1
|
Ruoslahti E. My scientific journey to and through extracellular matrix. Matrix Biol 2024; 133:57-63. [PMID: 39151809 DOI: 10.1016/j.matbio.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
This article recounts my journey as a scientist in the early days of extracellular matrix research through the discovery of fibronectin, the RGD sequence as a key recognition motif in fibronectin and other adhesion proteins, and isolation and cloning of integrins. I also discuss more recent work on identification of molecular "zip codes" by in vivo screening of peptide libraries expressed on phage, which led us right back to RGD and integrins. Many disease-specific zip codes have turned out to be based on altered expression of extracellular matrix molecules and integrins. Homing peptides and antibodies recognizing zip code molecules are being used in drug delivery applications, some of which have advanced into clinical trials.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Sanford Burnham Prebys Medical Discovery Institute La Jolla, California and Impilo Therapeutics, Inc., San Diego, CA, USA.
| |
Collapse
|
2
|
Kamalabadi Farahani M, Farjadmehr M, Atashi A, Momeni A, Behzadifard M. Concise review: breast cancer stems cells and their role in metastases. Ann Med Surg (Lond) 2024; 86:5266-5275. [PMID: 39238997 PMCID: PMC11374310 DOI: 10.1097/ms9.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024] Open
Abstract
Background Breast cancer stem cells (BCSCs) have been suggested to be responsible for the development of Breast cancer (BC). The aim of this study was to evaluate BCSCs and the target organs microenvironment immunophenotyping markers in common BC metastases, and therapeutic targets regarding to the mentioned criteria. Material and methods This narrative review involved searching international databases; PubMed, Google Scholar using predetermined keywords including breast cancer, breast cancer stem cells, breast cancer metastases, immunophenotyping, immunohistochemistry and metastases. The search results were assessed based on the title, abstract, and full text of the articles, and relevant findings were included in the review. Results BCSCs express high amounts of aldehyde dehydrogenase 1 (ALDH1), Ganglioside 2 (GD2), CD44 and CD133 but are negative for CD24 marker. CXCR4 and OPN have high expression in the cells and may contribute in BC metastasis to the bone. Nestin, CK5, prominin-1 (CD133) markers in BCSCs have been reported to correlate with brain metastasis. High expression of CD44 in BCSCs and CXCL12 expression in the liver microenvironment may contribute to BC metastasis to the liver. Aberrantly expressed vascular cell adhesion molecule-1 (VCAM-1) that binds to collagen and elastin fibers on pulmonary parenchyma, and CXCR4 of BCSCs and CXCL12 in lung microenvironment may promote the cells homing and metastasis to lung. Conclusion As in various types of BC metastases different markers that expressed by the cells and target organ microenvironment are responsible, BCSCs immunophenotyping can be used as target markers to predict the disease prognosis and treatment.
Collapse
Affiliation(s)
| | | | - Amir Atashi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
| | - Alireza Momeni
- Department of hematology and Oncology, School of Medicine
| | - Mahin Behzadifard
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
3
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Han Y, Li W, zhi R, Ma G, Gao A, Wu K, Sun H, Zhao D, Yang Y, Liu F, Gu F, Guo X, Dong J, Li S, Fu L. MiR-30c suppresses the proliferation, metastasis and polarity reversal of tumor cell clusters by targeting MTDH in invasive micropapillary carcinoma of the breast. Heliyon 2024; 10:e33938. [PMID: 39071710 PMCID: PMC11279262 DOI: 10.1016/j.heliyon.2024.e33938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Invasive micropapillary carcinoma (IMPC) of the breast has a high propensity for lymphovascular invasion and axillary lymph node metastasis and displays an 'inside-out' growth pattern, but the molecular mechanism of invasion, metastasis and cell polarity reversal in IMPC is unclear. Methods and Patients: Cell growth curves, tumor sphere formation assays, transwell assays, mouse xenograft model and immunofluorescence were evaluated to investigate the effects of miR-30c and MTDH. Dual luciferase reporter assays was performed to confirm that the MTDH (metadherin) 3'UTR bound to miR-30c. MiRNA in situ hybridization (ISH) and immunohistochemistry (IHC) were carried out on IMPC patient tissues for miR-30c and MTDH expression, respectively. Results We found miR-30c as a tumor suppressor gene in cell proliferation, metastasis and polarity reversal of IMPC. Overexpression of miR-30c inhibited cell growth and metastasis in vitro and in vivo. MiR-30c could directly target the MTDH 3'UTR. MiR-30c overexpression inhibited breast cancer cell proliferation, invasion and metastasis by targeting MTDH. Moreover, miR-30c/MTDH axis could also regulate cell polarity reversal of IMPC. By ISH and IHC analyses, miR-30c and MTDH were significantly correlated with tumor size, lymph nodule status and tumor grade, the 'inside-out' growth pattern, overall survival (OS) and disease-free survival (DFS) in IMPC patients. Conclusions Overall, miR-30c/MTDH axis was responsible for tumor proliferation, metastasis and polarity reversal. It may provide promising therapeutic targets and prognostic biomarkers for patients with IMPC.
Collapse
Affiliation(s)
- Yunwei Han
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Renyong zhi
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Gui Ma
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Kailiang Wu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Dan Zhao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Yiling Yang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Fangfang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Xiaojing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Jintang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, China
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365C Clifton Road, Atlanta, 30322, Georgia, USA
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center of Cancer, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
- Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin 300060, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Ahmed N, Preisinger C, Wilhelm T, Huber M. TurboID-Based IRE1 Interactome Reveals Participants of the Endoplasmic Reticulum-Associated Protein Degradation Machinery in the Human Mast Cell Leukemia Cell Line HMC-1.2. Cells 2024; 13:747. [PMID: 38727283 PMCID: PMC11082977 DOI: 10.3390/cells13090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The unfolded protein response is an intricate system of sensor proteins in the endoplasmic reticulum (ER) that recognizes misfolded proteins and transmits information via transcription factors to either regain proteostasis or, depending on the severity, to induce apoptosis. The main transmembrane sensor is IRE1α, which contains cytoplasmic kinase and RNase domains relevant for its activation and the mRNA splicing of the transcription factor XBP1. Mast cell leukemia (MCL) is a severe form of systemic mastocytosis. The inhibition of IRE1α in the MCL cell line HMC-1.2 has anti-proliferative and pro-apoptotic effects, motivating us to elucidate the IRE1α interactors/regulators in HMC-1.2 cells. Therefore, the TurboID proximity labeling technique combined with MS analysis was applied. Gene Ontology and pathway enrichment analyses revealed that the majority of the enriched proteins are involved in vesicle-mediated transport, protein stabilization, and ubiquitin-dependent ER-associated protein degradation pathways. In particular, the AAA ATPase VCP and the oncoprotein MTDH as IRE1α-interacting proteins caught our interest for further analyses. The pharmacological inhibition of VCP activity resulted in the increased stability of IRE1α and MTDH as well as the activation of IRE1α. The interaction of VCP with both IRE1α and MTDH was dependent on ubiquitination. Moreover, MTDH stability was reduced in IRE1α-knockout cells. Hence, pharmacological manipulation of IRE1α-MTDH-VCP complex(es) might enable the treatment of MCL.
Collapse
Affiliation(s)
- Nabil Ahmed
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany (T.W.)
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany (T.W.)
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany (T.W.)
| |
Collapse
|
6
|
Leem E, Kim S, Sharma C, Nam Y, Kim TY, Shin M, Lee SG, Kim J, Kim SR. Inhibition of Granule Cell Dispersion and Seizure Development by Astrocyte Elevated Gene-1 in a Mouse Model of Temporal Lobe Epilepsy. Biomolecules 2024; 14:380. [PMID: 38540798 PMCID: PMC10968595 DOI: 10.3390/biom14030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Although granule cell dispersion (GCD) in the hippocampus is known to be an important feature associated with epileptic seizures in temporal lobe epilepsy (TLE), the endogenous molecules that regulate GCD are largely unknown. In the present study, we have examined whether there is any change in AEG-1 expression in the hippocampus of a kainic acid (KA)-induced mouse model of TLE. In addition, we have investigated whether the modulation of astrocyte elevated gene-1 (AEG-1) expression in the dentate gyrus (DG) by intracranial injection of adeno-associated virus 1 (AAV1) influences pathological phenotypes such as GCD formation and seizure susceptibility in a KA-treated mouse. We have identified that the protein expression of AEG-1 is upregulated in the DG of a KA-induced mouse model of TLE. We further demonstrated that AEG-1 upregulation by AAV1 delivery in the DG-induced anticonvulsant activities such as the delay of seizure onset and inhibition of spontaneous recurrent seizures (SRS) through GCD suppression in the mouse model of TLE, while the inhibition of AEG-1 expression increased susceptibility to seizures. The present observations suggest that AEG-1 is a potent regulator of GCD formation and seizure development associated with TLE, and the significant induction of AEG-1 in the DG may have therapeutic potential against epilepsy.
Collapse
Affiliation(s)
- Eunju Leem
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, Daegu 41566, Republic of Korea; (E.L.); (S.K.); (C.S.); (T.Y.K.)
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
- Efficacy Evaluation Department, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Sehwan Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, Daegu 41566, Republic of Korea; (E.L.); (S.K.); (C.S.); (T.Y.K.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Chanchal Sharma
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, Daegu 41566, Republic of Korea; (E.L.); (S.K.); (C.S.); (T.Y.K.)
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Tae Yeon Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, Daegu 41566, Republic of Korea; (E.L.); (S.K.); (C.S.); (T.Y.K.)
