1
|
Luty M, Szydlak R, Pabijan J, Zemła J, Oevreeide IH, Prot VE, Stokke BT, Lekka M, Zapotoczny B. Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study. ACS Biomater Sci Eng 2024; 10:7155-7166. [PMID: 39436192 PMCID: PMC11558564 DOI: 10.1021/acsbiomaterials.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.
Collapse
Affiliation(s)
- Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Pabijan
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ingrid H. Oevreeide
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, NTNU
The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Malgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | | |
Collapse
|
2
|
Chutoe C, Inson I, Krobthong S, Phueakphud N, Khunluck T, Wongtrakoongate P, Charoenphandhu N, Lertsuwan K. Combinatorial effects of cannabinoid receptor 1 and 2 agonists on characteristics and proteomic alteration in MDA-MB-231 breast cancer cells. PLoS One 2024; 19:e0312851. [PMID: 39527598 PMCID: PMC11554208 DOI: 10.1371/journal.pone.0312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. However, the effective treatment for breast cancer progression is still being sought. The activation of cannabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival. Our previous study also reported that breast cancer cells responded to various combinations of CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and whether this phenomenon can be seen in other cancer characteristics remain unknown. Therefore, this study aims to further elucidate the effects of highly selective CB agonists and their combination on triple-negative breast cancer proliferation, cell cycle progression, invasion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer cells. The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination, prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231 were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell proliferation and AXL/VAV2/RAC1-mediated cell motility pathways. Our findings showed that selective CB agonists and their combination suppressed breast cancer characteristics in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of MDA-MB-231, which could lead to cell proliferation and motility suppression.
Collapse
Affiliation(s)
- Chartinun Chutoe
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ingon Inson
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tueanjai Khunluck
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Giangreco G, Rullan A, Naito Y, Biswas D, Liu YH, Hooper S, Nenclares P, Bhide S, Chon U Cheang M, Chakravarty P, Hirata E, Swanton C, Melcher A, Harrington K, Sahai E. Cancer cell - Fibroblast crosstalk via HB-EGF, EGFR, and MAPK signaling promotes the expression of macrophage chemo-attractants in squamous cell carcinoma. iScience 2024; 27:110635. [PMID: 39262776 PMCID: PMC11387794 DOI: 10.1016/j.isci.2024.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/09/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Interactions between cells in the tumor microenvironment (TME) shape cancer progression and patient prognosis. To gain insights into how the TME influences cancer outcomes, we derive gene expression signatures indicative of signaling between stromal fibroblasts and cancer cells, and demonstrate their prognostic significance in multiple and independent squamous cell carcinoma cohorts. By leveraging information within the signatures, we discover that the HB-EGF/EGFR/MAPK axis represents a hub of tumor-stroma crosstalk, promoting the expression of CSF2 and LIF and favoring the recruitment of macrophages. Together, these analyses demonstrate the utility of our approach for interrogating the extent and consequences of TME crosstalk.
Collapse
Affiliation(s)
- Giovanni Giangreco
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Yutaka Naito
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, 72 Huntley Street, London WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Yun-Hsin Liu
- Bioinformatics Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pablo Nenclares
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Shreerang Bhide
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Maggie Chon U Cheang
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Probir Chakravarty
- Bioinformatics Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eishu Hirata
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Alan Melcher
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Kevin Harrington
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
4
|
Zhang C, Feng L, Wu P, Liu Y, Jin X, Ren H, Li H, Wu F, Zhou X, Jiang W. Establishing the link between D-mannose and juvenile grass carp ( Ctenopharyngodon idella): Improved growth and intestinal structure associated with endoplasmic reticulum stress, mitophagy, and apical junctional complexes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:450-463. [PMID: 39315328 PMCID: PMC11417208 DOI: 10.1016/j.aninu.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024]
Abstract
D-mannose, essential for protein glycosylation, has been reported to have immunomodulatory effects and to maintain intestinal flora homeostasis. In addition to evaluating growth performance, we examined the impact of D-mannose on the structure of epithelial cells and apical junction complexes in the animal intestine. All 1800 grass carp (16.20 ± 0.01 g) were randomly divided into six treatments with six replicates of 50 fish each and fed with six different levels of D-mannose (0.52, 1.75, 3.02, 4.28, 5.50 and 6.78 g/kg diet) for 70 d. The study revealed that D-mannose increased feed intake (P < 0.001) but did not affect the percent weight gain (PWG), special growth rate, and feed conversion ratio (P > 0.05). D-mannose supplementation at 1.75 g/kg increased crude protein content in fish and lipid production value (P < 0.05). D-mannose supplementation at 4.28 g/kg increased intestinal length, intestinal weight and fold height of grass carp compared to the control group (P < 0.05). This improvement may be attributed to the phosphomannose isomerase (PMI)-mediated enhancement of glycolysis. This study found that D-mannose supplementation at 4.28 or 3.02 g/kg reduced serum diamine oxidase activity or D-lactate content (P < 0.05) and improved cellular and intercellular structures for the first time. The improvement of cellular redox homeostasis involves alleviating endoplasmic reticulum (ER) stress through the inositol-requiring enzyme 1 (IRE1), RNA-dependent protein kinase-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling pathways. The alleviation of ER stress may be linked to the phosphomannomutase (PMM)-mediated enhancement of protein glycosylation. In addition, ubiquitin-dependent [PTEN-induced putative kinase 1 (PINK1)/Parkin] and ubiquitin-independent [BCL2-interacting protein 3-like (BNIP3L), BCL2-interacting protein 3 (BNIP3), and FUN14 domain containing 1 (FUNDC1)] mitophagy may play a role in maintaining cellular redox homeostasis. The enhancement of intercellular structures includes enhancing tight junction and adherent junction structures, which may be closely associated with the small Rho GTPase protein (RhoA)/the Rho-associated protein kinase (ROCK) signaling pathway. In conclusion, D-mannose improved intestinal cellular redox homeostasis associated with ER stress and mitophagy pathways, and enhanced intercellular structures related to tight junctions and adherent junctions. Furthermore, quadratic regression analysis of the PWG and intestinal reactive oxygen species content indicated that the optimal addition level of D-mannose for juvenile grass carp was 4.61 and 4.59 g/kg, respectively.
Collapse
Affiliation(s)
- Chong Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
5
|
Qian Z, Li R, Zhao T, Xie K, Li P, Li G, Shen N, Gong J, Hong X, Yang L, Li H. Blockade of the ADAM8-Fra-1 complex attenuates neuroinflammation by suppressing the Map3k4/MAPKs axis after spinal cord injury. Cell Mol Biol Lett 2024; 29:75. [PMID: 38755530 PMCID: PMC11100242 DOI: 10.1186/s11658-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - PengFei Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangshen Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Na Shen
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jiamin Gong
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
6
|
Mukhopadhyay S, Huang HY, Lin Z, Ranieri M, Li S, Sahu S, Liu Y, Ban Y, Guidry K, Hu H, Lopez A, Sherman F, Tan YJ, Lee YT, Armstrong AP, Dolgalev I, Sahu P, Zhang T, Lu W, Gray NS, Christensen JG, Tang TT, Velcheti V, Khodadadi-Jamayran A, Wong KK, Neel BG. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Res 2023; 83:4095-4111. [PMID: 37729426 PMCID: PMC10841254 DOI: 10.1158/0008-5472.can-23-2729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic. SIGNIFICANCE Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.
