1/EBP50, an adaptor molecule that interacts with β-catenin, YAP, and PTEN, has been recently implicated in the progression of various human malignancies, including colorectal cancer. We report here that NHERF1 acts as a tumor suppressor in vivo for intestinal adenoma development. NHERF1 is highly expressed at the apical membrane of mucosa intestinal epithelial cells (IECs) and serosa mesothelial cells. NHERF1-deficient mice show overall longer small intestine and colon that most likely could be attributed to a combination of defects, including altered apical brush border of absorbtive IECs and increased number of secretory IECs. NHERF1 deficiency in Apc(Min/+) mice resulted in significantly shorter animal survival due to markedly increased tumor burden. This resulted from a moderate increase of the overall tumor density, more pronounced in females than males, and a massive increase in the number of large adenomas in both genders. The analysis of possible pathways controlling tumor size showed upregulation of Wnt-β-catenin pathway, higher expression of unphosphorylated YAP, and prominent nuclear expression of cyclin D1 in NHERF1-deficient tumors. Similar YAP changes, with relative decrease of phosphorylated YAP and increase of nuclear YAP expression, were observed as early as the adenoma stages in the progression of human colorectal cancer. This study discusses a complex role of NHERF1 for intestinal morphology and presents indisputable evidence for its in vivo tumor suppressor function upstream of Wnt-β-catenin and Hippo-YAP pathways.
Collapse
Affiliation(s)
- Maria-Magdalena Georgescu
- Department of Pathology and Translational Pathobiology, Louisiana State University, Shreveport, LA, 71103, USA.
| | - Mihai Gagea
- Department of Veterinary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gilbert Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Mohan A, Asakura A. CDK inhibitors for muscle stem cell differentiation and self-renewal. ACTA ACUST UNITED AC 2017; 6:65-74. [PMID: 28713664 DOI: 10.7600/jpfsm.6.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of muscle is undertaken by muscle stem cell populations named satellite cells which are normally quiescent or at the G0 phase of the cell cycle. However, upon signals from damaged muscle, satellite cells lose their quiescence, and enter the G1 cell cycle phase to expand the population of satellite cell progenies termed myogenic precursor cells (MPCs). Eventually, MPCs stop their cell cycle and undergo terminal differentiation to form skeletal muscle fibers. Some MPCs retract to quiescent satellite cells as a self-renewal process. Therefore, cell cycle regulation, consisting of satellite cell activation, proliferation, differentiation and self-renewal, is the key event of muscle regeneration. In this review, we summarize up-to-date progress on research about cell cycle regulation of myogenic progenitor cells and muscle stem cells during embryonic myogenesis and adult muscle regeneration, aging, exercise and muscle diseases including muscular dystrophy and muscle fiber atrophy, especially focusing on cyclin-dependent kinase inhibitors (CDKIs).
Collapse
Affiliation(s)
- Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Kemp CJ. Animal Models of Chemical Carcinogenesis: Driving Breakthroughs in Cancer Research for 100 Years. Cold Spring Harb Protoc 2015; 2015:865-74. [PMID: 26430259 PMCID: PMC4949043 DOI: 10.1101/pdb.top069906] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identification of carcinogens in the workplace, diet, and environment through chemical carcinogenesis studies in animals has directly contributed to a reduction of cancer burden in the human population. Reduced exposure to these carcinogens through lifestyle changes, government regulation, or change in industry practices has reduced cancer incidence in exposed populations. In addition to providing the first experimental evidence for cancer's relationship to chemical and radiation exposure, animal models of environmentally induced cancer have and will continue to provide important insight into the causes, mechanisms, and conceptual frameworks of cancer. More recently, combining chemical carcinogens with genetically engineered mouse models has emerged as an invaluable approach to study the complex interaction between genotype and environment that contributes to cancer development. In the future, animal models of environmentally induced cancer are likely to provide insight into areas such as the epigenetic basis of cancer, genetic modifiers of cancer susceptibility, the systems biology of cancer, inflammation and cancer, and cancer prevention.
Collapse
Affiliation(s)
- Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
9
|
Gurley KE, Moser RD, Kemp CJ. Induction of Colon Cancer in Mice with 1,2-Dimethylhydrazine. Cold Spring Harb Protoc 2015; 2015:pdb.prot077453. [PMID: 26330619 DOI: 10.1101/pdb.prot077453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this protocol, colon cancer is induced in mice through a series of injections with 1,2-dimethylhydrazine. Mice will develop primarily colon tumors starting at about 3 mo after the first injection. Tumors in the lung, uterus, and small intestine may also be seen, as well as lymphomas.
Collapse
Affiliation(s)
- Kay E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Russell D Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
10
|
Jezkova J, Williams JS, Jones-Hutchins F, Sammut SJ, Gollins S, Cree I, Coupland S, McFarlane RJ, Wakeman JA. Brachyury regulates proliferation of cancer cells via a p27Kip1-dependent pathway. Oncotarget 2015; 5:3813-22. [PMID: 25003467 PMCID: PMC4116522 DOI: 10.18632/oncotarget.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The T-box transcription factor Brachyury is expressed in a number of tumour types and has been demonstrated to have cancer inducing properties. To date, it has been linked to cancer associated induction of epithelial to mesenchymal transition, tumour metastasis and expression of markers for cancer stem-like cells. Taken together, these findings indicate that Brachyury plays an important role in the progression of cancer, although the mechanism through which it functions is poorly understood. Here we show that Brachyury regulates the potential of Brachyury-positive colorectal cancer cells to proliferate and reduced levels of Brachyury result in inhibition of proliferation, with features consistent with the cells entering a quiescent-like state. This inhibition of proliferation is dependent upon p27Kip1 demonstrating that Brachyury acts to modulate cellular proliferative fate in colorectal cancer cells in a p27Kip1-dependent manner. Analysis of patient derived colorectal tumours reveals a heterogeneous localisation of Brachyury (in the nucleolus, nucleus and cytoplasm) indicating the potential complexity of the regulatory role of Brachyury in solid colorectal tumours.