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Seok-Geun Lee
- Department of Biomedical Science & Technology and BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Sang Ryong Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, Daegu 41566, Republic of Korea; (E.L.); (S.K.); (C.S.); (T.Y.K.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea;
| |
Collapse
|
7
|
Sriramulu S, Malayaperumal S, Banerjee A, Anbalagan M, Kumar MM, Radha RKN, Liu X, Zhang H, Hu G, Sun XF, Pathak S. AEG-1 as a Novel Therapeutic Target in Colon Cancer: A Study from Silencing AEG-1 in BALB/c Mice to Large Data Analysis. Curr Gene Ther 2024; 24:307-320. [PMID: 38783530 DOI: 10.2174/0115665232273077240104045022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Astrocyte elevated gene-1 (AEG-1) is overexpressed in various malignancies. Exostosin-1 (EXT-1), a tumor suppressor, is an intermediate for malignant tumors. Understanding the mechanism behind the interaction between AEG-1 and EXT-1 may provide insights into colon cancer metastasis. METHODS AOM/DSS was used to induce tumor in BALB/c mice. Using an in vivo-jetPEI transfection reagent, transient transfection of AEG-1 and EXT-1 siRNAs were achieved. Histological scoring, immunohistochemical staining, and gene expression studies were performed from excised tissues. Data from the Cancer Genomic Atlas and GEO databases were obtained to identify the expression status of AEG-1 and itsassociation with the survival. RESULTS In BALB/c mice, the AOM+DSS treated mice developed necrotic, inflammatory and dysplastic changes in the colon with definite clinical symptoms such as loss of goblet cells, colon shortening, and collagen deposition. Administration of AEG-1 siRNA resulted in a substantial decrease in the disease activity index. Mice treated with EXT-1 siRNA showed diffusely reduced goblet cells. In vivo investigations revealed that PTCH-1 activity was influenced by upstream gene AEG-1, which in turn may affect EXT-1 activity. Data from The Cancer Genomic Atlas and GEO databases confirmed the upregulation of AEG-1 and downregulation of EXT-1 in cancer patients. CONCLUSIONS This study revealed that AEG-1 silencing might alter EXT-1 expression indirectly through PTCH-1, influencing cell-ECM interactions, and decreasing dysplastic changes, proliferation and invasion.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Makalakshmi Murali Kumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Rajesh Kanna Nandagopal Radha
- Department of Pathology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Basic Medicine and Biological Sciences, Suzhou, China
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Guang Hu
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| |
Collapse
|
8
|
Liao SY, Rudoy D, Frank SB, Phan LT, Klezovitch O, Kwan J, Coleman I, Haffner MC, Li D, Nelson PS, Emili A, Vasioukhin V. SND1 binds to ERG and promotes tumor growth in genetic mouse models of prostate cancer. Nat Commun 2023; 14:7435. [PMID: 37973913 PMCID: PMC10654515 DOI: 10.1038/s41467-023-43245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
SND1 and MTDH are known to promote cancer and therapy resistance, but their mechanisms and interactions with other oncogenes remain unclear. Here, we show that oncoprotein ERG interacts with SND1/MTDH complex through SND1's Tudor domain. ERG, an ETS-domain transcription factor, is overexpressed in many prostate cancers. Knocking down SND1 in human prostate epithelial cells, especially those overexpressing ERG, negatively impacts cell proliferation. Transcriptional analysis shows substantial overlap in genes regulated by ERG and SND1. Mechanistically, we show that ERG promotes nuclear localization of SND1/MTDH. Forced nuclear localization of SND1 prominently increases its growth promoting function irrespective of ERG expression. In mice, prostate-specific Snd1 deletion reduces cancer growth and tumor burden in a prostate cancer model (PB-Cre/Ptenflox/flox/ERG mice), Moreover, we find a significant overlap between prostate transcriptional signatures of ERG and SND1. These findings highlight SND1's crucial role in prostate tumorigenesis, suggesting SND1 as a potential therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Sheng-You Liao
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dmytro Rudoy
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sander B Frank
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Luan T Phan
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julian Kwan
- Center for Network Systems Biology, Departments of Biochemistry & Biology, Boston University, Boston, MA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Dapei Li
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Departments of Biochemistry & Biology, Boston University, Boston, MA, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Zhang R, Chen J, Wang S, Zhang W, Zheng Q, Cai R. Ferroptosis in Cancer Progression. Cells 2023; 12:1820. [PMID: 37508485 PMCID: PMC10378139 DOI: 10.3390/cells12141820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Ferroptosis is a newly discovered iron-dependent form of regulated cell death driven by phospholipid peroxidation and associated with processes including iron overload, lipid peroxidation, and dysfunction of cellular antioxidant systems. Ferroptosis is found to be closely related to many diseases, including cancer at every stage. Epithelial-mesenchymal transition (EMT) in malignant tumors that originate from epithelia promotes cancer-cell migration, invasion, and metastasis by disrupting cell-cell and cell-cell matrix junctions, cell polarity, etc. Recent studies have shown that ferroptosis appears to share multiple initiators and overlapping pathways with EMT in cancers and identify ferroptosis as a potential predictor of various cancer grades and prognoses. Cancer metastasis involves multiple steps, including local invasion of cancer cells, intravasation, survival in circulation, arrest at a distant organ site, extravasation and adaptation to foreign tissue microenvironments, angiogenesis, and the formation of "premetastatic niche". Numerous studies have revealed that ferroptosis is closely associated with cancer metastasis. From the cellular perspective, ferroptosis has been implicated in the regulation of cancer metastasis. From the molecular perspective, the signaling pathways activated during the two events interweave. This review briefly introduces the mechanisms of ferroptosis and discusses how ferroptosis is involved in cancer progression, including EMT, cancer angiogenesis, invasion, and metastasis.
Collapse
Affiliation(s)
- Rongyu Zhang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinghong Chen
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Saiyang Wang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenlong Zhang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quan Zheng
- Center for Singl-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Ortiz-Soto G, Babilonia-Díaz NS, Lacourt-Ventura MY, Rivera-Rodríguez DM, Quiñones-Rodríguez JI, Colón-Vargas M, Almodóvar-Rivera I, Ferrer-Torres LE, Suárez-Arroyo IJ, Martínez-Montemayor MM. Metadherin Regulates Inflammatory Breast Cancer Invasion and Metastasis. Int J Mol Sci 2023; 24:4694. [PMID: 36902125 PMCID: PMC10002532 DOI: 10.3390/ijms24054694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Inflammatory breast cancer (IBC) is one of the most lethal subtypes of breast cancer (BC), accounting for approximately 1-5% of all cases of BC. Challenges in IBC include accurate and early diagnosis and the development of effective targeted therapies. Our previous studies identified the overexpression of metadherin (MTDH) in the plasma membrane of IBC cells, further confirmed in patient tissues. MTDH has been found to play a role in signaling pathways related to cancer. However, its mechanism of action in the progression of IBC remains unknown. To evaluate the function of MTDH, SUM-149 and SUM-190 IBC cells were edited with CRISPR/Cas9 vectors for in vitro characterization studies and used in mouse IBC xenografts. Our results demonstrate that the absence of MTDH significantly reduces IBC cell migration, proliferation, tumor spheroid formation, and the expression of NF-κB and STAT3 signaling molecules, which are crucial oncogenic pathways in IBC. Furthermore, IBC xenografts showed significant differences in tumor growth patterns, and lung tissue revealed epithelial-like cells in 43% of wild-type (WT) compared to 29% of CRISPR xenografts. Our study emphasizes the role of MTDH as a potential therapeutic target for the progression of IBC.
Collapse
Affiliation(s)
- Gabriela Ortiz-Soto
- Department of Biochemistry, Universidad Central del Caribe-School of Medicine, Bayamón, PR 00960, USA
| | - Natalia S. Babilonia-Díaz
- Department of Biochemistry, Universidad Central del Caribe-School of Medicine, Bayamón, PR 00960, USA
| | | | | | - Jailenne I. Quiñones-Rodríguez
- Department of Clinical Anatomy, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR 00960, USA
| | - Mónica Colón-Vargas
- Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA
| | - Israel Almodóvar-Rivera
- Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA
| | - Luis E. Ferrer-Torres
- Department of Pathology and Laboratory Medicine, Hospital Interamericano de Medicina Avanzada (H.I.M.A.)—San Pablo Caguas, Caguas, PR 00725, USA
- Department of Immunopathology, Hato Rey Pathology Associates Inc. (HRPLABS), San Juan, PR 00936, USA
| | - Ivette J. Suárez-Arroyo
- Department of Biochemistry, Universidad Central del Caribe-School of Medicine, Bayamón, PR 00960, USA
| | | |
Collapse
|
11
|
Komaniecki G, Camarena MDC, Gelsleichter E, Mendoza R, Subler M, Windle JJ, Dozmorov MG, Lai Z, Sarkar D, Lin H. Astrocyte Elevated Gene-1 Cys75 S-Palmitoylation by ZDHHC6 Regulates Its Biological Activity. Biochemistry 2023; 62:543-553. [PMID: 36548985 PMCID: PMC9850907 DOI: 10.1021/acs.biochem.2c00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease is a major risk factor for hepatocellular carcinoma (HCC). Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) augments lipid accumulation (steatosis), inflammation, and tumorigenesis, thereby promoting the whole spectrum of this disease process. Targeting AEG-1 is a potential interventional strategy for nonalcoholic steatohepatitis (NASH) and HCC. Thus, proper understanding of the regulation of this molecule is essential. We found that AEG-1 is palmitoylated at residue cysteine 75 (Cys75). Mutation of Cys75 to serine (Ser) completely abolished AEG-1 palmitoylation. We identified ZDHHC6 as a palmitoyltransferase catalyzing the process in HEK293T cells. To obtain insight into how palmitoylation regulates AEG-1 function, we generated knock-in mice by CRISPR/Cas9 in which Cys75 of AEG-1 was mutated to Ser (AEG-1-C75S). No developmental or anatomical abnormality was observed between AEG-1-wild type (AEG-1-WT) and AEG-1-C75S littermates. However, global gene expression analysis by RNA-sequencing unraveled that signaling pathways and upstream regulators, which contribute to cell proliferation, motility, inflammation, angiogenesis, and lipid accumulation, were activated in AEG-1-C75S hepatocytes compared to AEG-1-WT. These findings suggest that AEG-1-C75S functions as dominant positive and that palmitoylation restricts oncogenic and NASH-promoting functions of AEG-1. We thus identify a previously unknown regulatory mechanism of AEG-1, which might help design new therapeutic strategies for NASH and HCC.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- C.
Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Maria Del Carmen Camarena
- C.
Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Eric Gelsleichter
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Rachel Mendoza
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Mark Subler
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Jolene J. Windle
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- VCU
Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mikhail G. Dozmorov
- Department
of Biostatistics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Department
of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Zhao Lai
- Greehy
Children’s Cancer Research Institute, University of Texas Health
Science Center San Antonio, San Antonio, Texas 78229, United States
| | - Devanand Sarkar
- Department
of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- VCU
Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology,
Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Jin C, Han-Hua D, Qiu-Meng L, Deng N, Peng-Chen D, Jie M, Lei X, Xue-Wu Z, Hui-Fang L, Yan C, Xiao-Ping C, Bi-Xiang Z. MTDH-stabilized DDX17 promotes tumor initiation and progression through interacting with YB1 to induce EGFR transcription in Hepatocellular Carcinoma. Oncogene 2023; 42:169-183. [PMID: 36385375 DOI: 10.1038/s41388-022-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Metadherin (MTDH) is a well-established oncogene in various cancers including Hepatocellular Carcinoma (HCC). However, the precise mechanism through which MTDH promotes cancer-related signaling pathways in HCC remains unknown. In this study, we identified DDX17 as a novel binding partner of MTDH. Furthermore, MTDH increased the protein level of DDX17 by inhibiting its ubiquitination. We confirmed that DDX17 was a novel oncogene, with dramatically upregulated expression in HCC tissues. The increased expression of DDX17 was closely associated with vascular invasion, TNM stage, BCLC stage, and poor prognosis. In vitro and in vivo tests demonstrated that DDX17, a downstream target of MTDH, played a crucial role in tumor initiation and progression. Mechanistically, DDX17 acted as a transcriptional regulator that interacted with Y-box binding protein 1 (YB1) in the nucleus, which in turn drove the binding of YB1 to its target epidermal growth factor receptor (EGFR) gene promoter to increase its transcription. This in turn increased expression of EGFR and the activation of the downstream MEK/pERK signaling pathway. Our results identify DDX17, stabilized by MTDH, as a powerful oncogene in HCC and suggest that the DDX17/YB1/EGFR axis contributes to tumorigenesis and metastasis of HCC.
Collapse
Affiliation(s)
- Chen Jin
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Han-Hua
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Qiu-Meng
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Deng
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Du Peng-Chen
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mo Jie
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Lei
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Xue-Wu
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Hui-Fang
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Yan
- General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Xiao-Ping
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhang Bi-Xiang
- Hepatic Surgery Center, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Hubei key laboratory of hepato-pancreato-biliary diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
13
|
Dysregulation of miRISC Regulatory Network Promotes Hepatocellular Carcinoma by Targeting PI3K/Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911300. [PMID: 36232606 PMCID: PMC9569668 DOI: 10.3390/ijms231911300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the third leading malignancy worldwide, causing high mortality in adults and children. The neuropathology-associated gene AEG-1 functions as a scaffold protein to correctly assemble the RNA-induced silencing complex (RISC) and optimize or increase its activity. The overexpression of oncogenic miRNAs periodically degrades the target tumor suppressor genes. Oncogenic miR-221 plays a seminal role in the carcinogenesis of HCC. Hence, the exact molecular and biological functions of the oncogene clusters miR-221/AEG-1 axis have not yet been examined widely in HCC. Here, we explored the expression of both miR-221 and AEG-1 and their target/associate genes by qRT-PCR and western blot. In addition, the role of the miR-221/AEG-1 axis was studied in the HCC by flow cytometry analysis. The expression level of the AEG-1 did not change in the miR-221 mimic, and miR-221-transfected HCC cells, on the other hand, decreased the miR-221 expression in AEG-1 siRNA-transfected HCC cells. The miR-221/AEG-1 axis silencing induces apoptosis and G2/M phase arrest and inhibits cellular proliferation and angiogenesis by upregulating p57, p53, RB, and PTEN and downregulating LSF, LC3A, Bcl-2, OPN, MMP9, PI3K, and Akt in HCC cells.
Collapse
|
14
|
Abstract
The term "molecular ZIP (or area) codes" refers to an originally hypothetical system of cell adhesion molecules that would control cell trafficking in the body. Subsequent discovery of the integrins, cadherins, and other cell adhesion molecules confirmed this hypothesis. The recognition system encompassing integrins and their ligands came particularly close to fulfilling the original ZIP code hypothesis, as multiple integrins with closely related specificities mediate cell adhesion by binding to an RGD or related sequence in various extracellular matrix proteins. Diseased tissues have their own molecular addresses that, although not necessarily involved in cell trafficking, can be made use of in targeted drug delivery. This article discusses the molecular basis of ZIP codes and the extensive effort under way to harness them for drug delivery purposes.
Collapse
|
15
|
Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23126806. [PMID: 35743249 PMCID: PMC9224686 DOI: 10.3390/ijms23126806] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Metastasis is the leading cause of high mortality in most cancers. Although predicting the early stage of breast cancer before metastasis can increase the survival rate, breast cancer is often discovered or diagnosed after metastasis has occurred. In general, breast cancer has a poor prognosis because it starts as a local disease and can spread to lymph nodes or distant organs, contributing to a significant impediment in breast cancer treatment. Metastatic breast cancer cells acquire aggressive characteristics from the tumor microenvironment (TME) through several mechanisms including epithelial–mesenchymal transition (EMT) and epigenetic regulation. Therefore, understanding the nature and mechanism of breast cancer metastasis can facilitate the development of targeted therapeutics focused on metastasis. This review discusses the mechanisms leading to metastasis and the current therapies to improve the early diagnosis and prognosis in patients with metastatic breast cancer.
Collapse
|
16
|
To SKY, Tang MKS, Tong Y, Zhang J, Chan KKL, Ip PPC, Shi J, Wong AST. A Selective β-Catenin-Metadherin/CEACAM1-CCL3 Axis Mediates Metastatic Heterogeneity upon Tumor-Macrophage Interaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103230. [PMID: 35403834 PMCID: PMC9165500 DOI: 10.1002/advs.202103230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/31/2022] [Indexed: 05/23/2023]
Abstract
Tumor heterogeneity plays a key role in cancer relapse and metastasis, however, the distinct cellular behaviors and kinetics of interactions among different cancer cell subclones and the tumor microenvironment are poorly understood. By profiling an isogenic model that resembles spontaneous human ovarian cancer metastasis with an highly metastatic (HM) and non-metastatic (NM) tumor cell pair, one finds an upregulation of Wnt/β-catenin signaling uniquely in HM. Using humanized immunocompetent mice, one shows for the first time that activated β-catenin acts nonautonomously to modulate the immune microenvironment by enhancing infiltrating tumor-associated macrophages (TAM) at the metastatic site. Single-cell time-lapse microscopy further reveals that upon contact with macrophages, a significant subset of HM, but not NM, becomes polyploid, a phenotype pivotal for tumor aggressiveness and therapy resistance. Moreover, HM, but not NM, polarizes macrophages to a TAM phenotype. Mechanistically, β-catenin upregulates cancer cell surface metadherin, which communicates through CEACAM1 expressed on macrophages to produce CCL3. Tumor xenografts in humanized mice and clinical patient samples both corroborate the relevance of enhanced metastasis, TAM activation, and polyploidy in vivo. The results thus suggest that targeting the β-catenin-metadherin/CEACAM1-CCL3 positive feedback cascade holds great therapeutic potential to disrupt polyploidization of the cancer subclones that drive metastasis.