Collapse
Affiliation(s)
- Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Hsin-Yi Huang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, United States
| | - Michela Ranieri
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Soumyadip Sahu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yingzhuo Liu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yi Ban
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Kayla Guidry
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Hai Hu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Alfonso Lopez
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yi Jer Tan
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Yeuan Ting Lee
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Amanda P. Armstrong
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, California, United States
| | - Wenchao Lu
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, California, United States
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, California, United States
| | | | - Tracy T. Tang
- Vivace Therapeutics, Inc., San Mateo, California, United States
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, United States
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, United States
| |
Collapse
|
7
|
Song D, Lian Y, Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front Immunol 2023; 14:1224892. [PMID: 37483616 PMCID: PMC10361657 DOI: 10.3389/fimmu.2023.1224892] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Activator protein-1 (AP-1) is a transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and invasion in cells. Dysfunctional AP-1 activity is associated with cancer initiation, development, invasion, migration and drug resistance. Therefore, AP-1 is a potential target for cancer targeted therapy. Currently, some small molecule inhibitors targeting AP-1 have been developed and tested, showing some anticancer effects. However, AP-1 is complex and diverse in its structure and function, and different dimers may play different roles in different type of cancers. Therefore, more research is needed to reveal the specific mechanisms of AP-1 in cancer, and how to select appropriate inhibitors and treatment strategies. Ultimately, this review summarizes the potential of combination therapy for cancer.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yan Lian
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
8
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
9
|
Coló GP, Seiwert A, Haga RB. Lfc subcellular localization and activity is controlled by αv-class integrin. J Cell Sci 2023; 136:307374. [PMID: 37129180 DOI: 10.1242/jcs.260740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
Fibronectin (FN)-binding integrins control a variety of cellular responses through Rho GTPases. The FN-binding integrins, αvβ3 and α5β1, are known to induce different effects on cell morphology and motility. Here, we report that FN-bound αvβ3 integrin, but not FN-bound α5β1 integrin, triggers the dissociation of the RhoA GEF Lfc (also known as GEF-H1 and ARHGEF2 in humans) from microtubules (MTs), leading to the activation of RhoA, formation of stress fibres and maturation of focal adhesions (FAs). Conversely, loss of Lfc expression decreases RhoA activity, stress fibre formation and FA size, suggesting that Lfc is the major GEF downstream of FN-bound αvβ3 that controls RhoA activity. Mechanistically, FN-engaged αvβ3 integrin activates a kinase cascade involving MARK2 and MARK3, which in turn leads to phosphorylation of several phospho-sites on Lfc. In particular, S151 was identified as the main site involved in the regulation of Lfc localization and activity. Our findings indicate that activation of Lfc and RhoA is orchestrated in FN-adherent cells in an integrin-specific manner.
Collapse
Affiliation(s)
- Georgina P Coló
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Andrea Seiwert
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Raquel B Haga
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
10
|
Miyauchi M, Matsumura R, Kawahara H. BAG6 supports stress fiber formation by preventing the ubiquitin-mediated degradation of RhoA. Mol Biol Cell 2023; 34:ar34. [PMID: 36884293 PMCID: PMC10092643 DOI: 10.1091/mbc.e22-08-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The Rho family of small GTPases is a key regulator of cytoskeletal actin polymerization. Although the ubiquitination of Rho proteins is reported to control their activity, the mechanisms by which the ubiquitination of Rho family proteins is controlled by ubiquitin ligases have yet to be elucidated. In this study, we identified BAG6 as the first factor needed to prevent the ubiquitination of RhoA, a critical Rho family protein in F-actin polymerization. We found that BAG6 is necessary for stress fiber formation by stabilizing endogenous RhoA. BAG6 deficiency enhanced the association between RhoA and Cullin-3-based ubiquitin ligases, thus promoting its polyubiquitination and subsequent degradation, leading to the abrogation of actin polymerization. In contrast, the restoration of RhoA expression through transient overexpression rescued the stress fiber formation defects induced by BAG6 depletion. BAG6 was also necessary for the appropriate assembly of focal adhesions as well as cell migration events. These findings reveal a novel role for BAG6 in maintaining the integrity of actin fiber polymerization and establish BAG6 as a RhoA-stabilizing holdase, which binds to and supports the function of RhoA.
Collapse
Affiliation(s)
- Maho Miyauchi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Reina Matsumura
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
Guneri-Sozeri PY, Özden-Yılmaz G, Kisim A, Cakiroglu E, Eray A, Uzuner H, Karakülah G, Pesen-Okvur D, Senturk S, Erkek-Ozhan S. FLI1 and FRA1 transcription factors drive the transcriptional regulatory networks characterizing muscle invasive bladder cancer. Commun Biol 2023; 6:199. [PMID: 36805539 PMCID: PMC9941102 DOI: 10.1038/s42003-023-04561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bladder cancer is mostly present in the form of urothelium carcinoma, causing over 150,000 deaths each year. Its histopathological classification as muscle invasive (MIBC) and non-muscle invasive (NMIBC) is the most prominent aspect, affecting the prognosis and progression of this disease. In this study, we defined the active regulatory landscape of MIBC and NMIBC cell lines using H3K27ac ChIP-seq and used an integrative approach to combine our findings with existing data. Our analysis revealed FRA1 and FLI1 as two critical transcription factors differentially regulating MIBC regulatory landscape. We show that FRA1 and FLI1 regulate the genes involved in epithelial cell migration and cell junction organization. Knock-down of FRA1 and FLI1 in MIBC revealed the downregulation of several EMT-related genes such as MAP4K4 and FLOT1. Further, ChIP-SICAP performed for FRA1 and FLI1 enabled us to infer chromatin binding partners of these transcription factors and link this information with their target genes. Finally, we show that knock-down of FRA1 and FLI1 result in significant reduction of invasion capacity of MIBC cells towards muscle microenvironment using IC-CHIP assays. Our results collectively highlight the role of these transcription factors in selection and design of targeted options for treatment of MIBC.
Collapse
Affiliation(s)
- Perihan Yagmur Guneri-Sozeri
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gülden Özden-Yılmaz
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Asli Kisim
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Ece Cakiroglu
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Hamdiye Uzuner
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Devrim Pesen-Okvur
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Serif Senturk
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Serap Erkek-Ozhan
- Izmir Biomedicine and Genome Center, Inciralti, 35340, Izmir, Turkey.
| |
Collapse
|
12
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
13
|
Schoen LF, Craveiro RB, Pietsch T, Moritz T, Troeger A, Jordans S, Dilloo D. The
PI3K
inhibitor pictilisib and the multikinase inhibitors pazopanib and sorafenib have an impact on Rac1 level and migration of medulloblastoma in vitro. J Cell Mol Med 2022; 26:5832-5845. [DOI: 10.1111/jcmm.17604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Leonie F. Schoen
- Department of Pediatric Hematology and Oncology, Center for Pediatrics University Hospital Bonn Bonn Germany
| | | | - Torsten Pietsch
- Department of Neuropathology University Hospital Bonn Bonn Germany
| | - Thomas Moritz
- Institute of Experimental Hematology Hannover Medical School Hannover Germany
| | - Anja Troeger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation University Hospital Regensburg Regensburg Germany
| | - Silvia Jordans
- Department of Pediatric Hematology and Oncology, Center for Pediatrics University Hospital Bonn Bonn Germany
| | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, Center for Pediatrics University Hospital Bonn Bonn Germany
| |
Collapse
|
14
|
TNS1: Emerging Insights into Its Domain Function, Biological Roles, and Tumors. BIOLOGY 2022; 11:biology11111571. [PMID: 36358270 PMCID: PMC9687257 DOI: 10.3390/biology11111571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Tensins are a family of cellular-adhesion constituents that have been extensively studied. They have instrumental roles in the pathogenesis of numerous diseases. The mammalian tensin family comprises four members: tensin1 (TNS1), tensin2, tensin3, and tensin4. Among them, TNS1 has recently received attention from researchers because of its structural properties. TNS1 engages in various biological processes, such as cell adhesion, polarization, migration, invasion, proliferation, apoptosis, and mechano-transduction, by interacting with various partner proteins. Moreover, the abnormal expression of TNS1 in vivo is associated with the development of various diseases, especially tumors. Interestingly, the role of TNS1 in different tumors is still controversial. Here, we systematically summarize three aspects of TNS1: the gene structure, the biological processes underlying its action, and the dual regulatory role of TNS1 in different tumors through different mechanisms, of which we provide the first overview.