Collapse
Affiliation(s)
- Jana Jezkova
- North West Cancer Research Institute, College of Natural Sciences, Bangor, Gwynedd, UK
| | | | | | | | | | | | | | - Ramsay J McFarlane
- North West Cancer Research Institute, College of Natural Sciences, Bangor, Gwynedd, UK; NISCHR Cancer Genetics Biomedical Research Unit, Welsh Government, Cathays Park, Cardiff, UK
| | - Jane A Wakeman
- North West Cancer Research Institute, College of Natural Sciences, Bangor, Gwynedd, UK
| |
Collapse
|
11
|
Bian B, Mongrain S, Cagnol S, Langlois MJ, Boulanger J, Bernatchez G, Carrier JC, Boudreau F, Rivard N. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol Carcinog 2015; 55:671-87. [PMID: 25808857 PMCID: PMC4832390 DOI: 10.1002/mc.22312] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 12/14/2022]
Abstract
Cathepsin B is a cysteine proteinase that primarily functions as an endopeptidase within endolysosomal compartments in normal cells. However, during tumoral expansion, the regulation of cathepsin B can be altered at multiple levels, thereby resulting in its overexpression and export outside of the cell. This may suggest a possible role of cathepsin B in alterations leading to cancer progression. The aim of this study was to determine the contribution of intracellular and extracellular cathepsin B in growth, tumorigenesis, and invasion of colorectal cancer (CRC) cells. Results show that mRNA and activated levels of cathepsin B were both increased in human adenomas and in CRCs of all stages. Treatment of CRC cells with the highly selective and non‐permeant cathepsin B inhibitor Ca074 revealed that extracellular cathepsin B actively contributed to the invasiveness of human CRC cells while not essential for their growth in soft agar. Cathepsin B silencing by RNAi in human CRC cells inhibited their growth in soft agar, as well as their invasion capacity, tumoral expansion, and metastatic spread in immunodeficient mice. Higher levels of the cell cycle inhibitor p27Kip1 were observed in cathepsin B‐deficient tumors as well as an increase in cyclin B1. Finally, cathepsin B colocalized with p27Kip1 within the lysosomes and efficiently degraded the inhibitor. In conclusion, the present data demonstrate that cathepsin B is a significant factor in colorectal tumor development, invasion, and metastatic spreading and may, therefore, represent a potential pharmacological target for colorectal tumor therapy. © 2015 The Authors. Molecular Carcinogenesis, published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Bian
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Mongrain
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Cagnol
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jim Boulanger
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gérald Bernatchez
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie C Carrier
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
Yang YL, Hung MS, Wang Y, Ni J, Mao JH, Hsieh D, Au A, Kumar A, Quigley D, Fang LT, Yeh CC, Xu Z, Jablons DM, You L. Lung tumourigenesis in a conditional Cul4A transgenic mouse model. J Pathol 2014; 233:113-23. [PMID: 24648314 DOI: 10.1002/path.4352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/15/2014] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Abstract
Cullin4A (Cul4A) is a scaffold protein that assembles cullin-RING ubiquitin ligase (E3) complexes and regulates many cellular events, including cell survival, development, growth and cell cycle control. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Here, we used a Cul4A transgenic mouse model to study the potential oncogenic role of Cul4A in lung tumour development. After Cul4A over-expression was induced in the lungs for 32 weeks, atypical epithelial cells were observed. After 40 weeks, lung tumours were visible and were characterized as grade I or II adenocarcinomas. Immunohistochemistry (IHC) revealed decreased levels of Cul4A-associated proteins p21(CIP1) and tumour suppressor p19(ARF) in the lung tumours, suggesting that Cul4A regulated their expression in these tumours. Increased levels of p27(KIP1) and p16(INK4a) were also detected in these tumours. Moreover, the protein level of DNA replication licensing factor CDT1 was decreased. Genomic instability in the lung tumours was further analysed by the results from pericentrin protein expression and array comparative genomic hybridization analysis. Furthermore, knocking down Cul4A expression in lung cancer H2170 cells increased their sensitivity to the chemotherapy drug cisplatin in vitro, suggesting that Cul4A over-expression is associated with cisplatin resistance in the cancer cells. Our findings indicate that Cul4A is oncogenic in vivo, and this Cul4A mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.
Collapse
Affiliation(s)
- Yi-Lin Yang
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang M, Bhattacharjee MB. Ovarian Microcystic Stromal Tumor: Report of A New Entity with Immunohistochemical and Ultrastructural Studies. Ultrastruct Pathol 2014; 38:261-7. [DOI: 10.3109/01913123.2014.893045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Abstract
Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the USA. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review, we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist.
Collapse
|
15
|
Epstein-Barr virus latent membrane protein 2A enhances MYC-driven cell cycle progression in a mouse model of B lymphoma. Blood 2013; 123:530-40. [PMID: 24174629 DOI: 10.1182/blood-2013-07-517649] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elevated expression of MYC is a shared property of many human cancers. Epstein-Barr virus (EBV) has been associated with lymphoid malignancies, yet collaborative roles between MYC and EBV in lymphomagenesis are unclear. EBV latent membrane protein 2A (LMP2A) functions as a B-cell receptor (BCR) mimic known to provide survival signals to infected B cells. Co-expression of human MYC and LMP2A in mice (LMP2A/λ-MYC) accelerates B lymphoma onset compared with mice expressing human MYC alone (λ-MYC mice). Here we show a novel role of LMP2A in potentiating MYC to promote G1-S transition and hyperproliferation by downregulating cyclin-dependent kinase inhibitor p27(kip1) in a proteasome-dependent manner. Expressing a gain-of-function S10A mutant of p27(kip1) has minor effect on tumor latency. However, pretumor B cells from λ-MYC mice expressing homozygous S10A mutant show a significant decrease in the percentage of S-phase cells. Interestingly, LMP2A is able to counteract the antiproliferative effect of the S10A mutant to promote S-phase entry. Finally, we show that LMP2A expression correlates with higher levels of MYC expression and suppression of p27(kip1) before lymphoma onset. Our study demonstrates a novel function of EBV LMP2A in maximizing MYC expression, resulting in hyperproliferation and cellular transformation into cancer cells in vivo.
Collapse
|
16
|
Busch SE, Moser RD, Gurley KE, Kelly-Spratt KS, Liggitt HD, Kemp CJ. ARF inhibits the growth and malignant progression of non-small-cell lung carcinoma. Oncogene 2013; 33:2665-73. [PMID: 23752194 DOI: 10.1038/onc.2013.208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/30/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022]
Abstract
Non-small-cell lung carcinoma (NSCLC) is among the deadliest of human cancers. The CDKN2A locus, which houses the INK4a and ARF tumor suppressor genes, is frequently altered in NSCLC. However, the specific role of ARF in pulmonary tumorigenesis remains unclear. KRAS and other oncogenes induce the expression of ARF, thus stabilizing p53 activity and arresting cell proliferation. To address the role of ARF in Kras-driven NSCLC, we compared the susceptibility of NIH/Ola strain wild-type and Arf-knockout mice to urethane-induced lung carcinogenesis. Lung tumor size, malignancy and associated morbidity were significantly increased in Arf(-/-) compared with Arf(+/+) animals at 25 weeks after induction. Pulmonary tumors from Arf-knockout mice exhibited increased cell proliferation and DNA damage compared with wild-type mice. A subgroup of tumors in Arf(-/-) animals presented as dedifferentiated and metastatic, with many characteristics of pulmonary sarcomatoid carcinoma, a neoplasm previously undocumented in mouse models. Our finding of a role for ARF in NSCLC is consistent with the observation that benign adenomas from Arf(+/+) mice robustly expressed ARF, while ARF expression was markedly reduced in malignant adenocarcinomas. ARF expression also frequently colocalized with the expression of p21(CIP1), a transcriptional target of p53, arguing that ARF induces the p53 checkpoint to arrest cell proliferation in vivo. Taken together, these findings demonstrate that induction of ARF is an early response in lung tumorigenesis that mounts a strong barrier against tumor growth and malignant progression.
Collapse
Affiliation(s)
- S E Busch
- 1] Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - R D Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - K E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - K S Kelly-Spratt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - H D Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - C J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
17
|
Young M, Ordonez L, Clarke AR. What are the best routes to effectively model human colorectal cancer? Mol Oncol 2013; 7:178-89. [PMID: 23465602 PMCID: PMC5528414 DOI: 10.1016/j.molonc.2013.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the UK, with over 37,500 people being diagnosed every year. Survival rates for CRC have doubled in the last 30 years and it is now curable if diagnosed early, but still over half of all sufferers do not survive for longer than 5 years after diagnosis. The major complication to treating this disease is that of metastasis, specifically to the liver, which is associated with a 5 year survival of less than 5%. These statistics highlight the importance of the development of earlier detection techniques and more targeted therapeutics. The future of treating this disease therefore lies in increasing understanding of the mutations which cause tumourigenesis, and insight into the development and progression of this complex disease. This can only be achieved through the use of functional models which recapitulate all aspects of the human disease. There is a wide range of models of CRC available to researchers, but all have their own strengths and weaknesses. Here we review how CRC can be modelled and discuss the future of modelling this complex disease, with a particular focus on how genetically engineered mouse models have revolutionised this area of research.