Collapse
Affiliation(s)
- Sally K. Y. To
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Maggie K. S. Tang
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology Limited17W, Hong Kong Science and Technology Parks, New TerritoriesHong KongChina
| | - Yin Tong
- Department of PathologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong Kong
| | - Jiangwen Zhang
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Karen K. L. Chan
- Department of Obstetrics & GynaecologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong KongChina
| | - Philip P. C. Ip
- Department of PathologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong Kong
| | - Jue Shi
- Centre for Quantitative Systems Biology and Department of PhysicsHong Kong Baptist UniversityHong KongChina
| | - Alice S. T. Wong
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| |
Collapse
|
17
|
Shi P, Liu Y, Yang H, Hu B. Breast cancer derived exosomes promoted angiogenesis of endothelial cells in microenvironment via circHIPK3/miR-124-3p/MTDH axis. Cell Signal 2022; 95:110338. [PMID: 35460835 DOI: 10.1016/j.cellsig.2022.110338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
Circular RNAs (circRNAs) are important contents in exosomes, which can regulate peripheral cell functions, thus influencing the tumor microenvironment. This work investigated the mechanisms underlying the angiogenesis in peripheral human endothelial cells (ECs) mediated by the breast cancer (BC) cells derived exosomal circRNAs and aimed to explore the biomarkers for the anti-angiogenesis therapy for BC.The BC cell derived exosomes were extracted and the expression level and the circular formation of HIPK3 enclosed was determined. To examine the impact of this exosomal circRNA on ECs, cell viability and tube formation were determined in recipient cells co-cultured with exosomes or transfected with circHIPK3 and the related controls. Target microRNAs (miRNAs) for circHIPK3 and target genes for miRNAs were predicted and confirmed by multiple assays like dual luciferase reporter assay, western blot, and qPCR assays. The existence of the circHIPK3/miR-124-3p/MTDH axis were further confirmed with rescue experiment in mice xenograft model.HIPK3s were mainly in forms of circRNAs and were highly expressed in the BC cell derived exosomes, which could be absorbed by the recipient ECs. The cell viability and angiogenesis in ECs were enhanced when treated with circHIPK3s and decreased when treated with circHIPK3-si. Furthermore, MTDH was proved to be the responsible gene in this process which was regulated by miR-124-3p, the local miRNA sponged by the exosomal circHIPK3.circHIPK3 enclosed in the BC cell-derived exosomes enhanced MTDH expression in the endothelial cell by sponging miR-124-3p, favoring the tube formation in ECs, which might serve as a therapeutic target for anti-angiogenesis therapy for breast cancer.
Collapse
Affiliation(s)
- Pengfei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China
| | - Hua Yang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China.
| | - Bo Hu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China.
| |
Collapse
|
18
|
Rajesh Y, Reghupaty SC, Mendoza RG, Manna D, Banerjee I, Subler MA, Weldon K, Lai Z, Giashuddin S, Fisher PB, Sanyal AJ, Martin RK, Dozmorov MG, Windle JJ, Sarkar D. Dissecting the Balance Between Metabolic and Oncogenic Functions of Astrocyte-Elevated Gene-1/Metadherin. Hepatol Commun 2022; 6:561-575. [PMID: 34741448 PMCID: PMC8870024 DOI: 10.1002/hep4.1834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 10/02/2021] [Indexed: 12/02/2022] Open
Abstract
Obesity is an enormous global health problem, and obesity-induced nonalcoholic steatohepatitis (NASH) is contributing to a rising incidence and mortality for hepatocellular carcinoma (HCC). Increase in de novo lipogenesis and decrease in fatty acid β-oxidation (FAO) underlie hepatic lipid accumulation in NASH. Astrocyte-elevated gene-1/metadherin (AEG-1) overexpression contributes to both NASH and HCC. AEG-1 harbors an LXXLL motif through which it blocks activation of peroxisome proliferator activated receptor α (PPARα), a key regulator of FAO. To better understand the role of LXXLL motif in mediating AEG-1 function, using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, we generated a mouse model (AEG-1-L24K/L25H) in which the LXXLL motif in AEG-1 was mutated to LXXKH. We observed increased activation of PPARα in AEG-1-L24K/L25H livers providing partial protection from high-fat diet-induced steatosis. Interestingly, even with equal gene dosage levels, compared with AEG-1-wild-type livers, AEG-1-L24K/L25H livers exhibited increase in levels of lipogenic enzymes, mitogenic activity and inflammation, which are attributes observed when AEG-1 is overexpressed. These findings indicate that while LXXLL motif favors steatotic activity of AEG-1, it keeps in check inflammatory and oncogenic functions, thus maintaining a homeostasis in AEG-1 function. AEG-1 is being increasingly appreciated as a viable target for ameliorating NASH and NASH-HCC, and as such, in-depth understanding of the functions and molecular attributes of this molecule is essential. Conclusion: The present study unravels the unique role of the LXXLL motif in mediating the balance between the metabolic and oncogenic functions of AEG-1.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | | | - Rachel G Mendoza
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Debashri Manna
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Indranil Banerjee
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Mark A Subler
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Korri Weldon
- Greehey Children's Cancer Research InstituteUniversity of Texas Health Science Center San AntonioSan AntonioTXUSA
| | - Zhao Lai
- Greehey Children's Cancer Research InstituteUniversity of Texas Health Science Center San AntonioSan AntonioTXUSA
| | - Shah Giashuddin
- Department of Pathology and Laboratory MedicineNew York Presbyterian Health System at Weill Cornell Medical CollegeNew YorkNYUSA
| | - Paul B Fisher
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA.,Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA.,VCU Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Arun J Sanyal
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Rebecca K Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mikhail G Dozmorov
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Jolene J Windle
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA.,Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Devanand Sarkar
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA.,Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA.,VCU Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
19
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Zhu Q, Li K, Li H, Han F, Tang Z, Wang Z. Ketamine Induced Bladder Fibrosis Through MTDH/P38 MAPK/EMT Pathway. Front Pharmacol 2022; 12:743682. [PMID: 35153736 PMCID: PMC8837385 DOI: 10.3389/fphar.2021.743682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/29/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose: Ketamine is an anesthetic in clinical, but it has also been used as an abusing drug due to its low price and hallucinogenic effects. It is proved that ketamine abusing would cause multiple system damage including the urinary system, which is called ketamine-induced cystitis (KIC). Bladder fibrosis is late stage in KIC and threaten abusers’ life. This study aimed to investigate the molecular mechanism of ketamine-induced bladder fibrosis.Methods: Female Sprague Dawley (SD) rats were randomly divided into 3 groups. 2 groups were treated with tail vein injection of ketamine (25 mg/kg/day, 50 mg/kg/day ketamine hydrochloride solution, respectively) for 12 weeks, whereas the control group was treated with normal saline solution. In each group, rat bladders were extracted and samples were examined for pathological and morphological alterations via hematoxylin and eosin (HE) staining, Masson’s trichrome staining and immunohistochemistry (IHC). SV-HUC-1 cells were treated with different concentrations of ketamine solution (0, 0.1, 0.5, 1 mmol/L). Rat bladder and SV-HUC-1 cells were extracted protein and RNA for Western blot and RT-PCR detection. Metadherin (MTDH) siRNAs and overexpression plasmids were used to knock down and overexpress the relative genes. P38 mitogen-activated protein kinase (MAPK) inhibitor was utilized to inhibit the MAPK pathway.Results: Rats in the ketamine group exhibited fibrosis compared to rats of the control group and fibrosis were also markedly upregulated in SV-HUC-1 cells after treated with ketamine, which were ketamine concentration-dependent. After treating with ketamine in SV-HUC-1 cells, there was an increase expression of MTDH, epithelial-mesenchymal transition (EMT) markers, P38 MAPK. MTDH knockdown would suppresses P38 MAPK/EMT pathway to inhibit fibrosis, however, MTDH overexpression could promote the pathway in SV-HUC-1 cells.Conclusion: In rats and SV-HUC-1 cells ketamine-treated models, MTDH can regulate EMT through the P38 MAPK pathway to regulate the process of bladder fibrosis.
Collapse
Affiliation(s)
- Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kaixuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haozhen Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Han
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, China
| | - Zhao Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao Wang,
| |
Collapse
|
21
|
Cai Y, Zhao X, Chen D, Zhang F, Chen Q, Shao CC, Ouyang YX, Feng J, Cui L, Chen M, Xu J. circ-NOL10 regulated by MTDH/CASC3 inhibits breast cancer progression and metastasis via multiple miRNAs and PDCD4. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:773-786. [PMID: 34729247 PMCID: PMC8526500 DOI: 10.1016/j.omtn.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) play important roles in carcinogenesis. Here, we investigated the mechanisms and clinical significance of circ-NOL10, a highly repressed circRNA in breast cancer. Subsequently, we also identified RNA-binding proteins (RBPs) that regulate circ-NOL10. Bioinformatics analysis was utilized to predict regulatory RBPs as well as circ-NOL10 downstream microRNAs (miRNAs) and mRNA targets. RNA immunoprecipitation, luciferase assay, fluorescence in situ hybridization, cell proliferation, wound healing, Matrigel invasion, cell apoptosis assays, and a xenograft model were used to investigate the function and mechanisms of circ-NOL10 in vitro and in vivo. The clinical value of circ-NOL10 was evaluated in a large cohort of breast cancer by quantitative real-time PCR. Circ-NOL10 is downregulated in breast cancer and associated with aggressive characteristics and shorter survival time. Upregulation of circ-NOL10 promotes apoptosis, decreases proliferation, and inhibits invasion and migration. Furthermore, circ-NOL10 binds multiple miRNAs to alleviate carcinogenesis by regulating PDCD4. CASC3 and metadherin (MTDH) can bind directly to circ-NOL10 with characterized motifs. Accordingly, ectopic expression or depletion of CASC3 or MTDH leads to circ-NOL10 expression changes, suggesting that these two RBPs modulate circ-NOL10 in cancer cells. circ-NOL10 is a novel biomarker for diagnosis and prognosis in breast cancer. These results highlight the importance of therapeutic targeting of the RBP-noncoding RNA (ncRNA) regulation network.