Collapse
|
15
|
Vittoria MA, Kingston N, Kotynkova K, Xia E, Hong R, Huang L, McDonald S, Tilston-Lunel A, Darp R, Campbell JD, Lang D, Xu X, Ceol CJ, Varelas X, Ganem NJ. Inactivation of the Hippo tumor suppressor pathway promotes melanoma. Nat Commun 2022; 13:3732. [PMID: 35768444 PMCID: PMC9243107 DOI: 10.1038/s41467-022-31399-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
Melanoma is commonly driven by activating mutations in the MAP kinase BRAF; however, oncogenic BRAF alone is insufficient to promote melanomagenesis. Instead, its expression induces a transient proliferative burst that ultimately ceases with the development of benign nevi comprised of growth-arrested melanocytes. The tumor suppressive mechanisms that restrain nevus melanocyte proliferation remain poorly understood. Here we utilize cell and murine models to demonstrate that oncogenic BRAF leads to activation of the Hippo tumor suppressor pathway, both in melanocytes in vitro and nevus melanocytes in vivo. Mechanistically, we show that oncogenic BRAF promotes both ERK-dependent alterations in the actin cytoskeleton and whole-genome doubling events, which independently reduce RhoA activity to promote Hippo activation. We also demonstrate that functional impairment of the Hippo pathway enables oncogenic BRAF-expressing melanocytes to bypass nevus formation and rapidly form melanomas. Our data reveal that the Hippo pathway enforces the stable arrest of nevus melanocytes and represents a critical barrier to melanoma development. Activating mutations of BRAF alone are inadequate to drive melanoma formation. Here the authors show that activation of Hippo signalling by oncogenic BRAF represents an additional safeguard to limit BRAF-dependent human melanocyte growth and melanoma formation.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Nathan Kingston
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kristyna Kotynkova
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Eric Xia
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rui Hong
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lee Huang
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shayna McDonald
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Revati Darp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Deborah Lang
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Neil J Ganem
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
16
|
Distinctive molecular features of regenerative stem cells in the damaged male germline. Nat Commun 2022; 13:2500. [PMID: 35523793 PMCID: PMC9076627 DOI: 10.1038/s41467-022-30130-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Maintenance of male fertility requires spermatogonial stem cells (SSCs) that self-renew and generate differentiating germ cells for production of spermatozoa. Germline cells are sensitive to genotoxic drugs and patients receiving chemotherapy can become infertile. SSCs surviving treatment mediate germline recovery but pathways driving SSC regenerative responses remain poorly understood. Using models of chemotherapy-induced germline damage and recovery, here we identify unique molecular features of regenerative SSCs and characterise changes in composition of the undifferentiated spermatogonial pool during germline recovery by single-cell analysis. Increased mitotic activity of SSCs mediating regeneration is accompanied by alterations in growth factor signalling including PI3K/AKT and mTORC1 pathways. While sustained mTORC1 signalling is detrimental for SSC maintenance, transient mTORC1 activation is critical for the regenerative response. Concerted inhibition of growth factor signalling disrupts core features of the regenerative state and limits germline recovery. We also demonstrate that the FOXM1 transcription factor is a target of growth factor signalling in undifferentiated spermatogonia and provide evidence for a role in regeneration. Our data confirm dynamic changes in SSC functional properties following damage and support an essential role for microenvironmental growth factors in promoting a regenerative state. Male germline regeneration after damage is dependent on spermatogonial stem cells (SSCs) but pathways mediating the regenerative response are unclear. Here the authors define roles for growth factor signalling and mTORC1 in SSC-driven regeneration.
Collapse
|
17
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
18
|
Inoue M, Horiuchi K, Susa M, Taguchi E, Ishizaka T, Rikitake H, Matsuhashi Y, Chiba K. Trabectedin suppresses osteosarcoma pulmonary metastasis in a mouse tumor xenograft model. J Orthop Res 2022; 40:945-953. [PMID: 34057747 DOI: 10.1002/jor.25105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor that mainly affects adolescents and young adults. Although standard treatment modality can achieve up to 60%-70% 5-year survival rate, there has not been any substantial improvement over the past four decades. Furthermore, those presenting with pulmonary metastatic lesions often undergo a highly unfavorable clinical course. Therefore, there is a severely unmet clinical need to provide a more effective treatment for patients with OS. In this study, we show that trabectedin (TBD), a chemotherapeutic agent approved for soft tissue sarcomas, significantly suppresses pulmonary metastasis in a mouse OS xenograft model. In vitro experiments revealed that TBD suppresses cell migration potentially by downregulating the activity of ERK1/2, intracellular molecules that are critically involved in the regulation of cell motility. Collectively, our data may provide a basis for further investigation of TBD on the potential use for OS patients who are at great risk of pulmonary metastasis.
Collapse
Affiliation(s)
- Masahiro Inoue
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Michiro Susa
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Eiko Taguchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takahiro Ishizaka
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hajime Rikitake
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Matsuhashi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
19
|
Vrbata D, Filipová M, Tavares MR, Červený J, Vlachová M, Šírová M, Pelantová H, Petrásková L, Bumba L, Konefał R, Etrych T, Křen V, Chytil P, Bojarová P. Glycopolymers Decorated with 3- O-Substituted Thiodigalactosides as Potent Multivalent Inhibitors of Galectin-3. J Med Chem 2022; 65:3866-3878. [PMID: 35157467 DOI: 10.1021/acs.jmedchem.1c01625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., β-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.
Collapse
Affiliation(s)
- David Vrbata
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Marina R Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Jakub Červený
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, CZ-128 43 Prague 2, Czech Republic
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic
| |
Collapse
|
20
|
Ketchen SE, Gamboa-Esteves FO, Lawler SE, Nowicki MO, Rohwedder A, Knipp S, Prior S, Short SC, Ladbury JE, Brüning-Richardson A. Drug Resistance in Glioma Cells Induced by a Mesenchymal-Amoeboid Migratory Switch. Biomedicines 2021; 10:9. [PMID: 35052688 PMCID: PMC8773151 DOI: 10.3390/biomedicines10010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer cell invasion is a precondition for tumour metastasis and represents one of the most devastating characteristics of cancer. The development of drugs targeting cell migration, known as migrastatics, may improve the treatment of highly invasive tumours such as glioblastoma (GBM). In this study, investigations into the role of the cell adhesion protein Cellular communication network factor 1 (CCN1, also known as CYR61) in GBM cell migration uncovered a drug resistance mechanism adopted by cells when treated with the small molecule inhibitor CCG-1423. This inhibitor binds to importin α/β inhibiting the nuclear translocation of the transcriptional co-activator MKL1, thus preventing downstream effects including migration. Despite this reported role as an inhibitor of cell migration, we found that CCG-1423 treatment did not inhibit GBM cell migration. However, we could observe cells now migrating by mesenchymal-amoeboid transition (MAT). Furthermore, we present evidence that CCN1 plays a critical role in the progression of GBM with increased expression in higher-grade tumours and matched blood samples. These findings support a potential role for CCN1 as a biomarker for the monitoring and potentially early prediction of GBM recurrence, therefore as such could help to improve treatment of and increase survival rates of this devastating disease.
Collapse
Affiliation(s)
- Sophie E. Ketchen
- Light Laboratories, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.E.K.); (A.R.); (J.E.L.)
| | - Filomena O. Gamboa-Esteves
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK; (F.O.G.-E.); (S.C.S.)
| | - Sean E. Lawler
- Brown University Cancer Center, Pathology & Laboratory Medicine, Brown University, Providence, RI 02903, USA;
| | - Michal O. Nowicki
- Harvey Cushing Neuro-Oncology Research Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Arndt Rohwedder
- Light Laboratories, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.E.K.); (A.R.); (J.E.L.)
| | - Sabine Knipp
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.K.); (S.P.)
| | - Sally Prior
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.K.); (S.P.)
| | - Susan C. Short
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK; (F.O.G.-E.); (S.C.S.)
| | - John E. Ladbury
- Light Laboratories, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.E.K.); (A.R.); (J.E.L.)
| | - Anke Brüning-Richardson
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.K.); (S.P.)
| |
Collapse
|
21
|
Liu Y, Han X, Li L, Zhang Y, Huang X, Li G, Xu C, Yin M, Zhou P, Shi F, Liu X, Zhang Y, Wang G. Role of Nectin‑4 protein in cancer (Review). Int J Oncol 2021; 59:93. [PMID: 34664682 DOI: 10.3892/ijo.2021.5273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022] Open
Abstract
The Nectin cell adhesion molecule (Nectin) family members are Ca2+‑independent immunoglobulin‑like cellular adhesion molecules (including Nectins 1‑4), involved in cell adhesion via homophilic/heterophilic interplay. In addition, the Nectin family plays a significant role in enhancing cellular viability and movement ability. In contrast to enrichment of Nectins 1‑3 in normal tissues, Nectin‑4 is particularly overexpressed in a number of tumor types, including breast, lung, urothelial, colorectal, pancreatic and ovarian cancer. Moreover, the upregulation of Nectin‑4 is an independent biomarker for overall survival in numerous cancer types. A large number of studies have revealed that high expression of Nectin‑4 is closely related to tumor occurrence and development in various cancer types, but the manner in which Nectin‑4 protein contributes to the onset and development of these malignancies is yet unknown. The present review summarizes the molecular mechanisms and functions of Nectin‑4 protein in the biological processes and current advances with regard to its expression and regulation in various cancer types.