Collapse
Affiliation(s)
- Madeleine Young
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | | | | |
Collapse
|
18
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
19
|
Ogawa K, Murasaki T, Sugiura S, Nakanishi M, Shirai T. Organ differences in the impact of p27(kip1) deficiency on carcinogenesis induced by N-methyl-N-nitrosourea. J Appl Toxicol 2011; 33:471-9. [PMID: 22183835 DOI: 10.1002/jat.1770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/22/2011] [Accepted: 10/07/2011] [Indexed: 11/09/2022]
Abstract
To evaluate the impact of p27 on carcinogenesis in various organs, N-methyl-N-nitrosourea (MNU), a direct-acting alkylating agent, was given to p27 knock-out mice. Groups of 20-40 male and female mice with null, hetero- or wild-type p27 alleles were given drinking water containing 240 ppm MNU or distilled water every other week for five cycles. The incidence and multiplicity of the induced proliferative lesions were then histologically evaluated at weeks 14 and 20. MNU treatment induced various lesions including squamous hyperplasia and squamous cell carcinoma in the forestomach, atypical hyperplasia and adenocarcinomas in the fundic and pyloric glands, adenomas and adenocarcinomas in the duodenum, malignant lymphomas in the thymus, liver, kidney and spleen and alveolar hyperplasia, adenomas, adenocarcinomas and malignant lymphomas in the lung. Although the incidences of the lesions in the forestomach, fundic and pyloric glands did not differ among the p27 genotypes, those of alveolar hyperplasia of the lung and malignant lymphoma of the thymus were significantly increased in p27-null males as compared with both wild- and hetero-type animals. Moreover, in both p27(+/+) and p27(+/-) cases, the rates for p27-positive cells were obviously increased in proliferative lesions of the pyloric gland and the lung. However, an increased rate of p27-positive cells was not observed in malignant lymphoma of the thymus. These findings suggest that p27 does not control the cell cycle equally in all organs affected by MNU-induced carcinogenesis.
Collapse
Affiliation(s)
- Kumiko Ogawa
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | | | | | | | | |
Collapse
|
20
|
Lu D, Han C, Wu T. Microsomal prostaglandin E synthase-1 promotes hepatocarcinogenesis through activation of a novel EGR1/β-catenin signaling axis. Oncogene 2011; 31:842-57. [PMID: 21743491 PMCID: PMC3193853 DOI: 10.1038/onc.2011.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme that couples with cyclooxygenase-2 (COX-2) for the production of PGE2. Although COX-2 is known to mediate the growth and progression of several human cancers including hepatocellular carcinoma (HCC), the role of mPGES-1 in hepatocarcinogenesis is not well established. This study provides novel evidence for a key role of mPGES-1 in HCC growth and progression. Forced overexpression of mPGES-1 in two HCC cell lines (Hep3B and Huh7) increased tumor cell growth, clonogenic formation, migration and invasion, whereas knockdown of mPGES-1 inhibited these parameters, in vitro. In a SCID mouse tumor xenograft model, mPGES-1 overexpressed cells formed palpable tumors at earlier time points and developed larger tumors when compared to the control (p<0.01); in contrast, mPGES-1 knockdown delayed tumor development and reduced tumor size (p<0.01). Mechanistically, mPGES-1-induced HCC cell proliferation, invasion and migration involve PGE2 production and activation of early growth response 1 (EGR1) and β-catenin. Specifically, mPGES-1-derived PGE2 induces the formation of EGR1-β-catenin complex, which interacts with TCF4/LEF1 transcription factors and activates the expression of β-catenin downstream genes. Our findings depict a novel crosstalk between mPGES-1/PGE2 and EGR1/β-catenin signaling that is critical for hepatocarcinogenesis.
Collapse
Affiliation(s)
- D Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
21
|
Zheng W, Wong KE, Zhang Z, Dougherty U, Mustafi R, Kong J, Deb DK, Zheng H, Bissonnette M, Li YC. Inactivation of the vitamin D receptor in APC(min/+) mice reveals a critical role for the vitamin D receptor in intestinal tumor growth. Int J Cancer 2011; 130:10-9. [PMID: 21328347 DOI: 10.1002/ijc.25992] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/31/2011] [Indexed: 12/22/2022]
Abstract
Emerging evidence supports an inhibitory role for vitamin D in colorectal carcinogenesis; however, the mechanism remains unclear. The adenomatous polyposis coli (APC)/β-catenin pathway plays a critical role in colorectal carcinogenesis. The purpose of our study is to explore the interactions of vitamin D and APC/β-catenin pathways in intestinal tumor development. APC(min/+) mice with genetic inactivation of the vitamin D receptor (VDR) were generated through breeding. Intestinal tumorigenesis was compared between APC(min/+) and APC(min/+) VDR(-/-) mice at different ages. No differences were seen in the number of small intestinal and colonic tumors between APC(min/+) and APC(min/+) VDR(-/-) mice aged 3, 4, 6 and 7 months. The size of the tumors, however, was significantly increased in APC(min/+) VDR(-/-) mice in all age groups. Immunostaining showed significant increases in β-catenin, cyclin D1, phosphorylated Stat-3 and MSH-2 levels and decreases in Stat-1 in APC(min/+) VDR(-/-) tumors compared to APC(min/+) tumors. These observations suggest that VDR signaling inhibits tumor growth rather than tumor initiation in the intestine. Thus, the increased tumor burden in APC(min/+) VDR(-/-) mice is likely due to the loss of the growth-inhibiting effect of VDR. This study provides strong evidence for the in vivo relevance of the interaction demonstrated in vitro between the vitamin D and β-catenin signaling pathways in intestinal tumorigenesis.
Collapse
Affiliation(s)
- Wei Zheng
- Department of General Surgery, Institute of Clinical Medical Research, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, Ishizaki T. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L753-61. [PMID: 21335523 DOI: 10.1152/ajplung.00286.2010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Aoki K, Kakizaki F, Sakashita H, Manabe T, Aoki M, Taketo MM. Suppression of colonic polyposis by homeoprotein CDX2 through its nontranscriptional function that stabilizes p27Kip1. Cancer Res 2011; 71:593-602. [PMID: 21224344 DOI: 10.1158/0008-5472.can-10-2842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Caudal-related homeoprotein CDX2 is expressed in intestinal epithelial cells, in which it is essential for their development and differentiation. A tumor suppressor function is suggested by evidence that CDX2 levels are decreased in human colon cancer specimens and that an inactivating mutation of Cdx2 in Apc(Δ716) mice markedly increases the incidence of colonic polyps. In this study, we investigated roles for transcriptional and nontranscriptional functions of CDX2 in suppression of colonic tumorigenesis. Mutagenic analysis of CDX2 revealed that loss of function stabilizes CDK inhibitor p27Kip1 by a nontranscriptional but homeodomain-dependent mechanism that inhibits cyclin E-CDK2 activity and blocks G0/G1-S progression in colon cancer cells. p27Kip1 stabilization was mediated by an inhibition of ubiquitylation-dependent proteolysis associated with decreased phosphorylation of Thr187 in p27Kip1. siRNA-mediated knockdown of p27Kip1 relieved the decrease in cyclin E-CDK2 activity and S-phase cell fraction elicited by CDX2 expression. Together, these results implicate a nontranscriptional function of CDX2 in tumor suppression mediated by p27Kip1 stabilization. Up to approximately 75% of low-CDX2 human colon cancer lesions show reduced levels of p27Kip1, whereas approximately 68% of high-CDX2 lesions retain expression of p27Kip1. These results show that low levels of CDX2 accelerate colon tumorigenesis by reducing p27Kip1 levels.