Collapse
Affiliation(s)
- Yujie Cai
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Xing Zhao
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700 RB Groningen, the Netherlands
| | - Danze Chen
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Fan Zhang
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Qiuyang Chen
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Chang-Chun Shao
- ChangJiang Scholar’s Laboratory, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Yan-Xiu Ouyang
- ChangJiang Scholar’s Laboratory, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Jun Feng
- Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101 Fujian, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Min Chen
- Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101 Fujian, China
- Corresponding author Min Chen, Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101, Fujian, China
| | - Jianzhen Xu
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Corresponding author Jianzhen Xu, Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China.
| |
Collapse
|
22
|
Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol Biol Rep 2021; 48:8075-8095. [PMID: 34671902 PMCID: PMC8605995 DOI: 10.1007/s11033-021-06752-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is a rapidly evolving concept that has been given the tag "fifth pillar" of cancer therapy while radiation therapy, chemotherapy, surgery and targeted therapy remain the other four pillars. This involves the stimulation of the immune system to control tumor growth and it specifically targets the neoplastic cells rather than the normal cells. Conventional chemotherapy has many limitations which include drug resistance, recurrence of cancer and severe adverse effects. Immunology has made major treatment breakthroughs for several cancers such as colorectal cancer, prostate cancer, breast cancer, lung cancer, liver cancer, kidney cancer, stomach cancer, acute lymphoblastic leukaemia etc. Currently, therapeutic strategies harnessing the immune system involve Checkpoint inhibitors, Chimeric antigen receptor T cells (CAR T cells), Monoclonal antibodies, Cancer vaccines, Cytokines, Radio-immunotherapy and Oncolytic virus therapy. The molecular characterization of several tumor antigens (TA) indicates that these TA can be utilized as promising candidates in cancer immunotherapy strategies. Here in this review, we highlight and summarize the different categories of emerging cancer immunotherapies along with the immunologically recognized tumor antigens involved in the tumor microenvironment.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Balachandran S Vinod
- Department of Biochemistry, Sree Narayana College, Kollam, Kerala, 691001, India.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
23
|
Chen Y, Huang S, Guo R, Chen D. Metadherin-mediated mechanisms in human malignancies. Biomark Med 2021; 15:1769-1783. [PMID: 34783585 DOI: 10.2217/bmm-2021-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metadherin (MTDH) has been recognized as a novel protein that is critical for the progression of multiple types of human malignancies. Studies have reported that MTDH enhances the metastatic potential of cancer cells by regulating multiple signaling pathways. miRNAs and various tumor-related proteins have been shown to interact with MTDH, making it a potential therapeutic target as well as a biomarker in human malignancies. MTDH plays a critical role in inflammation, angiogenesis, hypoxia, epithelial-mesenchymal transition and autophagy. In this review, we present the function and mechanisms of MTDH for cancer initiation and progression.
Collapse
Affiliation(s)
- Yuyuan Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Sheng Huang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Rong Guo
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Dedian Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| |
Collapse
|
24
|
Wang Y, Dong L, Wan F, Chen F, Liu D, Chen D, Long J. MiR-9-3p regulates the biological functions and drug resistance of gemcitabine-treated breast cancer cells and affects tumor growth through targeting MTDH. Cell Death Dis 2021; 12:861. [PMID: 34552061 PMCID: PMC8458456 DOI: 10.1038/s41419-021-04145-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
This study explored the role of MTDH in regulating the sensitivity of breast cancer cell lines to gemcitabine (Gem) and the potential miRNAs targeting MTDH. The expression of MTDH in cancer tissues and cells was detected by immunohistochemical staining or qRT-PCR. The target genes for MTDH were predicted by bioinformatics and further confirmed by dual-luciferase reporter assay and qRT-PCR. Cancer cells were transfected with siMTDH, MTDH, miR-9-3p inhibitor, or mimics and treated by Gem, then CCK-8, colony formation assay, tube formation assay, flow cytometry, wound healing assay, and Transwell were performed to explore the effects of MTDH, miR-9-3p, and Gem on cancer cell growth, apoptosis, migration, and invasion. Expressions of VEGF, p53, cleaved caspase-3, MMP-2, MMP-9, E-Cadherin, N-Cadherin, and Vimentin were determined by Western blot. MTDH was high-expressed in cancer tissues and cells, and the cells with high-expressed MTDH were less sensitive to Gem, while silencing MTDH expression significantly promoted the effect of Gem on inducing apoptosis, inhibiting cell migration, invasion, and growth, and on regulating protein expressions of cancer cells. Moreover, miR-9-3p had a targeted binding relationship with MTDH, and overexpressed miR-9-3p greatly promoted the toxic effects of Gem on cancer cells and expressions of apoptosis-related proteins, whereas overexpressed MTDH partially reversed such effects of overexpressed miR-9-3p. The study proved that miR-9-3p regulates biological functions, drug resistance, and the growth of Gem-treated breast cancer cells through targeting MTDH.
Collapse
Affiliation(s)
- Yike Wang
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Dong
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang Wan
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangfang Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Dianlei Liu
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Deqin Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingpei Long
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Zeng T, Cao Y, Jin T, Tian Y, Dai C, Xu F. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:285. [PMID: 34507594 PMCID: PMC8431939 DOI: 10.1186/s13046-021-02053-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023]
Abstract
The recent discovery of immune checkpoint inhibitors is a significant milestone in cancer immunotherapy research. However, some patients with primary or adaptive drug resistance might not benefit from the overall therapeutic potential of immunotherapy in oncology. Thus, it is becoming increasingly critical for oncologists to explore the availability of new immune checkpoint inhibitors. An emerging co-inhibitory receptor, CD112R (also called PVRIG), is most commonly expressed on natural killer (NK) and T cells. It binds to its ligand (CD112 or PVRL2/nectin-2) and inhibits the strength with which T cells and NK cells respond to cancer. Therefore, CD112R is being presented as a new immune checkpoint inhibitor with high potential in cancer immunotherapy. CD112 is easily detectable on antigen-presenting or tumor cells, and its high level of expression has been linked with tumor progression and poor outcomes in most cancer patients. This review explores the molecular and functional relationship between CD112R, TIGIT, CD96, and CD226 in T cell responses. In addition, this review comprehensively discusses the recent developments of CD112R/CD112 immune checkpoints in cancer immunotherapy and prognosis.
Collapse
Affiliation(s)
- Taofei Zeng
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
26
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
27
|
Liu X, Lv Z, Zhou S, Kan S, Liu X, Jing P, Xu W. MTDH in macrophages promotes the vasculogenic mimicry via VEGFA-165/Flt-1 signaling pathway in head and neck squamous cell carcinoma. Int Immunopharmacol 2021; 96:107776. [PMID: 34162144 DOI: 10.1016/j.intimp.2021.107776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Vasculogenic mimicry (VM) refers to vessel-like structures formed by aggressive tumor cells and is closely associated with cancer invasion and metastasis. Here, we investigated the effect of macrophage-derived MTDH on VM formation in head and neck squamous cell carcinoma (HNSCC) and its underlying mechanism. Macrophages with MTDH overexpression (Mac-MTDH) promoted cancer cell VM formation, migration, and invasion in vitro. Moreover, MTDH overexpression triggered macrophage polarization into M2 type tumor-associated macrophages. Analysis of HNSCC clinical samples revealed that MTDH+ macrophages were predominantly located in the tumor-stromal region in proximity to VM and correlated with lymph node metastasis. Mechanistically, Mac-MTDH enhanced the expression and secretion of VEGFA-165 rather than other VEGFA isoforms via ß-catenin. The VEGFA-165/Flt-1 axis was responsible for Mac-MTDH's effects in cancer cells through p-STAT3/Twist1/VE-cadherin pathway. Using mouse model, we further confirmed that Mac-MTDH increased VM formation and cancer metastasis in vivo. Furthermore, in subcutaneous xenograft mouse model, HN6 + Mac-MTDH tumor exhibited elevated expression of p-STAT3 and Twist1 than HN6 + Mac-NC tumors. This study revealed that Mac-MTDH promoted VM formation, cancer cell migration and invasion, and cancer metastasis through VEGFA-165/Flt-1 axis, and that macrophage-derived MTDH could be a potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Zhenghua Lv
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Shengli Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Shifeng Kan
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Xianfang Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Peihang Jing
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Wei Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China.
| |
Collapse
|
28
|
Yu Z, Song M, Chouchane L, Ma X. Functional Genomic Analysis of Breast Cancer Metastasis: Implications for Diagnosis and Therapy. Cancers (Basel) 2021; 13:cancers13133276. [PMID: 34208889 PMCID: PMC8268362 DOI: 10.3390/cancers13133276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Metastasis remains the greatest cause of fatalities in breast cancer patients world-wide. The process of metastases is highly complex, and the current research efforts in this area are still rather fragmented. The revolution of genomic profiling methods to analyze samples from human and animal models dramatically improved our understanding of breast cancer metastasis. This article summarizes the recent breakthroughs in genomic analyses of breast cancer metastasis and discusses their implications for prognostic and therapeutic applications. Abstract Breast cancer (BC) is one of the most diagnosed cancers worldwide and is the second cause of cancer related death in women. The most frequent cause of BC-related deaths, like many cancers, is metastasis. However, metastasis is a complicated and poorly understood process for which there is a shortage of accurate prognostic indicators and effective treatments. With the rapid and ever-evolving development and application of genomic sequencing technologies, many novel molecules were identified that play previously unappreciated and important roles in the various stages of metastasis. In this review, we summarize current advancements in the functional genomic analysis of BC metastasis and discuss about the potential prognostic and therapeutic implications from the recent genomic findings.
Collapse
Affiliation(s)
- Ziqi Yu
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
- Correspondence: (Z.Y.); (X.M.)