Collapse
Affiliation(s)
- Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaoyu Huang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chuncai Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Mengfan Yin
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Fanqi Shi
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
22
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
23
|
Control of Intestinal Epithelial Permeability by Lysophosphatidic Acid Receptor 5. Cell Mol Gastroenterol Hepatol 2021; 12:1073-1092. [PMID: 33975030 PMCID: PMC8350072 DOI: 10.1016/j.jcmgh.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Epithelial cells form a monolayer at mucosal surface that functions as a highly selective barrier. Lysophosphatidic acid (LPA) is a bioactive lipid that elicits a broad range of biological effects via cognate G protein-coupled receptors. LPA receptor 5 (LPA5) is highly expressed in intestinal epithelial cells, but its role in the intestine is not well-known. Here we determined the role of LPA5 in regulation of intestinal epithelial barrier. METHODS Epithelial barrier integrity was determined in mice with intestinal epithelial cell (IEC)-specific LPA5 deletion, Lpar5ΔIEC. LPA was orally administered to mice, and intestinal permeability was measured. Dextran sulfate sodium (DSS) was used to induce colitis. Human colonic epithelial cell lines were used to determine the LPA5-mediated signaling pathways that regulate epithelial barrier. RESULTS We observed increased epithelial permeability in Lpar5ΔIEC mice with reduced claudin-4 expression. Oral administration of LPA decreased intestinal permeability in wild-type mice, but the effect was greatly mitigated in Lpar5ΔIEC mice. Serum lipopolysaccharide level and bacterial loads in the intestine and liver were elevated in Lpar5ΔIEC mice. Lpar5ΔIEC mice developed more severe colitis induced with DSS. LPA5 transcriptionally regulated claudin-4, and this regulation was dependent on transactivation of the epidermal growth factor receptor, which induced localization of Rac1 at the cell membrane. LPA induced the translocation of Stat3 to the cell membrane and promoted the interaction between Rac1 and Stat3. Inhibition of Stat3 ablated LPA-mediated regulation of claudin-4. CONCLUSIONS This study identifies LPA5 as a regulator of the intestinal barrier. LPA5 promotes claudin-4 expression in IECs through activation of Rac1 and Stat3.
Collapse
|
24
|
Bhatt AB, Patel S, Matossian MD, Ucar DA, Miele L, Burow ME, Flaherty PT, Cavanaugh JE. Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling. Biomolecules 2021; 11:biom11020183. [PMID: 33572742 PMCID: PMC7911413 DOI: 10.3390/biom11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Collapse
Affiliation(s)
- Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Saloni Patel
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Margarite D. Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Deniz A. Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
- Correspondence: ; Tel.: +1-412-760-3503
| |
Collapse
|
25
|
Dietrich P, Wormser L, Fritz V, Seitz T, De Maria M, Schambony A, Kremer AE, Günther C, Itzel T, Thasler WE, Teufel A, Trebicka J, Hartmann A, Neurath MF, von Hörsten S, Bosserhoff AK, Hellerbrand C. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J Clin Invest 2021; 130:2509-2526. [PMID: 31999643 DOI: 10.1172/jci131919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is clearly age-related and represents one of the deadliest cancer types worldwide. As a result of globally increasing risk factors including metabolic disorders, the incidence rates of HCC are still rising. However, the molecular hallmarks of HCC remain poorly understood. Neuropeptide Y (NPY) and NPY receptors represent a highly conserved, stress-activated system involved in diverse cancer-related hallmarks including aging and metabolic alterations, but its impact on liver cancer had been unclear. Here, we observed increased expression of NPY5 receptor (Y5R) in HCC, which correlated with tumor growth and survival. Furthermore, we found that its ligand NPY was secreted by peritumorous hepatocytes. Hepatocyte-derived NPY promoted HCC progression by Y5R activation. TGF-β1 was identified as a regulator of NPY in hepatocytes and induced Y5R in invasive cancer cells. Moreover, NPY conversion by dipeptidylpeptidase 4 (DPP4) augmented Y5R activation and function in liver cancer. The TGF-β/NPY/Y5R axis and DPP4 represent attractive therapeutic targets for controlling liver cancer progression.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Department of Medicine 1, University Hospital Erlangen, and
| | | | | | | | - Monica De Maria
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Timo Itzel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andreas Teufel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonel Trebicka
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, and.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Franz Penzoldt Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| |
Collapse
|
26
|
Chen Y, Xue F, Russo A, Wan Y. Proteomic Analysis of Extracellular Vesicles Derived from MDA-MB-231 Cells in Microgravity. Protein J 2021; 40:108-118. [PMID: 33387250 DOI: 10.1007/s10930-020-09949-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Abstract
Patients with triple-negative breast cancer (TNBC) have a relatively poor prognosis and cannot benefit from endocrine and/or targeted therapy. Considerable effort has been devoted toward the elucidation of the molecular mechanisms and potential diagnostic/therapeutic targets. However, it is inefficient and often ineffective to study the biological nuances of TNBC in large-scale clinical trials. In contrast, the investigation of the association between molecular alterations induced through controlled variables and relevant physiochemical characteristics of TNBC cells in laboratory settings is simple, definite, and efficient in exploring the molecular mechanisms. In this study, microgravity was selected as the sole variable of study as it can inhibit cancer cell viability, proliferation, metastasis, and chemoresistance. Identifying the key molecules that shift cancer cells toward a less aggressive phenotype may facilitate future TNBC studies. We focused on extracellular vesicles (EV) derived from TNBC MDA-MB-231 cells in microgravity, which mediate intercellular communication by transporting signaling molecules between cells. Our results show that in comparison with cells in full gravity, EV release rate decreased in microgravity while average EV size increased. In addition, we found EVs may be superior to cells in analyzing differentially expressed proteins, especially those that are down-regulated ones and usually unidentified or neglected in analysis of intact cellular contents. Proteomic analysis of both EVs and cells further revealed a significant correlation with GTPases and proliferation of MDA-MB-231 cells in microgravity. Altogether, our findings would further inspire in-depth correlative cancer biological studies and subsequent clinical research.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA
| | - Fei Xue
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA
| | - Andrea Russo
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA. .,, Biotechnology Building, Room 2625, 65 Murray Hill Road, Vestal, New York, 13850, USA.
| |
Collapse
|
27
|
Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 2020; 40:1555-1569. [PMID: 33323976 DOI: 10.1038/s41388-020-01587-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality worldwide, however, the molecular mechanisms underlying the pathogenesis of CRC remain largely unclear. Recent studies have revealed crucial roles of transcription factors in CRC development. Transcription factors essential for the regulation of gene expression by interacting with transcription corepressor/enhancer complexes and they orchestrate downstream signal transduction. Deregulation of transcription factors is a frequent occurrence in CRC, and the accompanying drastic changes in gene expression profiles play fundamental roles in multistep process of tumorigenesis, from cellular transformation, disease progression to metastatic disease. Herein, we summarized current and emerging key transcription factors that participate in CRC tumorigenesis, and highlighted their oncogenic or tumor suppressive functions. Moreover, we presented critical transcription factors of CRC, emphasized the major molecular mechanisms underlying their effect on signal cascades associated with tumorigenesis, and summarized of their potential as molecular biomarkers for CRC prognosis therapeutic response, as well as drug targets for CRC treatment. A better understanding of transcription factors involved in the development of CRC will provide new insights into the pathological mechanisms and reveal novel prognostic biomarkers and therapeutic strategies for CRC.