Collapse
Affiliation(s)
- Koji Aoki
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, and Laboratory of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Giroux V, Bernatchez G, Carrier JC. Chemopreventive effect of ERβ-Selective agonist on intestinal tumorigenesis in Apc(Min/+) mice. Mol Carcinog 2010; 50:359-69. [PMID: 21480389 DOI: 10.1002/mc.20719] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/17/2022]
Abstract
Epidemiological and experimental evidence suggests that estrogen replacement therapy reduces the risk of colon cancer in postmenopausal women. Estrogen receptor beta (ERβ) is thought to be the principal mediator of the estrogen effect in the colon. Recent studies by our team suggested positive regulation of the transforming growth factor (TGF)β pathway by estrogen in mice colonocytes. We therefore wanted to investigate the effects of ERβ agonist treatment on intestinal tumorigenesis in Apc(Min/+) mice. Weaned Apc(Min/+) mice were injected subcutaneously three times a week for 12 wk with vehicle or ERβ-selective agonist, diarylpropionitrile (DPN, 5 mg/kg). DPN administration resulted in a significant reduction in small intestinal polyp multiplicity in both Apc(Min/+) male and female mice. Furthermore, the mean diameter of small intestinal polyps was lower in DPN-treated than vehicle-treated males, along with lower BrdU incorporation indices in jejunal and colon epithelial cells of both sexes. DPN treatment also increased apoptosis in colon epithelium as measured by TUNEL assay and cleaved caspase 3 quantification. The effect of DPN on various components of the TGFβ pathway was also studied in colonocytes. DPN treatment increased expression of TGFβ1 and TGFβ3 transcripts, levels of nuclear and phosphorylated Smad2 as well as p27 cell-cycle inhibitor, a TGFβ pathway target gene. Our results demonstrate that DPN treatment reduces intestinal tumorigenesis in Apc(Min/+) mice. Furthermore, we suggest that positive regulation of the TGFβ pathway by ERβ activation could contribute to the protective role of estrogen in intestinal tumor development.
Collapse
Affiliation(s)
- Véronique Giroux
- Faculty of Medicine and Health Sciences, Department of Medicine and Anatomy and Cellular Biology, CIHR Team on Digestive Epithelium, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
25
|
Abstract
Colon cancer closely follows the paradigm of a single "gatekeeper gene." Mutations inactivating the APC (adenomatous polyposis coli) gene are found in approximately 80% of all human colon tumors and heterozygosity for such mutations produces an autosomal dominant colon cancer predisposition in humans and in murine models. However, this tight association between a single genotype and phenotype belies a complex association of genetic and epigenetic factors that together generate the broad phenotypic spectrum ofboth familial and sporadic colon cancers. In this Chapter, we give a general overview of the structure, function and outstanding issues concerning the role of Apc in human and experimental colon cancer. The availability of increasingly close models for human colon cancer in genetically tractable animal species enables the discovery and eventual molecular identification of genetic modifiers of the Apc-mutant phenotypes, connecting the central role of Apc in colon carcinogenesis to the myriad factors that ultimately determine the course of the disease.
Collapse
|
26
|
Kelly-Spratt KS, Philipp-Staheli J, Gurley KE, Hoon-Kim K, Knoblaugh S, Kemp CJ. Inhibition of PI-3K restores nuclear p27Kip1 expression in a mouse model of Kras-driven lung cancer. Oncogene 2009; 28:3652-62. [PMID: 19648963 DOI: 10.1038/onc.2009.226] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reduced expression of the CDK inhibitor p27(Kip1) (p27) in human lung cancer correlates with tumor aggressiveness and poor prognosis. However, the regulation of p27 expression and the role of p27 during lung cancer are poorly understood. Urethane-induced lung tumors in mice frequently harbor mutations in the Kras oncogene, and in this study, we use this model to address the regulation of p27 during tumorigenesis. The Ras effector Akt is known to regulate p27 mRNA abundance by phosphorylating and inactivating the FOXO transcription factors. Phosphorylated Akt and FOXO proteins were both increased in lung tumors, correlating with a reduction in p27 mRNA transcript. Akt also directly phosphorylates p27 and regulates its nuclear/cytoplasmic localization. Tumors showed a reduced nuclear/cytoplasmic ratio of p27 protein, together with an increase in phosphorylated Thr197 p27 in the cytoplasmic pool. Treatment of lung tumor-bearing mice with the phosphoinositol-3 kinase inhibitor LY294002 induced a rapid decrease in phosphorylated Akt and phosphorylated p27, concomitant with an increase in nuclear p27. Germline p27 deficiency accelerated both the growth and malignant progression of urethane-induced lung tumors, and did so in a cell autonomous manner, confirming a causal role of p27 in tumor suppression. These results show that p27 is a potent barrier to the growth and malignant progression of Kras-initiated lung tumors. Further, the reduction of nuclear p27 in tumors is mediated by oncogene signaling pathways, which can be reversed by pharmacological agents.
Collapse
Affiliation(s)
- K S Kelly-Spratt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
27
|
Glover CE, Gurley KE, Kim KH, Storer B, Fero ML, Kemp CJ. Endocrine dysfunction in p27Kip1 deficient mice and susceptibility to Wnt-1 driven breast cancer. Carcinogenesis 2009; 30:1058-63. [PMID: 19380520 DOI: 10.1093/carcin/bgp089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) (p27) is a marker of prognosis in many cancers, including breast cancer. Low p27 expression correlates with poor prognosis, especially in hormone receptor positive breast tumors. This association suggests a role for p27 in hormone-dependent cancer. We used the Wnt-1 transgenic mouse model to further explore the role of p27 in hormone-driven breast cancer. We found that p27 deficiency did not alter breast cancer rate in either male or female Wnt-1 mice. However, we did find p27-/- females had reduced levels of serum progesterone (P) and increased variability in estradiol (E), which could have affected their cancer susceptibility. To equalize hormone levels, an additional cohort of Wnt-1 female mice was ovariectomized and implanted with slow release pellets of E and P. Although this treatment did not alter the breast cancer rate, it did accelerate the development of pituitary and gastric tumors in p27-/- mice. This study shows that while not a significant inhibitor of Wnt-1-driven breast cancer, p27 inhibits gastric tumors, whose latency is modulated by sex steroids.
Collapse
|
28
|
Abstract
Misregulation of the Wnt pathway is a common route to cancer, including primary breast cancers. In this issue of Genes & Development, Miranda-Carboni and colleagues (3121-3134) demonstrate that the cyclin-dependent kinase inhibitor p27(Kip1) is ubiquitylated for proteasomal degradation in Wnt10b-induced mammary tumors exclusively by the Cul4A E3 ligase, which is strongly induced by Wnt signaling. The discovery of a new Wnt-induced proteolytic targeting system has important implications for the mechanism of Wnt-initiated tumorigenesis.
Collapse
Affiliation(s)
- Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
29
|
Mizuno S, Bogaard HJ, Voelkel NF, Umeda Y, Kadowaki M, Ameshima S, Miyamori I, Ishizaki T. Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways. Respir Res 2009; 10:17. [PMID: 19267931 PMCID: PMC2663549 DOI: 10.1186/1465-9921-10-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 03/06/2009] [Indexed: 11/16/2022] Open
Abstract
Background Hypoxia induces the proliferation of lung fibroblasts in vivo and in vitro. However, the subcellular interactions between hypoxia and expression of tumor suppressor p53 and cyclin-dependent kinase inhibitors p21 and p27 remain unclear. Methods Normal human lung fibroblasts (NHLF) were cultured in a hypoxic chamber or exposed to desferroxamine (DFX). DNA synthesis was measured using bromodeoxyuridine incorporation, and expression of p53, p21 and p27 was measured using real-time RT-PCR and Western blot analysis. Results DNA synthesis was increased by moderate hypoxia (2% oxygen) but was decreased by severe hypoxia (0.1% oxygen) and DFX. Moderate hypoxia decreased p21 synthesis without affecting p53 synthesis, whereas severe hypoxia and DFX increased synthesis of both p21 and p53. p27 protein expression was decreased by severe hypoxia and DFX. Gene silencing of p21 and p27 promoted DNA synthesis at ambient oxygen concentrations. p21 and p53 gene silencing lessened the decrease in DNA synthesis due to severe hypoxia or DFX exposure. p21 gene silencing prevented increased DNA synthesis in moderate hypoxia. p27 protein expression was significantly increased by p53 gene silencing, and was decreased by wild-type p53 gene transfection. Conclusion These results indicate that in NHLF, severe hypoxia leads to cell cycle arrest via the p53-p21 pathway, but that moderate hypoxia enhances cell proliferation via the p21 pathway in a p53-independent manner. In addition, our results suggest that p27 may be involved in compensating for p53 in cultured NHLF proliferation.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, Yoshida-gun, Fukui, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Genetically engineered mice are essential tools in both mechanistic studies and drug development in colon cancer research. Mice with mutations in the Apc gene, as well as in genes that modify or interact with Apc, are important models of familial adenomatous polyposis. Mice with mutations in the beta-catenin signaling pathway have also revealed important information about colon cancer pathogenesis, along with models for hereditary nonpolyposis colon cancer and inflammatory bowel diseases associated with colon cancer. Finally, transplantation models (xenografts)have been useful in the study of metastasis and for testing potential therapeutics. This review discusses what models have been developed most recently and what they have taught us about colon cancer formation, progression, and possible treatment strategies.