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA;
- Correspondence: (Z.Y.); (X.M.)
| |
Collapse
|
29
|
Banerjee I, Fisher PB, Sarkar D. Astrocyte elevated gene-1 (AEG-1): A key driver of hepatocellular carcinoma (HCC). Adv Cancer Res 2021; 152:329-381. [PMID: 34353442 DOI: 10.1016/bs.acr.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An array of human cancers, including hepatocellular carcinoma (HCC), overexpress the oncogene Astrocyte elevated gene-1 (AEG-1). It is now firmly established that AEG-1 is a key driver of carcinogenesis, and enhanced expression of AEG-1 is a marker of poor prognosis in cancer patients. In-depth studies have revealed that AEG-1 positively regulates different hallmarks of HCC progression including growth and proliferation, angiogenesis, invasion, migration, metastasis and resistance to therapeutic intervention. By interacting with a plethora of proteins as well as mRNAs, AEG-1 regulates gene expression at transcriptional, post-transcriptional, and translational levels, and modulates numerous pro-tumorigenic and tumor-suppressive signal transduction pathways. Even though extensive research over the last two decades using various in vitro and in vivo models has established the pivotal role of AEG-1 in HCC, effective targeting of AEG-1 as a therapeutic intervention for HCC is yet to be achieved in the clinic. Targeted delivery of AEG-1 small interfering ribonucleic acid (siRNA) has demonstrated desired therapeutic effects in mouse models of HCC. Peptidomimetic inhibitors based on protein-protein interaction studies has also been developed recently. Continuous unraveling of novel mechanisms in the regulation of HCC by AEG-1 will generate valuable knowledge facilitating development of specific AEG-1 inhibitory strategies. The present review describes the current status of AEG-1 in HCC gleaned from patient-focused and bench-top studies as well as transgenic and knockout mouse models. We also address the challenges that need to be overcome and discuss future perspectives on this exciting molecule to transform it from bench to bedside.
Collapse
Affiliation(s)
- Indranil Banerjee
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
30
|
Sriramulu S, Sun XF, Malayaperumal S, Ganesan H, Zhang H, Ramachandran M, Banerjee A, Pathak S. Emerging Role and Clinicopathological Significance of AEG-1 in Different Cancer Types: A Concise Review. Cells 2021; 10:1497. [PMID: 34203598 PMCID: PMC8232086 DOI: 10.3390/cells10061497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Tumor breakthrough is driven by genetic or epigenetic variations which assist in initiation, migration, invasion and metastasis of tumors. Astrocyte elevated gene-1 (AEG-1) protein has risen recently as the crucial factor in malignancies and plays a potential role in diverse complex oncogenic signaling cascades. AEG-1 has multiple roles in tumor growth and development and is found to be involved in various signaling pathways of: (i) Ha-ras and PI3K/AKT; (ii) the NF-κB; (iii) the ERK or mitogen-activated protein kinase and Wnt or β-catenin and (iv) the Aurora-A kinase. Recent studies have confirmed that in all the hallmarks of cancers, AEG-1 plays a key functionality including progression, transformation, sustained angiogenesis, evading apoptosis, and invasion and metastasis. Clinical studies have supported that AEG-1 is actively intricated in tumor growth and progression which includes esophageal squamous cell, gastric, colorectal, hepatocellular, gallbladder, breast, prostate and non-small cell lung cancers, as well as renal cell carcinomas, melanoma, glioma, neuroblastoma and osteosarcoma. Existing studies have reported that AEG-1 expression has been induced by Ha-ras through intrication of PI3K/AKT signaling. Conversely, AEG-1 also activates PI3K/AKT pathway and modulates the defined subset of downstream target proteins via crosstalk between the PI3K/AKT/mTOR and Hedgehog signaling cascade which further plays a crucial role in metastasis. Thus, AEG-1 may be employed as a biomarker to discern the patients of those who are likely to get aid from AEG-1-targeted medication. AEG-1 may play as an effective target to repress tumor development, occlude metastasis, and magnify the effectiveness of treatments. In this review, we focus on the molecular mechanism of AEG-1 in the process of carcinogenesis and its involvement in regulation of crosstalk between the PI3K/AKT/mTOR and Hedgehog signaling. We also highlight the multifaceted functions, expression, clinicopathological significance and molecular inhibitors of AEG-1 in various cancer types.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, SE-581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden;
| | - Murugesan Ramachandran
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| |
Collapse
|
31
|
Lee SJ, Choi KM, Bang G, Park SG, Kim EB, Choi JW, Chung YH, Kim J, Lee SG, Kim E, Kim JY. Identification of Nucleolin as a Novel AEG-1-Interacting Protein in Breast Cancer via Interactome Profiling. Cancers (Basel) 2021; 13:cancers13112842. [PMID: 34200450 PMCID: PMC8201222 DOI: 10.3390/cancers13112842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is one of the most common malignant diseases worldwide. Astrocyte elevated gene-1 (AEG-1) is upregulated in breast cancer and regulates breast cancer cell proliferation and invasion. However, the molecular mechanisms by which AEG-1 promotes breast cancer have yet to be fully elucidated. In order to delineate the function of AEG-1 in breast cancer development, we mapped the AEG-1 interactome via affinity purification followed by LC-MS/MS. We identified nucleolin (NCL) as a novel AEG-1 interacting protein, and co-immunoprecipitation experiments validated the interaction between AEG-1 and NCL in breast cancer cells. The silencing of NCL markedly reduced not only migration/invasion, but also the proliferation induced by the ectopic expression of AEG-1. Further, we found that the ectopic expression of AEG-1 induced the tyrosine phosphorylation of c-Met, and NCL knockdown markedly reduced this AEG-1 mediated phosphorylation. Taken together, our report identifies NCL as a novel mediator of the oncogenic function of AEG-1, and suggests that c-Met could be associated with the oncogenic function of the AEG-1-NCL complex in the context of breast cancer.
Collapse
Affiliation(s)
- Seong-Jae Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Kyoung-Min Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seo-Gyu Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Eun-Bi Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Jin-Woong Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Young-Ho Chung
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Jinyoung Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seok-Geun Lee
- Bionanocomposite Research Center, Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Correspondence: (E.K.); (J.-Y.K.)
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
- Correspondence: (E.K.); (J.-Y.K.)
| |
Collapse
|
32
|
van der Weyden L, Offord V, Turner G, Swiatkowska A, Speak AO, Adams DJ. Membrane protein regulators of melanoma pulmonary colonisation identified using a CRISPRa screen and spontaneous metastasis assay in mice. G3-GENES GENOMES GENETICS 2021; 11:6272227. [PMID: 33963380 PMCID: PMC8495943 DOI: 10.1093/g3journal/jkab157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/03/2021] [Indexed: 01/30/2023]
Abstract
Metastasis is the spread of cancer cells to a secondary site within the body, and is the leading cause of death for cancer patients. The lung is a common site of metastasis for many cancer types, including melanoma. Identifying the genes involved in aiding metastasis of melanoma cells to the lungs is critical for the development of better treatments. As the accessibility of cell surface proteins makes them attractive therapeutic targets, we performed a CRISPR activation screen using a library of guide RNAs (gRNAs) targeting the transcription start sites of 2195 membrane protein-encoding genes, to identify genes whose upregulated expression aided pulmonary metastasis. Immunodeficient mice were subcutaneously injected in the flank with murine B16-F0 melanoma cells expressing dCas9 and the membrane protein library gRNAs, and their lungs collected after 14–21 days. Analysis was performed to identify the gRNAs that were enriched in the lungs relative to those present in the cells at the time of administration (day 0). We identified six genes whose increased expression promotes lung metastasis. These genes included several with well-characterized pro-metastatic roles (Fut7, Mgat5, and Pcdh7) that have not previously been linked to melanoma progression, genes linked to tumor progression but that have not previously been described as involved in metastasis (Olfr322 and Olfr441), as well as novel genes (Tmem116). Thus, we have identified genes that, when upregulated in melanoma cells, can aid successful metastasis and colonization of the lung, and therefore may represent novel therapeutic targets to inhibit pulmonary metastasis.
Collapse
Affiliation(s)
- Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Gemma Turner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Agnes Swiatkowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Anneliese O Speak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
33
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
34
|
Grigonyte AM, Hapeshi A, Constantinidou C, Millard A. Modification of Bacteriophages to Increase Their Association with Lung Epithelium Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:308. [PMID: 33915737 PMCID: PMC8067280 DOI: 10.3390/ph14040308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
There is currently a renaissance in research on bacteriophages as alternatives to antibiotics. Phage specificity to their bacterial host, in addition to a plethora of other advantages, makes them ideal candidates for a broad range of applications, including bacterial detection, drug delivery, and phage therapy in particular. One issue obstructing phage efficiency in phage therapy settings is their poor localization to the site of infection in the human body. Here, we engineered phage T7 with lung tissue targeting homing peptides. We then used in vitro studies to demonstrate that the engineered T7 phages had a more significant association with the lung epithelium cells than wild-type T7. In addition, we showed that, in general, there was a trend of increased association of engineered phages with the lung epithelium cells but not mouse fibroblast cells, allowing for targeted tissue specificity. These results indicate that appending phages with homing peptides would potentially allow for greater phage concentrations and greater efficacy at the infection site.