Collapse
|
28
|
Jing W, Bi Y, Wang G, Zeng S, Han L, Yang H, Wang N, Zhao Y. Krill Oil Perturbs Proliferation and Migration of Mouse Colon Cancer Cells in vitro by Impeding Extracellular Signal-Regulated Protein Kinase Signaling Pathway. Lipids 2020; 56:141-153. [PMID: 32931040 DOI: 10.1002/lipd.12281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
The prevalence of colorectal cancer (CRC) continues to increase. Treatment of CRC remains a significant clinical challenge, and effective therapies for advanced CRC are desperately needed. Increasing attention and ongoing research efforts have focused on krill oil that may provide health benefits to the human body. Here we report that krill oil exerts in vitro anticancer activity through a direct inhibition on proliferation, colony formation, migration, and invasion of mouse colon cancer cells. Krill oil inhibited the proliferation and colony formation of CT-26 colon cancer cells by causing G0/G1 cell cycle arrest and apoptosis. Cell cycle arrest was attributable to reduction of cyclin D1 levels in krill oil-treated cells. Further studies revealed that krill oil induced mitochondrial-dependent apoptosis of CT-26 cells, including loss of mitochondrial membrane potential, increased cytosolic calcium levels, activation of caspase-3, and downregulation of anti-apoptotic proteins MCL-1 and BCL-XL. Krill oil suppressed migration of CT-26 cells by disrupting the microfilaments and microtubules. Extracellular signal-regulated protein kinase (ERK) plays crucial roles in regulating proliferation and migration of cancer cells. We found that krill oil attenuated the activation of ERK signaling pathway to exert the effects on cell cycle, apoptosis, and migration of colon cancer cells. We speculate that polyunsaturated fatty acids of krill oil may dampen ERK activation by decreasing the phospholipid saturation of cell membrane. Although findings from in vitro studies may not necessarily translate in vivo, our study provides insights into the possibility that krill oil or its components could have therapeutic potential in colon cancer.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Yuxuan Bi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Ganyu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Shuyan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Hui Yang
- Department of Radiology, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Na Wang
- Jinan Jiyuan Biological Technology Co., Ltd, Longao North Road, Jinan, 250102, China
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China.,Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| |
Collapse
|
29
|
Al Haddad M, El-Rif R, Hanna S, Jaafar L, Dennaoui R, Abdellatef S, Miskolci V, Cox D, Hodgson L, El-Sibai M. Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation. Cell Commun Signal 2020; 18:144. [PMID: 32900380 PMCID: PMC7487901 DOI: 10.1186/s12964-020-00635-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
Background Lung cancer is the second most commonly occurring cancer. The ability to metastasize and spread to distant locations renders the tumor more aggressive. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in the regulation of the actin cytoskeleton and in cancer cell migration and metastasis. In this study we investigated the role of the RhoA/Cdc42 GAP, StarD13, a previously described tumor suppressor, in malignancy, migration and invasion of the lung cancer cells A549. Methods We knocked down StarD13 expression in A549 lung cancer cells and tested the effect on cell migration and invadopodia formation using time lapse imaging and invasion assays. We also performed rescue experiments to determine the signaling pathways downstream of StarD13 and transfected the cells with FRET biosensors for RhoGTPases to identify the proteins involved in invadopodia formation. Results We observed a decrease in the level of expression of StarD13 in lung tumor tissues compared to normal lung tissues through immunohistochemistry. StarD13 also showed a lower expression in the lung adenocarcinoma cell line A549 compared to normal lung cells, WI38. In addition, the depletion of StarD13 increased cell proliferation and viability in WI38 and A549 cells, suggesting that StarD13 might potentially be a tumor suppressor in lung cancer. The depletion of StarD13, however, inhibited cell motility, conversely demonstrating a positive regulatory role in cell migration. This was potentially due to the constitutive activation of RhoA detected by pull down and FRET assays. Surprisingly, StarD13 suppressed cell invasion by inhibiting Cdc42-mediated invadopodia formation. Indeed, TKS4 staining and invadopodia assay revealed that StarD13 depletion increased Cdc42 activation as well as invadopodia formation and matrix degradation. Normal lung cells depleted of StarD13 also produced invadopodia, otherwise a unique hallmark of invasive cancer cells. Cdc42 knock down mimicked the effects of StarD13, while overexpression of a constitutively active Cdc42 mimicked the effects of its depletion. Finally, immunostaining and FRET analysis revealed the absence of StarD13 in invadopodia as compared to Cdc42, which was activated in invadopodia at the sites of matrix degradation. Conclusion In conclusion, StarD13 plays distinct roles in lung cancer cell migration and invasion through its differential regulation of Rho GTPases. Video abstract.
Collapse
Affiliation(s)
- Maria Al Haddad
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Rayane El-Rif
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Samer Hanna
- Department of Pediatrics HemeOnc division, Weill Cornell Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, USA
| | - Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Rayanne Dennaoui
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
30
|
Wong PP, Muñoz-Félix JM, Hijazi M, Kim H, Robinson SD, De Luxán-Delgado B, Rodríguez-Hernández I, Maiques O, Meng YM, Meng Q, Bodrug N, Dukinfield MS, Reynolds LE, Elia G, Clear A, Harwood C, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Matchett KP, Henderson NC, Szlosarek PW, Dreger SA, Smith S, Jones JL, Gribben JG, Cutillas PR, Meier P, Sanz-Moreno V, Hodivala-Dilke KM. Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells. Cell 2020; 181:1346-1363.e21. [PMID: 32473126 DOI: 10.1016/j.cell.2020.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/21/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-β3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-β3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell β3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by β3-integrin, providing a previously unrecognized mechanism of cancer growth control.
Collapse
Affiliation(s)
- Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - José M Muñoz-Félix
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Maruan Hijazi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hyojin Kim
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Beatriz De Luxán-Delgado
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Irene Rodríguez-Hernández
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiong Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Natalia Bodrug
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew Scott Dukinfield
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - George Elia
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Catherine Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yu Wang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | | | - Rajinder Singh
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter W Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally A Dreger
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally Smith
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
31
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|
32
|
Stangl C, Post JB, van Roosmalen MJ, Hami N, Verlaan-Klink I, Vos HR, van Es RM, Koudijs MJ, Voest EE, Snippert HJG, Kloosterman WP. Diverse BRAF Gene Fusions Confer Resistance to EGFR-Targeted Therapy via Differential Modulation of BRAF Activity. Mol Cancer Res 2020; 18:537-548. [PMID: 31911540 DOI: 10.1158/1541-7786.mcr-19-0529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
Fusion genes can be oncogenic drivers in a variety of cancer types and represent potential targets for targeted therapy. The BRAF gene is frequently involved in oncogenic gene fusions, with fusion frequencies of 0.2%-3% throughout different cancers. However, BRAF fusions rarely occur in the same gene configuration, potentially challenging personalized therapy design. In particular, the impact of the wide variety of fusion partners on the oncogenic role of BRAF during tumor growth and drug response is unknown. Here, we used patient-derived colorectal cancer organoids to functionally characterize and cross-compare BRAF fusions containing various partner genes (AGAP3, DLG1, and TRIM24) with respect to cellular behavior, downstream signaling activation, and response to targeted therapies. We demonstrate that 5' fusion partners mainly promote canonical oncogenic BRAF activity by replacing the auto-inhibitory N-terminal region. In addition, the 5' partner of BRAF fusions influences their subcellular localization and intracellular signaling capacity, revealing distinct subsets of affected signaling pathways and altered gene expression. Presence of the different BRAF fusions resulted in varying sensitivities to combinatorial inhibition of MEK and the EGF receptor family. However, all BRAF fusions conveyed resistance to targeted monotherapy against the EGF receptor family, suggesting that BRAF fusions should be screened alongside other MAPK pathway alterations to identify patients with metastatic colorectal cancer to exclude from anti-EGFR-targeted treatment. IMPLICATIONS: Although intracellular signaling and sensitivity to targeted therapies of BRAF fusion genes are influenced by their 5' fusion partner, we show that all investigated BRAF fusions confer resistance to clinically relevant EGFR inhibition.
Collapse
Affiliation(s)
- Christina Stangl
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Division of Molecular Oncology, Netherlands Cancer Institute, and Oncode Institute, Amsterdam, the Netherlands
| | - Jasmin B Post
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, the Netherlands
| | - Nizar Hami
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Ingrid Verlaan-Klink
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Robert M van Es
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco J Koudijs
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Center for Personalized Cancer Treatment, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology, Netherlands Cancer Institute, and Oncode Institute, Amsterdam, the Netherlands.
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - W P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands. .,Cyclomics, Utrecht, the Netherlands.,Frame Cancer Therapeutics, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Mohan AS, Dean KM, Isogai T, Kasitinon SY, Murali VS, Roudot P, Groisman A, Reed DK, Welf ES, Han SJ, Noh J, Danuser G. Enhanced Dendritic Actin Network Formation in Extended Lamellipodia Drives Proliferation in Growth-Challenged Rac1 P29S Melanoma Cells. Dev Cell 2020; 49:444-460.e9. [PMID: 31063759 DOI: 10.1016/j.devcel.2019.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/21/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
Actin assembly supplies the structural framework for cell morphology and migration. Beyond structure, this actin framework can also be engaged to drive biochemical signaling programs. Here, we describe how the hyperactivation of Rac1 via the P29S mutation (Rac1P29S) in melanoma hijacks branched actin network assembly to coordinate proliferative cues that facilitate metastasis and drug resistance. Upon growth challenge, Rac1P29S-harboring melanoma cells massively upregulate lamellipodia formation by dendritic actin polymerization. These extended lamellipodia form a signaling microdomain that sequesters and phospho-inactivates the tumor suppressor NF2/Merlin, driving Rac1P29S cell proliferation in growth suppressive conditions. These biochemically active lamellipodia require cell-substrate attachment but not focal adhesion assembly and drive proliferation independently of the ERK/MAPK pathway. These data suggest a critical link between cell morphology and cell signaling and reconcile the dichotomy of Rac1's regulation of both proliferation and actin assembly by revealing a mutual signaling axis wherein actin assembly drives proliferation in melanoma.