Collapse
Affiliation(s)
- Makoto Mark Taketo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
31
|
Hung KE, Faca V, Song K, Sarracino DA, Richard LG, Krastins B, Forrester S, Porter A, Kunin A, Mahmood U, Haab BB, Hanash SM, Kucherlapati R. Comprehensive proteome analysis of an Apc mouse model uncovers proteins associated with intestinal tumorigenesis. Cancer Prev Res (Phila) 2009; 2:224-33. [PMID: 19240248 DOI: 10.1158/1940-6207.capr-08-0153] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor-derived proteins may occur in the circulation as a result of secretion, shedding from the cell surface, or cell turnover. We have applied an in-depth comprehensive proteomic strategy to plasma from intestinal tumor-bearing Apc mutant mice to identify proteins associated with tumor development. We used quantitative tandem mass spectrometry of fractionated mouse plasma to identify differentially expressed proteins in plasma from intestinal tumor-bearing Apc mutant mice relative to matched controls. Up-regulated proteins were assessed for the expression of corresponding genes in tumor tissue. A subset of proteins implicated in colorectal cancer were selected for further analysis at the tissue level using antibody microarrays, Western blotting, tumor immunohistochemistry, and novel fluorescent imaging. We identified 51 proteins that were elevated in plasma with concordant up-regulation at the RNA level in tumor tissue. The list included multiple proteins involved in colon cancer pathogenesis: cathepsin B and cathepsin D, cullin 1, Parkinson disease 7, muscle pyruvate kinase, and Ran. Of these, Parkinson disease 7, muscle pyruvate kinase, and Ran were also found to be up-regulated in human colon adenoma samples. We have identified proteins with direct relevance to colorectal carcinogenesis that are present both in plasma and in tumor tissue in intestinal tumor-bearing mice. Our results show that integrated analysis of the plasma proteome and tumor transcriptome of genetically engineered mouse models is a powerful approach for the identification of tumor-related plasma proteins.
Collapse
Affiliation(s)
- Kenneth E Hung
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Robertson JHP, Yang SY, Iga AM, Seifalian AM, Winslet MC. An in vivo rat model for early development of colorectal cancer metastasis to liver. Int J Exp Pathol 2009; 89:447-57. [PMID: 19134054 DOI: 10.1111/j.1365-2613.2008.00605.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
At diagnosis of colorectal cancer, approximately 25% of the patients have established colorectal liver metastasis. Optimal management of disseminated disease requires therapies targeting multiple stages in hepatic colorectal cancer metastasis development. To facilitate this, biologically accurate in vivo models are required. Early colonic cancer liver metastases development was studied using BDIX and Sprague-Dawley rat strains with human HT29 and rat DHDK12 colonic cancer cell lines. Different cancer cell-host combinations were used. Rat DHDK12 was previously chemically induced in the BDIX rat. Real-time intra-vital microscopy was employed to analyse the early development of liver metastases in four groups (n = 6 per group) (HT29-BDIX, DHDK12-BDIX, HT29-SD and DHDK12-SD). Data were compared using one-way anova with Bonferroni's multiple comparison test. The total number of tumour cells visualized, adherent cells within the hepatic sinusoids, extravasated tumour cells and migration rates were significantly higher in the DHDK12-BDIX combination. Maximum number of visualized cells and maximum migration rate were also significantly higher in this group. No significant differences were observed in these experimental parameters among the other three groups or in the haemodynamic parameters among all groups. In conclusion, cancer cell line-host selection has a significant effect on early colonic cancer liver metastasis development.
Collapse
Affiliation(s)
- John H P Robertson
- GI & Hepatobiliary Research Group, Academic Division of Surgery and Interventional Sciences, University College London, London, UK
| | | | | | | | | |
Collapse
|
33
|
Langlois MJ, Roy SAB, Auclair BA, Jones C, Boudreau F, Carrier JC, Rivard N, Perreault N. Epithelial phosphatase and tensin homolog regulates intestinal architecture and secretory cell commitment and acts as a modifier gene in neoplasia. FASEB J 2009; 23:1835-44. [PMID: 19168705 DOI: 10.1096/fj.08-123125] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphatase and tensin homolog (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/Akt pathway, is one of the most frequently mutated/deleted tumor suppressor genes in human cancers. The aim of this study was to gain insight into the role played by PTEN in intestinal homeostasis and epithelial cell function. Using the Cre/loxP system, we have generated a mouse with a conditional intestinal epithelial Pten deficiency. Pten mutant mice and controls were sacrificed for histology, immunofluorescence, Western blot, and quantitative polymerase chain reaction analysis. Our results show that loss of epithelial Pten leads to an intestinalomegaly associated with an increase in epithelial cell proliferation. Histological analysis demonstrated significant perturbation of the crypt-villus architecture, a marked increase in goblet cells and a decrease in enteroendocrine cells, suggesting a role for Pten in the commitment of the multipotential-secretory precursor cell. Loss of epithelial Pten does not result in induction of nuclear beta-catenin protein levels, nor is it sufficient to promote tumorigenesis initiation. However, it severely enhances intestinal tumor load in Apc(Min/+) mice, in which c-Myc is already deregulated. These results reveal an unknown function for Pten signaling in the commitment of multipotential-secretory progenitor cells and suggest that epithelial Pten functions as a modifier gene in intestinal neoplasia.
Collapse
Affiliation(s)
- Marie-Josée Langlois
- Dépt. d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Human cancers arise from an imbalance of cell growth and cell death. Key proteins that govern this balance are those that mediate the cell cycle. Several different molecular effectors have been identified that tightly regulate specific phases of the cell cycle, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. Notably, loss of expression or function of two G1-checkpoint CDK inhibitors - p21 (CDKN1A) and p27 (CDKN1B) - has been implicated in the genesis or progression of many human malignancies. Additionally, there is a growing body of evidence suggesting that functional loss of p21 or p27 can mediate a drug-resistance phenotype. However, reports in the literature have also suggested p21 and p27 can promote tumours, indicating a paradoxical effect. Here, we review historic and recent studies of these two CDK inhibitors, including their identification, function, importance to carcinogenesis and finally their roles in drug resistance.