Collapse
Affiliation(s)
- Aurelija M. Grigonyte
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK;
| | - Alexia Hapeshi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK;
| | | | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
35
|
Sriramulu S, Nandy SK, Ganesan H, Banerjee A, Pathak S. In silico analysis and prediction of transcription factors of the proteins interacting with astrocyte elevated gene-1. Comput Biol Chem 2021; 92:107478. [PMID: 33866140 DOI: 10.1016/j.compbiolchem.2021.107478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Multifunctional in nature, the protein Astrocyte Elevated Gene-1 (AEG-1) controls several cancers through protein-protein interactions. Although, specific physiological processes and molecular functions linked with AEG-1 interactors remain unclear. In our present study, we procured the data of AEG-1 interacting proteins and evaluated their biological functions, associated pathways, and interaction networks using bioinformatic tools. A total of 112 proteins experimentally detected to interact with AEG-1 were collected from various public databases. DAVID 6.8 Online tool was utilized to identify the molecular functions, biological processes, cellular components that aid in understanding the physiological function of AEG-1 and its interactors in several cell types. With the help of integrated network analysis of AEG-1 interactors using Cytoscape 3.8.0 software, cross-talk between various proteins, and associated pathways were revealed. Additionally, the Enrichr online tool was used for performing enrichment of transcription factors of AEG-1 interactors' which further revealed a closely associated self-regulated interaction network of a variety of transcription factors that shape the expression of AEG-1 interacting proteins. As a whole, the study calls for better understanding and elucidation of the pathways and biological roles of both AEG-1 and its interactor proteins that might enable their application as biomarkers and therapeutic targets in various diseases in the very near future.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Suman K Nandy
- Department of Histopathology, Tata Medical Centre, Kolkata, 700160, India.
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
36
|
van der Weyden L, Harle V, Turner G, Offord V, Iyer V, Droop A, Swiatkowska A, Rabbie R, Campbell AD, Sansom OJ, Pardo M, Choudhary JS, Ferreira I, Tullett M, Arends MJ, Speak AO, Adams DJ. CRISPR activation screen in mice identifies novel membrane proteins enhancing pulmonary metastatic colonisation. Commun Biol 2021; 4:395. [PMID: 33758365 PMCID: PMC7987976 DOI: 10.1038/s42003-021-01912-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Melanoma represents ~5% of all cutaneous malignancies, yet accounts for the majority of skin cancer deaths due to its propensity to metastasise. To develop new therapies, novel target molecules must to be identified and the accessibility of cell surface proteins makes them attractive targets. Using CRISPR activation technology, we screened a library of guide RNAs targeting membrane protein-encoding genes to identify cell surface molecules whose upregulation enhances the metastatic pulmonary colonisation capabilities of tumour cells in vivo. We show that upregulated expression of the cell surface protein LRRN4CL led to increased pulmonary metastases in mice. Critically, LRRN4CL expression was elevated in melanoma patient samples, with high expression levels correlating with decreased survival. Collectively, our findings uncover an unappreciated role for LRRN4CL in the outcome of melanoma patients and identifies a potential therapeutic target and biomarker.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CRISPR-Cas Systems
- Cell Line, Tumor
- Cell Movement
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/secondary
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Neoplasm Invasiveness
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Up-Regulation
Collapse
Affiliation(s)
| | - Victoria Harle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gemma Turner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Vivek Iyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Ingrid Ferreira
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mark Tullett
- Western Sussex NHS Foundation Trust, Chichester, West Sussex, UK
| | - Mark J Arends
- University of Edinburgh Division of Pathology, Edinburgh Cancer Research UK Cancer Centre, Institute of Genetics & Molecular Medicine, Edinburgh, UK
| | - Anneliese O Speak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
37
|
Lai TH, Ahmed M, Hwang JS, Zada S, Pham TM, Elashkar O, Kim DR. Transcriptional Repression of Raf Kinase Inhibitory Protein Gene by Metadherin during Cancer Progression. Int J Mol Sci 2021; 22:ijms22063052. [PMID: 33802672 PMCID: PMC8002422 DOI: 10.3390/ijms22063052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Raf kinase inhibitory protein (RKIP), also known as a phosphatidylethanolamine-binding protein 1 (PEBP1), functions as a tumor suppressor and regulates several signaling pathways, including ERK and NF-κB. RKIP is severely downregulated in human malignant cancers, indicating a functional association with cancer metastasis and poor prognosis. The transcription regulation of RKIP gene in human cancers is not well understood. In this study, we suggested a possible transcription mechanism for the regulation of RKIP in human cancer cells. We found that Metadherin (MTDH) significantly repressed the transcriptional activity of RKIP gene. An analysis of publicly available datasets showed that the knockdown of MTDH in breast and endometrial cancer cell lines induced the expression RKIP. In addition, the results obtained from qRT-PCR and ChIP analyses showed that MTDH considerably inhibited RKIP expression. In addition, the RKIP transcript levels in MTDH-knockdown or MTDH-overexpressing MCF-7 cells were likely correlated to the protein levels, suggesting that MTDH regulates RKIP expression. In conclusion, we suggest that MTDH is a novel factor that controls the RKIP transcription, which is essential for cancer progression.
Collapse
|
38
|
Khan M, Sarkar D. The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review. Genes (Basel) 2021; 12:genes12020308. [PMID: 33671513 PMCID: PMC7927008 DOI: 10.3390/genes12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations.
Collapse
Affiliation(s)
- Maheen Khan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
39
|
Tsubaki M, Genno S, Takeda T, Matsuda T, Kimura N, Yamashita Y, Morii Y, Shimomura K, Nishida S. Rhosin Suppressed Tumor Cell Metastasis through Inhibition of Rho/YAP Pathway and Expression of RHAMM and CXCR4 in Melanoma and Breast Cancer Cells. Biomedicines 2021; 9:biomedicines9010035. [PMID: 33406809 PMCID: PMC7824767 DOI: 10.3390/biomedicines9010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
The high mortality rate of cancer is strongly correlated with the development of distant metastases at secondary sites. Although Rho GTPases, such as RhoA, RhoB, RhoC, and RhoE, promote tumor metastasis, the main roles of Rho GTPases remain unidentified. It is also unclear whether rhosin, a Rho inhibitor, acts by suppressing metastasis by a downstream inhibition of Rho. In this study, we investigated this mechanism of metastasis in highly metastatic melanoma and breast cancer cells, and the mechanism of inhibition of metastasis by rhosin. We found that rhosin suppressed the RhoA and RhoC activation, the nuclear localization of YAP, but did not affect ERK1/2, Akt, or NF-κB activation in the highly metastatic cell lines B16BL6 and 4T1. High expression of YAP was associated with poor overall and recurrence-free survival in patients with breast cancer or melanoma. Treatment with rhosin inhibited lung metastasis in vivo. Moreover, rhosin inhibited tumor cell adhesion to the extracellular matrix via suppression of RHAMM expression, and inhibited SDF-1-induced cell migration and invasion by decreasing CXCR4 expression in B16BL6 and 4T1 cells. These results suggest that the inhibition of RhoA/C-YAP pathway by rhosin could be an extremely useful therapeutic approach in patients with melanoma and breast cancer.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Shuuji Genno
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Takuya Matsuda
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Naoto Kimura
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Yuuma Yamashita
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-0025, Japan;
| | - Kazunori Shimomura
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-0025, Japan;
| | - Shozo Nishida
- Division of Pharmacotherapy, Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.G.); (T.T.); (T.M.); (N.K.); (Y.Y.); (Y.M.)
- Correspondence: ; Tel.: +81-6-6721-2332
| |
Collapse
|
40
|
Peixoto A, Cotton S, Santos LL, Ferreira JA. The Tumour Microenvironment and Circulating Tumour Cells: A Partnership Driving Metastasis and Glycan-Based Opportunities for Cancer Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:1-33. [PMID: 34664231 DOI: 10.1007/978-3-030-73119-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating tumour cells (CTC) are rare cells that actively detach or are shed from primary tumours into the lymph and blood. Some CTC subpopulations gain the capacity to survive, home and colonize distant locations, forming metastasis. This results from a multifactorial process in which cancer cells optimize motility, invasion, immune escape and cooperative relationships with microenvironmental cues. Here we present evidences of a self-fuelling molecular crosstalk between cancer cells and the tumour stroma supporting the main milestones leading to metastasis. We discuss how the tumour microenvironment supports pre-metastatic niches and CTC development and ultimately dictates CTC fate in targeted organs. Finally, we highlight the key role played by protein glycosylation in metastasis development, its prompt response to microenvironmental stimuli and the tremendous potential of glycan-based molecular signatures for liquid biopsies and targeted therapeutics.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal. .,Institute for Biomedical Engineering (INEB), Porto, Portugal. .,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal.,Institute for Biomedical Engineering (INEB), Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| |
Collapse
|
41
|
Astrocyte elevated gene-1 as a novel therapeutic target in malignant gliomas and its interactions with oncogenes and tumor suppressor genes. Brain Res 2020; 1747:147034. [DOI: 10.1016/j.brainres.2020.147034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
|
42
|
Popper H. Primary tumor and metastasis-sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res 2020; 9:2277-2300. [PMID: 33209649 PMCID: PMC7653118 DOI: 10.21037/tlcr-20-175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients with lung cancer in the majority die of metastases. Treatment options include surgery, chemo- and radiotherapy, targeted therapy by tyrosine kinase inhibitors (TKIs), and immuno-oncologic treatment. Despite the success with these treatment options, cure of lung cancer is achieved in only a very small proportion of patients. In most patients’ recurrence and metastasis will occur, and finally kill the patient. Metastasis is a multistep procedure. It requires a change in adhesion of tumor cells for detachment from their neighboring cells. The next step is migration either as single cells [epithelial-mesenchymal transition (EMT)], or as cell clusters (hybrid-EMT or bulk migration). A combination of genetic changes is required to facilitate migration. Then tumor cells have to orient themselves along matrix proteins, detect oxygen concentrations, prevent attacks by immune cells, and induce a tumor-friendly switch of stroma cells (macrophages, myofibroblasts, etc.). Having entered the blood stream tumor cells need to adapt to shear stress, avoid being trapped by coagulation, but also use coagulation in small veins for adherence to endothelia, and express homing molecules for extravasation. Within a metastatic site, tumor cells need a well-prepared niche to establish a metastatic focus. Tumor cells again have to establish a vascular net for maintaining nutrition and oxygen supply, communicate with stroma cells, grow out and set further metastases. In this review the different steps will be discussed with a focus on pulmonary carcinomas. The vast amount of research manuscripts published so far are not easy to analyze: in most reports’ single steps of the metastatic cascade are interpreted as evidence for the whole process; for example, migration is interpreted as evidence for metastasis. In lung cancer most often latency periods are shorter, in between 1–5 years. In other cases, despite widespread migration occurs, tumor cells die within the circulation and do not reach a metastatic site. Therefore, migration is a requisite, but does not necessarily predict metastasis. The intention of this review is to point to these different aspects and hopefully provoke research directed into a more functional analysis of the metastatic process.