Collapse
Affiliation(s)
- Ashwathi S Mohan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stacy Y Kasitinon
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dana K Reed
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sangyoon J Han
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. JOURNAL OF ONCOLOGY 2020; 2020:1079827. [PMID: 32411231 PMCID: PMC7199609 DOI: 10.1155/2020/1079827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-mutated cancers and discusses novel preclinical approaches to overcoming resistance.
Collapse
|
35
|
Ye F, Zeng Q, Dan G, Dong X, Chen M, Sai Y, Lin H, Zou Z. Nitrogen mustard prevents transport of Fra-1 into the nucleus to promote c-Fos- and FosB-dependent IL-8 induction in injured mouse epidermis. Toxicol Lett 2019; 319:256-263. [PMID: 31639410 DOI: 10.1016/j.toxlet.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/08/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022]
Abstract
Transcription factor activator protein (AP)-1 can be activated in nitrogen-mustard-injured mouse skin, and is thought to participate in the inflammatory response. AP-1 consists of homo- or heterodimers of Fos [c-Fos, Fos-B, fos-related antigen (Fra)-1 and Fra-2] and Jun (c-Jun, JunB and JunD) family members, and information about their expression, location and function are still unclear. In nitrogen-mustard-exposed mouse skin, we found p-ERK activation increased Fra-1 and FosB. Unlike the nucleus location of c-Fos and FosB, Fra-1 and Fra-2 were mainly expressed in the cytoplasm. In nitrogen-mustard-exposed cultured immortalized human keratinocytes (HaCaT cells), Fra-1 in the nucleus functioned as an inhibitor of inflammatory cytokine interleukin (IL)-8. Co-immunoprecipitation showed that Fra-1 formed dimers with IL-8 transcription factors c-Jun, JunB and JunD. Fra-1 depletion increased c-Fos and FosB in the nucleus, accompanied by increased heterodimers of c-Fos/c-Jun, c-Fos/JunB, c-Fos/JunD, and FosB/JunB. In conclusion, Fra-1 trapped in the cytoplasm after nitrogen mustard exposure might be a driving force for IL-8 over-expression in injured skin.
Collapse
Affiliation(s)
- Feng Ye
- Department of Chemical Defense, School of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Qinya Zeng
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Guorong Dan
- Department of Chemical Defense, School of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Xunhu Dong
- Department of Chemical Defense, School of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Mingliang Chen
- Department of Chemical Defense, School of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yan Sai
- Department of Chemical Defense, School of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Hai Lin
- Department of Chemical Defense, School of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Zhongmin Zou
- Department of Chemical Defense, School of Military Preventive Medicine, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
36
|
Ahn SB, Mohamedali A, Pascovici D, Adhikari S, Sharma S, Nice EC, Baker MS. Proteomics Reveals Cell‐Surface Urokinase Plasminogen Activator Receptor Expression Impacts Most Hallmarks of Cancer. Proteomics 2019; 19:e1900026. [DOI: 10.1002/pmic.201900026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/25/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Seong Beom Ahn
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| | - Abidali Mohamedali
- Department of Molecular Sciences Faculty of Science and Engineering Sydney NSW 2109 Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility Macquarie University Sydney NSW 2109 Australia
| | - Subash Adhikari
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| | - Samridhi Sharma
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology Monash University Melbourne VIC 3800 Australia
| | - Mark S. Baker
- Department of Biomedical Sciences Faculty of Medicine and Health Science Sydney NSW 2109 Australia
| |
Collapse
|
37
|
van Bodegraven EJ, van Asperen JV, Sluijs JA, van Deursen CBJ, van Strien ME, Stassen OMJA, Robe PAJ, Hol EM. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner. FASEB J 2019; 33:12941-12959. [PMID: 31480854 DOI: 10.1096/fj.201900916r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gliomas are the most common primary brain tumors. Their highly invasive character and the heterogeneity of active oncogenic pathways within single tumors complicate the development of curative therapies and cause poor patient prognosis. Glioma cells express the intermediate filament protein glial fibrillary acidic protein (GFAP), and the level of its alternative splice variant GFAP-δ, relative to its canonical splice variant GFAP-α, is higher in grade IV compared with lower-grade and lower malignant glioma. In this study we show that a high GFAP-δ/α ratio induces the expression of the dual-specificity phosphatase 4 (DUSP4) in focal adhesions. By focusing on pathways up- and downstream of DUSP4 that are involved in the cell-extracellular matrix interaction, we show that a high GFAP-δ/α ratio equips glioma cells to better invade the brain. This study supports the hypothesis that glioma cells with a high GFAP-δ/α ratio are highly invasive and more malignant cells, thus making GFAP alternative splicing a potential therapeutic target.-Van Bodegraven, E. J., van Asperen, J. V., Sluijs, J. A., van Deursen, C. B. J., van Strien, M. E., Stassen, O. M. J. A., Robe, P. A. J., Hol, E. M. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Coen B J van Deursen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oscar M J A Stassen
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Khoo AS, Valentin TM, Leggett SE, Bhaskar D, Bye EM, Benmelech S, Ip BC, Wong IY. Breast Cancer Cells Transition from Mesenchymal to Amoeboid Migration in Tunable Three-Dimensional Silk-Collagen Hydrogels. ACS Biomater Sci Eng 2019; 5:4341-4354. [PMID: 31517039 DOI: 10.1021/acsbiomaterials.9b00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invading cancer cells adapt their migration phenotype in response to mechanical and biochemical cues from the extracellular matrix. For instance, mesenchymal migration is associated with strong cell-matrix adhesions and an elongated morphology, while amoeboid migration is associated with minimal cell-matrix adhesions and a rounded morphology. However, it remains challenging to elucidate the role of matrix mechan-ics and biochemistry, since these are both dependent on ECM protein concentration. Here, we demonstrate a composite silk fibroin and collagen I hydrogel where stiffness and microstructure can be systematically tuned over a wide range. Using an overlay assay geometry, we show that the invasion of metastatic breast cancer cells exhibits a biphasic dependence on silk fibroin concentration at fixed collagen I concentration, first increasing as the hydrogel stiffness increases, then decreasing as the pore size of silk fibroin decreases. Indeed, mesenchymal morphology exhibits a similar biphasic depen-dence on silk fibroin concentration, while amoeboid morphologies were favored when cell-matrix adhesions were less effective. We used exogenous biochemical treatment to perturb cells towards increased contractility and a mesenchymal morphology, as well as to disrupt cytoskeletal function and promote an amoeboid morphology. Overall, we envision that this tunable biomaterial platform in a 96-well plate format will be widely applicable to screen cancer cell migration against combinations of designer biomaterials and targeted inhibitors.
Collapse
Affiliation(s)
- Amanda S Khoo
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Thomas M Valentin
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Current Address: Department of Health Sciences and Technology, ETH Zürich. Zürich, Switzerland
| | - Susan E Leggett
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Pathobiology Graduate Program. Brown University, Providence, RI, USA.,Current Address: Department of Chemical and Biological Engineering, Princeton University. Princeton, NJ 08544, USA
| | - Dhananjay Bhaskar
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Elisa M Bye
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Shoham Benmelech
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA
| | - Blanche C Ip
- Pathobiology Graduate Program. Brown University, Providence, RI, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering. Brown University. 184 Hope St Box D, Providence, RI 02912, USA.,Pathobiology Graduate Program. Brown University, Providence, RI, USA
| |
Collapse
|
39
|
Global view of the RAF-MEK-ERK module and its immediate downstream effectors. Sci Rep 2019; 9:10865. [PMID: 31350469 PMCID: PMC6659682 DOI: 10.1038/s41598-019-47245-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors of BRAF and MEK have proven effective at inhibiting tumor growth in melanoma patients, however this efficacy is limited due to the almost universal development of drug resistance. To provide advanced insight into the signaling responses that occur following kinase inhibition we have performed quantitative (phospho)-proteomics of human melanoma cells treated with either dabrafenib, a BRAF inhibitor; trametinib, a MEK inhibitor or SCH772984, an ERK inhibitor. Over nine experiments we identified 7827 class I phosphorylation sites on 4960 proteins. This included 54 phosphorylation sites that were significantly down-modulated after exposure to all three inhibitors, 34 of which have not been previously reported. Functional analysis of these novel ERK targets identified roles for them in GTPase activity and regulation, apoptosis and cell-cell adhesion. Comparison of the results presented here with previously reported phosphorylation sites downstream of ERK showed a limited degree of overlap suggesting that ERK signaling responses may be highly cell line and cue specific. In addition we identified 26 phosphorylation sites that were only responsive to dabrafenib. We provide further orthogonal experimental evidence for 3 of these sites in human embryonic kidney cells over-expressing BRAF as well as further computational insights using KinomeXplorer. The validated phosphorylation sites were found to be involved in actin regulation, which has been proposed as a novel mechanism for inhibiting resistance development. These results would suggest that the linearity of the BRAF-MEK-ERK module is at least context dependent.