Collapse
|
35
|
Voutsadakis IA. The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2008; 1782:800-8. [PMID: 18619533 DOI: 10.1016/j.bbadis.2008.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 01/01/2023]
Abstract
The proteasome is a multiprotein complex that regulates the stability of hundreds of cellular proteins and thus, it is implicated in virtually all cellular functions. Most of the time, to be recognized and processed by the proteasome, a protein has to be linked to a chain of ubiquitin molecules. Cell proliferation, apoptosis, angiogenesis and motility, processes with particular importance for carcinogenesis are regulated by the ubiquitin-proteasome system (UPS). In colorectal epithelium, UPS plays a role in the regulation of the Wnt/beta-catenin/APC/TCF4 signaling which regulates proliferation of colorectal epithelial cells in the bottom of the crypts and the inhibition of this proliferation as cells move towards colon villi tips. In most colorectal cancers APC (Adenomatous Polyposis Coli) disabling mutations interfere with the ability of the proteasome to degrade beta-catenin leading to uninhibited cell proliferation. Other key molecules in colorectal carcinogenesis such as p53, Smad4 and components of the k-ras pathways are also regulated by the UPS. In this review I discuss the role of UPS in colorectal carcinogenesis and colorectal cancer prognosis and aspects of its inhibition for therapeutic purposes.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|
36
|
Abstract
The mouse provides an excellent in vivo system with which to model human diseases and to test therapies. Mutations in the Adenomatous polyposis coli (APC) gene are required to initiate familial adenomatous polyposis (FAP) and are also important in sporadic colorectal cancer tumorigenesis. The (multiple intestinal neoplasia Min) mouse contains a point mutation in the Apc gene, develops numerous adenomas and was the first model used to study the involvement of the Apc gene in intestinal tumorigenesis. The model has provided examples of modifying loci (called Modifiers of Min: Mom) in mice, demonstrating the principle of genetic modulation of disease severity. A spectrum of Apc mutant mice has since been developed, each with defining characteristics, some more able to accurately model human polyposis and colon cancer. We will focus our review on Apc mutant mouse models, the advent of models with concurrent or compound mutations and the importance of genetic background when modeling polyposis and cancer. Brief consideration will be given to the use of these models in drug testing.
Collapse
|
37
|
Garrett-Engele CM, Tasch MA, Hwang HC, Fero ML, Perlmutter RM, Clurman BE, Roberts JM. A mechanism misregulating p27 in tumors discovered in a functional genomic screen. PLoS Genet 2008; 3:e219. [PMID: 18069898 PMCID: PMC2134944 DOI: 10.1371/journal.pgen.0030219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 10/18/2007] [Indexed: 12/04/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p27KIP1 is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27+/− mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3) was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors. Many human cancers express abnormally low amounts of the p27 protein, and this is associated with aggressive tumor behavior and a poor clinical outcome. Surprisingly, the p27 gene is rarely mutated in these tumors and retains the potential to produce normal amounts of p27 protein. Therefore, understanding the pathways that cause the decrease of p27 protein in cancer cells may lead to the development of new therapies that restore p27 gene expression to normal levels. We undertook a survey of the mouse genome to identify genes that modulate p27 protein levels in lymphomas. Our analysis discovered inhibitor of DNA binding 3 (Id3) as a negative regulator of p27 gene expression. Additionally, we demonstrated that the p27 gene is controlled by Id3 during normal embryological development of the thymus. Our results underscore the fact that cancer cells frequently exploit normal developmental pathways as they evolve into increasingly aggressive transformed states.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Differentiation
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p27/deficiency
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Inhibitor of Differentiation Proteins/genetics
- Inhibitor of Differentiation Proteins/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphoma/genetics
- Lymphoma/metabolism
- Lymphoma/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/pathogenicity
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/genetics
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Carrie M Garrett-Engele
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Michael A Tasch
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Harry C Hwang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Matthew L Fero
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Roger M Perlmutter
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Bruce E Clurman
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James M Roberts
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
McBride SM, Haas-Kogan DA. Nutrient-sensitive, antagonistically pleiotropic genes and their contribution to malignant behavior. Med Hypotheses 2008; 70:444-53. [DOI: 10.1016/j.mehy.2007.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
|
39
|
Robertson JHP, Sarkar S, Yang SY, Seifalian AM, Winslet MC. In vivo models for early development of colorectal liver metastasis. Int J Exp Pathol 2007; 89:1-12. [PMID: 18081801 DOI: 10.1111/j.1365-2613.2007.00562.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In Europe, colorectal cancer is the second most prevalent form of cancer diagnosed. Globally each year, almost one million cases of colorectal cancer are registered and almost half a million deaths are attributed to this disease. This high mortality is associated with the development of liver metastases. For oncological advances to occur, accurate in vivo models are required to study colorectal cancer metastasis development. These models, by increasing our understanding of the early stages of colorectal liver establishment, will facilitate the development of novel therapeutic interventions and allow the clinical effects of these interventions to be studied. By analysis of current in vivo models for early development of colorectal liver metastasis, this review examines available methods of the tumour cell preparation, introduction and monitoring in vivo. An insight into the technical problems which can occur will be discussed. The implications of these different techniques on the resulting metastasis picture will be analysed. Existing in vivo models are assessed regarding the accuracy of the metastatic picture they portray.
Collapse
Affiliation(s)
- John H P Robertson
- GI & Hepatobiliary Research Group, Academic Division of Surgery and Interventional Sciences, University College London, London, UK
| | | | | | | | | |
Collapse
|
40
|
p27kip1 deficiency impairs G2/M arrest in response to DNA damage, leading to an increase in genetic instability. Mol Cell Biol 2007; 28:258-68. [PMID: 17954563 DOI: 10.1128/mcb.01536-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
p27(kip1) is a cyclin-dependent kinase inhibitor and a tumor suppressor. In some tumors, p27 suppresses tumor growth by inhibition of cell proliferation. However, this is not universally observed, implying additional mechanisms of tumor suppression by p27. p27-deficient mice are particularly susceptibility to genotoxin-induced tumors, suggesting a role for p27 in the DNA damage response. To test this hypothesis, we measured genotoxin-induced mutations and chromosome damage in p27-deficient mice. Both p27(+/-) and p27(-/-) mice displayed a higher N-ethyl-N-nitrosourea-induced mutation frequency in the colon than p27(+/+) littermates. Furthermore, cells from irradiated p27-deficient mice exhibited a higher number of chromatid breaks and showed modestly increased micronucleus formation compared to cells from wild-type littermates. To determine if this mutator phenotype was related to the cell cycle-inhibitory function of p27, we measured cell cycle arrest in response to DNA damage. Both normal and tumor cells from p27-deficient mice showed impaired G(2)/M arrest following low doses of ionizing radiation. Thus, p27 may inhibit tumor development through two mechanisms. The first is by reducing the proliferation of cells that have already sustained an oncogenic lesion. The second is by transient inhibition of cell cycle progression following genotoxic insult, thereby minimizing chromosome damage and fixation of mutations.
Collapse
|
41
|
Smartt HJM, Guilmeau S, Nasser SV, Nicholas C, Bancroft L, Simpson SA, Yeh N, Yang W, Mariadason JM, Koff A, Augenlicht LH. p27kip1 Regulates cdk2 activity in the proliferating zone of the mouse intestinal epithelium: potential role in neoplasia. Gastroenterology 2007; 133:232-43. [PMID: 17631145 DOI: 10.1053/j.gastro.2007.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 04/12/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Reduced p27(kip1) expression is a marker of poor prognosis in colorectal neoplasia, and inactivation of p27 in mice (p27(Delta51/Delta51)) causes increased intestinal epithelial cell proliferation and small and large intestinal neoplasia in a diet-dependent manner. Here, we addressed the role of p27 in untransformed intestinal epithelial cells in vivo and the consequence of its targeted inactivation. METHODS A sequential fractionation procedure was used to isolate murine intestinal epithelial cells relative to their position along the crypt-villus axis, and the levels of cyclins, cyclin-dependent kinases (cdks), and cdk inhibitors and of the complexes formed among them was determined by immunoprecipitation-immunoblotting and kinase assays. RESULTS As cells exited the proliferative crypt compartment, expression and activity of both cdk2 and cdk4 decreased, in parallel with reduced expression of cyclin A and proliferating cell nuclear antigen (PCNA); expression of cyclin D1, D2, and cyclin E showed little change. As expected, expression of the cdk inhibitors p21, p57, and p16 was highest in differentiated villus cells. Unexpectedly, p27 protein expression was highest in cells of the proliferative crypt compartment where it bound both cdk2 and cdk4. Cdk2 activity was increased in crypt cells from p27(Delta51/Delta51) mice, although cyclin D-associated kinase activity was unchanged (indeed, cyclin D1/2-cdk4 complex levels were reduced). Importantly, cdk2 activity was unchanged in crypt cells from p21(-/-) mice, which do not develop intestinal tumors. CONCLUSIONS We propose that p27 contributes to intestinal epithelial homeostasis by regulating cdk2 activity in proliferating cells, thus gating cell cycle progression and suppressing intestinal neoplasia.