Collapse
|
40
|
Sanchez GJ, Richmond PA, Bunker EN, Karman SS, Azofeifa J, Garnett AT, Xu Q, Wheeler GE, Toomey CM, Zhang Q, Dowell RD, Liu X. Genome-wide dose-dependent inhibition of histone deacetylases studies reveal their roles in enhancer remodeling and suppression of oncogenic super-enhancers. Nucleic Acids Res 2019; 46:1756-1776. [PMID: 29240919 PMCID: PMC5829637 DOI: 10.1093/nar/gkx1225] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are known to alter gene expression by both up- and down-regulation of protein-coding genes in normal and cancer cells. However, the exact regulatory mechanisms of action remain uncharacterized. Here we investigated genome wide dose-dependent epigenetic and transcriptome changes in response to HDACI largazole in a transformed and a non-transformed cell line. Exposure to low nanomolar largazole concentrations (<GI50) predominantly resulted in upregulation of gene transcripts whereas higher largazole doses (≥GI50) triggered a general decrease in mRNA accumulation. Largazole induces elevation of histone H3 acetylation at Lys-9 and Lys-27 along many gene bodies but does not correlate with up- or down-regulation of the associated transcripts. A higher dose of largazole results in more RNA polymerase II pausing at the promoters of actively transcribed genes and cell death. The most prevalent changes associated with transcriptional regulation occur at distal enhancer elements. Largazole promotes H3K27 acetylation at a subset of poised enhancers and unexpectedly, we also found active enhancers that become decommissioned in a dose and cell type-dependent manner. In particular, largazole decreases RNA polymerase II accumulation at super-enhancers (SEs) and preferentially suppresses SE-driven transcripts that are associated with oncogenic activities in transformed cells.
Collapse
Affiliation(s)
- Gilson J Sanchez
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Phillip A Richmond
- BioFrontiers Institute and IQ Biology Program, University of Colorado-Boulder, Boulder, CO 80303, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Eric N Bunker
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Samuel S Karman
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Joseph Azofeifa
- BioFrontiers Institute and IQ Biology Program, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Aaron T Garnett
- Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Quanbin Xu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Graycen E Wheeler
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Cathryn M Toomey
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Qinghong Zhang
- Department of Dermatology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Robin D Dowell
- BioFrontiers Institute and IQ Biology Program, University of Colorado-Boulder, Boulder, CO 80303, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| |
Collapse
|
41
|
Tsakiroglou P, Weber J, Ashworth S, Del Bo C, Klimis-Zacas D. Phenolic and anthocyanin fractions from wild blueberries (V. angustifolium) differentially modulate endothelial cell migration partially through RHOA and RAC1. J Cell Biochem 2019; 120:11056-11067. [PMID: 30701579 DOI: 10.1002/jcb.28383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
The present study investigates the effect of anthocyanin (ACN), phenolic acid (PA) fractions, and their combination (ACNs:PAs) from wild blueberry powder (Vaccinum angustifolium) on the speed of endothelial cell migration, gene expression, and protein levels of RAC1 and RHOA associated with acute exposure to different concentrations of ACNs and PAs. Time-lapse videos were analyzed and endothelial cell speed was calculated. Treatment with ACNs at 60 μg/mL inhibited endothelial cell migration rate ( P ≤ 0.05) while treatment with PAs at 0.002 μg/mL ( P ≤ 0.0001), 60 μg/mL ( P ≤ 0.0001), and 120 μg/mL ( P ≤ 0.01) significantly increased endothelial cell migration rate compared with control. Moreover, exposure of HUVECs to ACNs:PAs at 8:8 μg/mL ( P ≤ 0.05) and 60:60 μg/mL increased ( P ≤ 0.001) endothelial cell migration. Gene expression of RAC1 and RHOA significantly increased 2 hours after exposure with all treatments. No effect of the above fractions was observed on the protein levels of RAC1 and RHOA. Findings suggest that endothelial cell migration is differentially modulated based on the type of blueberry extract (ACN or PA fraction) and is concentration-dependent. Future studies should determine the mechanism of the differential action of the above fractions on endothelial cell migration.
Collapse
Affiliation(s)
| | - James Weber
- School of Food and Agriculture, University of Maine, Orono, Maine
| | - Sharon Ashworth
- School of Biology and Ecology, University of Maine, Orono, Maine
| | - Cristian Del Bo
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
42
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
43
|
PLGA-PEG nanoparticles for targeted delivery of the mTOR/PI3kinase inhibitor dactolisib to inflamed endothelium. Int J Pharm 2018; 548:747-758. [DOI: 10.1016/j.ijpharm.2017.10.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022]
|
44
|
Antony J, Zanini E, Kelly Z, Tan TZ, Karali E, Alomary M, Jung Y, Nixon K, Cunnea P, Fotopoulou C, Paterson A, Roy-Nawathe S, Mills GB, Huang RYJ, Thiery JP, Gabra H, Recchi C. The tumour suppressor OPCML promotes AXL inactivation by the phosphatase PTPRG in ovarian cancer. EMBO Rep 2018; 19:embr.201745670. [PMID: 29907679 DOI: 10.15252/embr.201745670] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023] Open
Abstract
In ovarian cancer, the prometastatic RTK AXL promotes motility, invasion and poor prognosis. Here, we show that reduced survival caused by AXL overexpression can be mitigated by the expression of the GPI-anchored tumour suppressor OPCML Further, we demonstrate that AXL directly interacts with OPCML, preferentially so when AXL is activated by its ligand Gas6. As a consequence, AXL accumulates in cholesterol-rich lipid domains, where OPCML resides. Here, phospho-AXL is brought in proximity to the lipid domain-restricted phosphatase PTPRG, which de-phosphorylates the RTK/ligand complex. This prevents AXL-mediated transactivation of other RTKs (cMET and EGFR), thereby inhibiting sustained phospho-ERK signalling, induction of the EMT transcription factor Slug, cell migration and invasion. From a translational perspective, we show that OPCML enhances the effect of the phase II AXL inhibitor R428 in vitro and in vivo We therefore identify a novel mechanism by which two spatially restricted tumour suppressors, OPCML and PTPRG, coordinate to repress AXL-dependent oncogenic signalling.
Collapse
Affiliation(s)
- Jane Antony
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Elisa Zanini
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Zoe Kelly
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Evdoxia Karali
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Mohammad Alomary
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Youngrock Jung
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Katherine Nixon
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Paula Cunnea
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Christina Fotopoulou
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Andrew Paterson
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Sushmita Roy-Nawathe
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Gordon B Mills
- Division of Basic Science Research, Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynecology, National University Health System, Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hani Gabra
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK .,Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Chiara Recchi
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| |
Collapse
|
45
|
Elangovan IM, Vaz M, Tamatam CR, Potteti HR, Reddy NM, Reddy SP. FOSL1 Promotes Kras-induced Lung Cancer through Amphiregulin and Cell Survival Gene Regulation. Am J Respir Cell Mol Biol 2018; 58:625-635. [PMID: 29112457 PMCID: PMC5946328 DOI: 10.1165/rcmb.2017-0164oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022] Open
Abstract
The FOSL1/AP-1 transcription factor regulates gene expression, thereby controlling various pathophysiological processes. It is a major effector of RAS-ERK1/2 signaling and is activated in human lung epithelia by tumorigenic stimuli. Recent evidence shows an inverse correlation between FOSL1 expression and the survival of patients with lung cancer and adenocarcinomas; however, its role in lung tumorigenesis remains elusive. In this work, we sought to determine the role of FOSL1 in Kras-induced lung adenocarcinoma in vivo and its downstream effector mechanisms. We used mice expressing the Kras oncogene in the lung with concomitant Fosl1 deletion, Kras-activated murine alveolar epithelial cells (mAECs) with Fosl1 deletion, and KRAS mutant human lung adenocarcinoma (HLAC) cells with FOSL1 deficiency, and performed cell proliferation and gene expression analyses. Mutant Kras induced Fosl1 expression in vitro (mAECs) and in vivo (lung tissue), and mice with Fosl1 deletion showed reduced levels of mutant Kras-induced lung tumorigenesis and survived longer than Fosl1-sufficient mice. Studies with mutant Kras-activated mAECs and KRAS-mutant HLAC cells revealed that FOSL1 regulates mutant KRAS-induced gene expression, thereby controlling cell proliferation and survival. In contrast, FOSL1 depletion in non-KRAS-mutant HLAC cells and nonmalignant human lung epithelia had no effect. Our data support the notion that FOSL1-mediated expression of amphiregulin and apoptotic and antioxidative genes plays a role in regulating HLAC cell proliferation and survival. FOSL1 is a determinant of lung cancer in vivo and regulates HLAC cell proliferation and survival, largely in the context of KRAS mutations. Activation of FOSL1 in adenocarcinomas may be a prognostic marker and potential target for human lung cancer with KRAS mutations.