Collapse
Affiliation(s)
- Helena J M Smartt
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nickeleit I, Zender S, Kossatz U, Malek NP. p27kip1: a target for tumor therapies? Cell Div 2007; 2:13. [PMID: 17488529 PMCID: PMC1872022 DOI: 10.1186/1747-1028-2-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/09/2007] [Indexed: 11/27/2022] Open
Abstract
The cyclin kinase inhibitor p27kip1 acts as a potent tumor supressor protein in a variety of human cancers. Its expression levels correlate closely with the overall prognosis of the affected patient and often predict the outcome to different treatment modalities. In contrast to other tumor suppressor proteins p27 expression levels in tumor cells are frequently regulated by ubiquitin dependent proteolysis. Re-expression of p27 in cancer cells therefore does not require gene therapy but can be achieved by interfering with the protein turnover machinery. In this review we will summarize experimental results which highlight the potential use of p27 as a target for oncological therapies.
Collapse
Affiliation(s)
- Irina Nickeleit
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Steffen Zender
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Uta Kossatz
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Nisar P Malek
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
Mayo C, Lloreta J, Real FX, Mayol X. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27KIP1-inducible transcriptional program of gene expression. J Cell Physiol 2007; 212:42-50. [PMID: 17311291 DOI: 10.1002/jcp.20999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.
Collapse
Affiliation(s)
- Clara Mayo
- Unitat de Biologia Celñlular i Molecular, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Timmerbeul I, Garrett-Engele CM, Kossatz U, Chen X, Firpo E, Grünwald V, Kamino K, Wilkens L, Lehmann U, Buer J, Geffers R, Kubicka S, Manns MP, Porter PL, Roberts JM, Malek NP. Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer. Proc Natl Acad Sci U S A 2006; 103:14009-14. [PMID: 16966613 PMCID: PMC1599904 DOI: 10.1073/pnas.0606316103] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Indexed: 01/07/2023] Open
Abstract
Decreased expression of the CDK inhibitor p27kip1 in human tumors directly correlates with increased resistance to chemotherapies, increased rates of metastasis, and an overall increased rate of patient mortality. It is thought that decreased p27 expression in tumors is caused by increased proteasomal turnover, in particular activation of the pathway governed by the SCFskp2 E3 ubiquitin protein ligase. We have directly tested the importance of the SCFskp-mediated degradation of p27 in tumorigenesis by analyzing the tumor susceptibility of mice that express a form of p27 that cannot be ubiquitinated and degraded by this pathway (p27T187A). In mouse models of both lung and colon cancer down-regulation of p27 promotes tumorigenesis. However, we found that preventing p27 degradation by the SCFskp2 pathway had no impact on tumor incidence or overall survival in either tumor model. Our study unveiled a previously unrecognized role for the control of p27 mRNA abundance in the development of non-small cell lung cancers. In the colon cancer model, the frequency of intestinal adenomas was similarly unaffected by the p27T187A mutation, but, unexpectedly, we found that it inhibited progression of intestinal adenomas to carcinomas. These studies may guide the choice of clinical settings in which pharmacologic inhibitors of the Skp2 pathway might be of therapeutic value.
Collapse
Affiliation(s)
- Inke Timmerbeul
- Department of Gastroenterology, Hepatology, and Endocrinology
- Institute for Molecular Biology
| | | | | | - Xueyan Chen
- Division of Basic Sciences and
- Department of Biochemistry, University of Washington, Seattle, WA 98195; and
| | - Eduardo Firpo
- Division of Basic Sciences and
- Department of Biochemistry, University of Washington, Seattle, WA 98195; and
| | | | - Kenji Kamino
- Institute of Cell and Molecular Pathology, Hannover Medical School, D-30625 Hannover, Germany
| | - Ludwig Wilkens
- Institute of Cell and Molecular Pathology, Hannover Medical School, D-30625 Hannover, Germany
| | | | - Jan Buer
- Department of Cell Biology and Immunology, German Research Centre for Biotechnology, D-38124 Braunschweig, Germany
| | - Robert Geffers
- Department of Cell Biology and Immunology, German Research Centre for Biotechnology, D-38124 Braunschweig, Germany
| | - Stefan Kubicka
- Department of Gastroenterology, Hepatology, and Endocrinology
| | | | - Peggy L. Porter
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - James M. Roberts
- Division of Basic Sciences and
- Department of Biochemistry, University of Washington, Seattle, WA 98195; and
- Howard Hughes Medical Institute, Seattle, WA 98195
| | - Nisar P. Malek
- Department of Gastroenterology, Hepatology, and Endocrinology
- Institute for Molecular Biology
| |
Collapse
|
45
|
Loddenkemper C, Keller S, Hanski ML, Cao M, Jahreis G, Stein H, Zeitz M, Hanski C. Prevention of colitis-associated carcinogenesis in a mouse model by diet supplementation with ursodeoxycholic acid. Int J Cancer 2006; 118:2750-7. [PMID: 16385573 DOI: 10.1002/ijc.21729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bile acids in the intestinal lumen contribute to the homeostatic regulation of proliferation and death of the colonic epithelial cells: Deoxycholic acid (DCA) appears to enhance and ursodeoxycholic acid (UDCA) to attenuate the process of chemically induced carcinogenesis. We studied the effects of UDCA on colitis-related colorectal carcinogenesis. Three groups of 25 mice were given 0.7% dextran sulphate in drinking water for 7 days and pure water for 10 days and were fed a standard diet containing double iron concentration. In 2 groups, the diet was supplemented with 0.2% cholic acid (CA), the precursor of DCA, or with 0.4% UDCA. After 15 cycles, the histology, the expression of MUC2, beta-catenin, p27 and p16 and the fecal water concentration of DCA and UDCA were investigated. All animals showed colitis with similar severity and histologic as well as immunophenotypic alterations, resembling those of human colitis. Among the animals fed the nonsupplemented diet, 46% developed colorectal adenocarcinomas and 54% anal-rectal squamous cell carcinomas. The prevalence of dysplasia and carcinomas did not change significantly in the animals given CA. Among the mice fed with UDCA, none developed adenocarcinomas and 20% squamous carcinomas. Dysplastic lesions were found in 88%, 67% and 40% of each group, respectively. The prevalence of dysplasia as well as of carcinoma showed an inverse relationship to the UDCA concentration in the fecal water. These data indicate that UDCA suppresses colitis-associated carcinogenesis. This model is suitable for investigation of the mechanism of the anticarcinogenic effect of UDCA in vivo.