Collapse
Affiliation(s)
- Indira M. Elangovan
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Michelle Vaz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chandramohan R. Tamatam
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Haranatha R. Potteti
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Narsa M. Reddy
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Sekhar P. Reddy
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
46
|
Zhang Y, Zhang J, Shen Q, Yin W, Huang H, Liu Y, Ni Q. High expression of Nectin-4 is associated with unfavorable prognosis in gastric cancer. Oncol Lett 2018; 15:8789-8795. [PMID: 29805618 DOI: 10.3892/ol.2018.8365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/08/2018] [Indexed: 12/27/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell adhesion molecules that belong to a family of four members that function in a number of biological cellular activities. Nectin-4 is overexpressed in several types of human cancer; however, the functional and prognostic significance of Nectin-4 in gastric cancer (GC) remains unclear. In the present study, the reverse transcription-quantitative polymerase chain reaction and tissue microarray immunohistochemical analysis were used to investigate the expression of Nectin-4 in GC as well as its function in the prognosis of patients with GC. The results indicated that mRNA and protein expression of Nectin-4 were increased in tumor tissues compared with the matched non-tumor tissues. Expression of Nectin-4 was closely associated with differentiation (P=0.004), primary tumor (P=0.001), lymph node metastasis (P<0.001) and tumor-node-metastasis (TNM) stage (P<0.001). Positive Nectin-4 expression (P=0.001) and advanced TNM stage (P<0.001) were demonstrated to be associated with overall survival time in multivariate analyses. These results suggest that Nectin-4 may serve a significant function in GC and may serve as a novel clinic pathological biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiaxuan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qin Shen
- Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Yin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
47
|
Chengappa P, Sao K, Jones TM, Petrie RJ. Intracellular Pressure: A Driver of Cell Morphology and Movement. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:185-211. [PMID: 29551161 DOI: 10.1016/bs.ircmb.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intracellular pressure, generated by actomyosin contractility and the directional flow of water across the plasma membrane, can rapidly reprogram cell shape and behavior. Recent work demonstrates that cells can generate intracellular pressure with a range spanning at least two orders of magnitude; significantly, pressure is implicated as an important regulator of cell dynamics, such as cell division and migration. Changes to intracellular pressure can dictate the mechanisms by which single human cells move through three-dimensional environments. In this review, we chronicle the classic as well as recent evidence demonstrating how intracellular pressure is generated and maintained in metazoan cells. Furthermore, we highlight how this potentially ubiquitous physical characteristic is emerging as an important driver of cell morphology and behavior.
Collapse
Affiliation(s)
| | - Kimheak Sao
- Drexel University, Philadelphia, PA, United States
| | - Tia M Jones
- Drexel University, Philadelphia, PA, United States
| | | |
Collapse
|
48
|
Zhang Y, Chen P, Yin W, Ji Y, Shen Q, Ni Q. Nectin-4 promotes gastric cancer progression via the PI3K/AKT signaling pathway. Hum Pathol 2018; 72:107-116. [PMID: 29208564 DOI: 10.1016/j.humpath.2017.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Nectin-4, a member of the Nectin family that includes 4 Ca+-independent immunoglobulin-like cell adhesion molecules, plays a carcinogenic role in multiple cancers. However, Nectin-4 expression and its biological role in gastric cancer (GC) remain largely unknown. In this study, quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry were used to evaluate the expression patterns of Nectin-4 in GC specimens and cell lines. We observed that high expression of Nectin-4 in GC patients was associated with TNM stage and lymph node metastasis status, and poor prognosis. In addition, cell proliferation and cell migration assays in vitro and tumorigenicity in vivo were performed to observe the effects of up-regulation and down-regulation of Nectin-4 expression on GC cell phenotypes. In further studies, the PI3K/AKT signaling pathway was revealed to be involved in Nectin-4-mediated GC progression. These results demonstrated that Nectin-4 had a promoter effect on human GC cell growth and motility, indicating that Nectin-4 may serve as an effective therapeutic target in GC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Peisheng Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Yin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Ye Ji
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qin Shen
- Medical College, Nantong University, Nantong, Jiangsu 226001, China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
49
|
Annis MG, Ouellet V, Rennhack JP, L'Esperance S, Rancourt C, Mes-Masson AM, Andrechek ER, Siegel PM. Integrin-uPAR signaling leads to FRA-1 phosphorylation and enhanced breast cancer invasion. Breast Cancer Res 2018; 20:9. [PMID: 29382358 PMCID: PMC5791353 DOI: 10.1186/s13058-018-0936-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Background The Fos-related antigen 1 (FRA-1) transcription factor promotes tumor cell growth, invasion and metastasis. Phosphorylation of FRA-1 increases protein stability and function. We identify a novel signaling axis that leads to increased phosphorylation of FRA-1, increased extracellular matrix (ECM)-induced breast cancer cell invasion and is prognostic of poor outcome in patients with breast cancer. Methods While characterizing five breast cancer cell lines derived from primary human breast tumors, we identified BRC-31 as a novel basal-like cell model that expresses elevated FRA-1 levels. We interrogated the functional contribution of FRA-1 and an upstream signaling axis in breast cancer cell invasion. We extended this analysis to determine the prognostic significance of this signaling axis in samples derived from patients with breast cancer. Results BRC-31 cells display elevated focal adhesion kinase (FAK), SRC and extracellular signal-regulated (ERK2) phosphorylation relative to luminal breast cancer models. Inhibition of this signaling axis, with pharmacological inhibitors, reduces the phosphorylation and stabilization of FRA-1. Elevated integrin αVβ3 and uPAR expression in these cells suggested that integrin receptors might activate this FAK-SRC-ERK2 signaling. Transient knockdown of urokinase/plasminogen activator urokinase receptor (uPAR) in basal-like breast cancer cells grown on vitronectin reduces FRA-1 phosphorylation and stabilization; and uPAR and FRA-1 are required for vitronectin-induced cell invasion. In clinical samples, a molecular component signature consisting of vitronectin-uPAR-uPA-FRA-1 predicts poor overall survival in patients with breast cancer and correlates with an FRA-1 transcriptional signature. Conclusions We have identified a novel signaling axis that leads to phosphorylation and enhanced activity of FRA-1, a transcription factor that is emerging as an important modulator of breast cancer progression and metastasis. Electronic supplementary material The online version of this article (10.1186/s13058-018-0936-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Departments of Medicine, McGill University, Montréal, Québec, Canada
| | - Veronique Ouellet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montreal, Canada
| | - Jonathan P Rennhack
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Sylvain L'Esperance
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montreal, Canada
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. .,Departments of Biochemistry, McGill University, Montréal, Québec, Canada. .,Departments of Medicine, McGill University, Montréal, Québec, Canada. .,Departments of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
50
|
Petsalaki E, Dandoulaki M, Zachos G. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol 2018; 217:861-876. [PMID: 29362225 PMCID: PMC5839794 DOI: 10.1083/jcb.201709005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The mitotic spindle checkpoint delays anaphase onset in the presence of unattached kinetochores, and efficient checkpoint signaling requires kinetochore localization of the Rod-ZW10-Zwilch (RZZ) complex. In the present study, we show that human Chmp4c, a protein involved in membrane remodeling, localizes to kinetochores in prometaphase but is reduced in chromosomes aligned at the metaphase plate. Chmp4c promotes stable kinetochore-microtubule attachments and is required for proper mitotic progression, faithful chromosome alignment, and segregation. Depletion of Chmp4c diminishes localization of RZZ and Mad1-Mad2 checkpoint proteins to prometaphase kinetochores and impairs mitotic arrest when microtubules are depolymerized by nocodazole. Furthermore, Chmp4c binds to ZW10 through a small C-terminal region, and constitutive Chmp4c kinetochore targeting causes a ZW10-dependent checkpoint metaphase arrest. In addition, Chmp4c spindle functions do not require endosomal sorting complex required for transport-dependent membrane remodeling. These results show that Chmp4c regulates the mitotic spindle checkpoint by promoting localization of the RZZ complex to unattached kinetochores.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| | - Maria Dandoulaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
| |
Collapse
|