Collapse
|
46
|
Abstract
In yeast, a single cyclin-dependent kinase (Cdk) is able to regulate diverse cell cycle transitions (S and M phases) by associating with multiple stage-specific cyclins. The evolution of multicellular organisms brought additional layers of cell cycle regulation in the form of numerous Cdks, cyclins and Cdk inhibitors to reflect the higher levels of organismal complexity. Our current knowledge about the mammalian cell cycle emerged from early experiments using human and rodent cell lines, from which we built the current textbook model of cell cycle regulation. In this model, the functions of different cyclin/Cdk complexes were thought to be specific for each cell cycle phase. In the last decade, studies using genetically engineered mice in which cell cycle regulators were targeted revealed many surprises. We discovered the in vivo functions of cell cycle proteins within the context of a living animal and whether they are essential for animal development. In this review, we discuss first the textbook model of cell cycle regulation, followed by a global overview of data obtained from different mouse models. We describe the similarities and differences between the phenotypes of different mouse models including embryonic lethality, sterility, hematopoietic, pancreatic, and placental defects. We also describe the role of key cell cycle regulators in the development of tumors in mice, and the implications of these data for human cancer. Furthermore, animal models in which two or more genes are ablated revealed which cell cycle regulators interact genetically and functionally complement each other. We discuss for example the interaction of cyclin D1 and p27 and the compensation of Cdk2 by Cdc2. We also focus on new functions discovered for certain cell cycle regulators such as the regulation of S phase by Cdc2 and the role of p27 in regulating cell migration. Finally, we conclude the chapter by discussing the limitations of animal models and to what extent can the recent findings be reconciled with the past work to come up with a new model for cell cycle regulation with high levels of redundancy among the molecular players.
Collapse
Affiliation(s)
- Eiman Aleem
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, MD 21702-1201, USA
| | | |
Collapse
|
47
|
Zheng JY, Wang WZ, Li KZ, Guan WX, Yan W. Effect of p27(KIP1) on cell cycle and apoptosis in gastric cancer cells. World J Gastroenterol 2006; 11:7072-7. [PMID: 16437650 PMCID: PMC4725069 DOI: 10.3748/wjg.v11.i45.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the effect of p27(KIP1) on cell cycle and apoptosis regulation in gastric carcinoma cells. METHODS The whole length of p27(KIP1) cDNA was transfected into human gastric cancer cell line SCG7901 by lipofectamine. Expression of p27(KIP1) protein or mRNA was analyzed by Western blot and RNA dot blotting, respectively. Effect of p27(KIP1) on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27(KIP1). Flow cytometry, TUNEL, and electron microscopy were used to assess the effect of p27(KIP1) on cell cycle and apoptosis. RESULTS Expression of p27(KIP1) protein or mRNA increased evidently in SCG7901 cells transfected with p27(KIP1). The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55+/-0.14 cm vs 1.36+/-0.13 cm, P<0.01). p27(KIP1) overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%, P<0.01) in G1 population. Prolonged p27(KIP1) expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy. CONCLUSION p27(KIP1) can prolong cell cycle in G1 phase and lead to apoptosis. p27(KIP1) may be a good candidate for cancer gene therapy.
Collapse
Affiliation(s)
- Jian-Yong Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
48
|
Yang W, Bancroft L, Liang J, Zhuang M, Augenlicht LH. p27kip1 in intestinal tumorigenesis and chemoprevention in the mouse. Cancer Res 2005; 65:9363-8. [PMID: 16230399 PMCID: PMC2811411 DOI: 10.1158/0008-5472.can-05-2113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted inactivation of p27(kip1) was sufficient for intestinal tumor formation in mice, but this was strictly a function of diet: tumors formed in p27(+/-) or p27(-/-) mice fed control AIN-76A diet and were increased by a western-style diet but did not develop in mice fed standard chow diet. When crossed with the Apc1638N(+/-) mouse, Apc(+/-),p27(+/-) or Apc(+/-),p27(-/-) mice not only formed twice as many tumors than the sum of the tumors from mutation at either locus alone, but on AIN76A diet also developed intestinal intussusception, a tumor-associated pathology in patients leading to intestinal blockage that has not been reported for intestinal cancer in mouse models. Moreover, the frequency of intussusception was increased when the compound mutant mice were maintained on the western diet, leading to early death. Despite this more aggressive tumor phenotype generated by inactivation of p27 than by inactivation of another cyclin-dependent kinase inhibitor, p21(WAF1/cip1), the nonsteroidal anti-inflammatory drug sulindac was still effective in inhibiting intestinal tumor formation in Apc(+/-),p27(+/-) or Apc(+/-),p27(-/-) mice, which contrasts with the abrogation of the effects of sulindac in Apc(+/-),p21(+/-) or Apc(+/-),p21(-/-) mice, indicating that p27 is not necessary for tumor inhibition by sulindac. Furthermore, tumor inhibition by sulindac was linked to the induction of p21 expression by the drug, regardless of p27 status, leading to suppression of cell proliferation and promotion of cell differentiation and apoptosis in the intestinal mucosa.
Collapse
Affiliation(s)
- Wancai Yang
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, NY, USA.
| | | | | | | | | |
Collapse
|
49
|
Yang K, Yang W, Mariadason J, Velcich A, Lipkin M, Augenlicht L. Dietary components modify gene expression: implications for carcinogenesis. J Nutr 2005; 135:2710-4. [PMID: 16251635 DOI: 10.1093/jn/135.11.2710] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse genetic models that probe important pathways in intestinal cell maturation, such as cell-cycle regulation, apoptosis, and, especially, lineage specific differentiation, have provided profound insight into the underlying mechanisms of intestinal tumor formation and progression. However, a wealth of epidemiological and experimental data indicates that environment, especially the diet, is a principal determinant of relative risk for tumor development. We have demonstrated that even in mouse models in which tumor incidence is strongly initiated by genetic manipulation of genes, such as Apc, p21(WAF1/cip1), and p27(Kip1), a Western-style diet that is high in fat and low in calcium and vitamin D can dramatically increase and accelerate tumor formation. Moreover, experiments show that modulation of calcium and vitamin D levels can substantially influence tumor formation in both the mouse genetic models, as well as in a new dietary model that appears to mimic the development of sporadic colon cancer. Finally, analysis of gene expression profiles provides important insights into how diets may alter metabolic profiles and regulatory pathways that influence probability of tumor formation in the histologically and physiologically normal intestinal mucosa.
Collapse
Affiliation(s)
- Kan Yang
- Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, NY 10467, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kuzushita N, Rogers AB, Monti NA, Whary MT, Park MJ, Aswad BI, Shirin H, Koff A, Eguchi H, Moss SF. p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice. Gastroenterology 2005; 129:1544-56. [PMID: 16285954 DOI: 10.1053/j.gastro.2005.07.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 07/21/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Determining how Helicobacter pylori promotes gastric cancer and whether H pylori eradication decreases cancer risk would be helped by suitable murine models. Mice lacking the cyclin-dependent kinase inhibitor p27kip1 are susceptible to carcinogen-induced tumors. Furthermore, p27 stimulates gastric epithelial apoptosis and inhibits proliferation, expression is decreased by H pylori, and low levels are associated with a poor prognosis in gastric cancer. We therefore evaluated p27-deficient mice as a model for H pylori-associated gastric cancer. METHODS Wild-type and p27-/- C57BL/6 mice were infected with H pylori mouse-adapted Sydney strain at 6-8 weeks of age and 6-10 mice of each type were euthanized 15, 30, 45, 60, and 75 weeks later. RESULTS Uninfected p27-/- mice developed gastric hyperplasia. H pylori-infected p27-/- mice frequently developed intestinal metaplasia (40% at 30 weeks, 67% at 45 weeks), and after 60 weeks 7 of 12 mice developed significant dysplasia and gastric cancer, recapitulating human intestinal-type gastric carcinogenesis. Wild-type mice developed intestinal metaplasia only after 75 weeks of infection; significant gastric dysplasia was observed in 1 animal (P < .05 for each comparison with p27-/- mice). No disease developed in uninfected mice. H pylori infection in p27-/- mice was associated with significantly decreased apoptosis and increased epithelial proliferation, inflammation, and H pylori density compared with infection in wild-type mice. CONCLUSIONS p27 loss and H pylori colonization cooperate to produce gastric cancer. The p27-deficient mouse affords opportunities to examine the pathogenesis of H pylori in gastric carcinogenesis and to test eradication and chemopreventive strategies.
Collapse
Affiliation(s)
- Noriyoshi Kuzushita
- Division of Gastroenterology, Department of Medicine, Rhode Island Hospital/Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|