Collapse
Affiliation(s)
- Helmut Popper
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
43
|
Shao Y, Lu B. The crosstalk between circular RNAs and the tumor microenvironment in cancer metastasis. Cancer Cell Int 2020; 20:448. [PMID: 32943996 PMCID: PMC7488731 DOI: 10.1186/s12935-020-01532-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Carcinomas are highly heterogeneous with regard to various cancer cells within a tumor microenvironment (TME), which is composed of stromal cells, blood vessels, immunocytes, and modified extracellular matrix. Focus of the study Circular RNAs (circRNAs) are non-coding RNAs that are expressed in cancer and stromal cells. They are closely associated with cancer metastasis as their expression in tumor cells directs the latter to migrate to different organs. circRNAs packaged in exosomes might be involved in this process. This is particularly important as the TME acts in tandem with cancer cells to enhance their proliferation and metastatic capability. In this review, we focus on recent studies on the crosstalk between circRNAs and the TME during cancer metastasis. Conclusion We particularly emphasize the roles of the interaction between circRNAs and the TME in anoikis resistance, vessel co-option, and local circRNA expression in directing homing of exosome.
Collapse
Affiliation(s)
- Ying Shao
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
44
|
Zhu K, Peng Y, Hu J, Zhan H, Yang L, Gao Q, Jia H, Luo R, Dai Z, Tang Z, Fan J, Zhou J. Metadherin-PRMT5 complex enhances the metastasis of hepatocellular carcinoma through the WNT-β-catenin signaling pathway. Carcinogenesis 2020; 41:130-138. [PMID: 31498866 PMCID: PMC7175245 DOI: 10.1093/carcin/bgz065] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 01/12/2023] Open
Abstract
Accumulating data suggest that metadherin (MTDH) may function as an oncogene. Our previous study showed that MTDH promotes hepatocellular carcinoma (HCC) metastasis via the epithelial-mesenchymal transition. In this study, we aim to further elucidate how MTDH promotes HCC metastasis. Using Co-immunoprecipitation (co-IP) and mass spectrometry, we found that MTDH can specifically bind to protein arginine methyltransferase 5 (PRMT5). Further functional assays revealed that PRMT5 overexpression promoted the proliferation and motility of HCC cells and that knockout of PRMT5 impeded the effect of MTDH. The immunohistochemistry assay/tissue microarray results showed that when MTDH was overexpressed in HCC cells, PRMT5 translocated from the nucleus to the cytoplasm, with the subsequent translocation of β-catenin from the cytoplasm to the nucleus and upregulation of the WNT-β-catenin signaling pathway. Further in vivo experiments suggested that PRMT5 and β-catenin played a pivotal role in MTDH-mediated HCC metastasis. We therefore concluded that the MTDH-PRMT5 complex promotes HCC metastasis by regulating the WNT-β-catenin signaling pathway.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanfei Peng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jinwu Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Hao Zhan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Liuxiao Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Hao Jia
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhong Shan Hospital, Fudan University, Shanghai, China
| | - Zhi Dai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhaoyou Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
45
|
Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 2020; 148:1308-1322. [PMID: 32761606 PMCID: PMC7891572 DOI: 10.1002/ijc.33247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ‐specific metastasis. We review the basic principles of site‐specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ‐specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ‐specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC‐MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site‐specific metastasis—brain metastasis.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Wang J, Tannous BA, Poznansky MC, Chen H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol Res 2020; 159:105010. [PMID: 32544428 DOI: 10.1016/j.phrs.2020.105010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
AMD3100 (plerixafor), a CXCR4 antagonist, has opened a variety of avenues for potential therapeutic approaches in different refractory diseases. The CXCL12/CXCR4 axis and its signaling pathways are involved in diverse disorders including HIV-1 infection, tumor development, non-Hodgkin lymphoma, multiple myeloma, WHIM Syndrome, and so on. The mechanisms of action of AMD3100 may relate to mobilizing hematopoietic stem cells, blocking infection of X4 HIV-1, increasing circulating neutrophils, lymphocytes and monocytes, reducing myeloid-derived suppressor cells, and enhancing cytotoxic T-cell infiltration in tumors. Here, we first revisit the pharmacological discovery of AMD3100. We then review monotherapy of AMD3100 and combination use of AMD3100 with other agents in various diseases. Among those, we highlight the perspective of AMD3100 as an immunomodulator to regulate immune responses particularly in the tumor microenvironment and synergize with other therapeutics. All the pre-clinical studies support the clinical testing of the monotherapy and combination therapies with AMD3100 and further development for use in humans.
Collapse
Affiliation(s)
- Jingzhe Wang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Huabiao Chen
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
47
|
Kong D, Hughes CJ, Ford HL. Cellular Plasticity in Breast Cancer Progression and Therapy. Front Mol Biosci 2020; 7:72. [PMID: 32391382 PMCID: PMC7194153 DOI: 10.3389/fmolb.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
With the exception of non-melanoma skin cancer, breast cancer is the most frequently diagnosed malignant disease among women, with the majority of mortality being attributable to metastatic disease. Thus, even with improved early screening and more targeted treatments which may enable better detection and control of early disease progression, metastatic disease remains a significant problem. While targeted therapies exist for breast cancer patients with particular subtypes of the disease (Her2+ and ER/PR+), even in these subtypes the therapies are often not efficacious once the patient's tumor metastasizes. Increases in stemness or epithelial-to-mesenchymal transition (EMT) in primary breast cancer cells lead to enhanced plasticity, enabling tumor progression, therapeutic resistance, and distant metastatic spread. Numerous signaling pathways, including MAPK, PI3K, STAT3, Wnt, Hedgehog, and Notch, amongst others, play a critical role in maintaining cell plasticity in breast cancer. Understanding the cellular and molecular mechanisms that regulate breast cancer cell plasticity is essential for understanding the biology of breast cancer progression and for developing novel and more effective therapeutic strategies for targeting metastatic disease. In this review we summarize relevant literature on mechanisms associated with breast cancer plasticity, tumor progression, and drug resistance.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
48
|
Abdel Ghafar MT, Gharib F, Abdel-Salam S, Elkhouly RA, Elshora A, Shalaby KH, El-Guindy D, El-Rashidy MA, Soliman NA, Abu-Elenin MM, Allam AA. Role of serum Metadherin mRNA expression in the diagnosis and prediction of survival in patients with colorectal cancer. Mol Biol Rep 2020; 47:2509-2519. [PMID: 32088817 DOI: 10.1007/s11033-020-05334-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/18/2020] [Indexed: 01/05/2023]
Abstract
Early diagnosis and treatment of colorectal cancer (CRC) are important for improving patients' survival. Metadherin is an oncogene that plays a pivotal role in carcinogenesis and can be suggested as a cancer biomarker. This study aimed to elucidate the efficacy of serum Metadherin mRNA expression as a potential non-invasive biomarker for early diagnosis of CRC in relation to other screening markers as carcinoembryonic antigen (CEA), carbohydrate antigen 19.9 (CA19.9) and Fecal occult blood (FOB) and also to assess its relationship with the tumor stage and survival rate. A convenience series of 86 CRC cases (group I) were recruited with 78 subjects as controls (group II). Serum Metadherin mRNA expression level was determined using reverse transcription polymerase chain reaction (RT-PCR). Serum Metadherin mRNA expression level was significantly elevated in CRC cases when compared with controls (P < 0.001). For CRC diagnosis; Receiver operator characteristic (ROC) analyses revealed that the diagnostic accuracy of serum Metadherin mRNA (AUC = 0.976) was significantly higher than other routine CRC screening markers as CEA, CA19.9 and FOB. The combined accuracy of these markers (AUC = 0.741) was increased when used with serum Metadherin mRNA (AUC = 0.820). High serum Metadherin mRNA expression was associated with poorly differentiated histological grade, advanced tumor stage and lower survival rate. AUC of Metadherin was 0.820 for differentiating advanced versus early tumor stages. Serum Metadherin mRNA expression is a useful non-invasive biomarker for CRC. It can be used for screening and early diagnosis of CRC and can increase the efficacy of other routine CRC screening markers when it is estimated in CRC patients with them. It is also associated with advanced tumor stage and a lower survival rate.
Collapse
Affiliation(s)
- Muhammad Tarek Abdel Ghafar
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Aljaysh st, Medical Campus, Tanta, 31511, Egypt.
| | - Fatma Gharib
- Department of Oncology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sherief Abdel-Salam
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Ahmed Elshora
- Department of General Surgery, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Khaled H Shalaby
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina El-Guindy
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mira Maged Abu-Elenin
- Department of Public Health and Community Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Alzahraa A Allam
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
49
|
Ahmed MB, Islam SU, Lee YS. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim Cells Syst (Seoul) 2020; 24:44-52. [PMID: 32158615 PMCID: PMC7048231 DOI: 10.1080/19768354.2020.1726811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
50
|
Liu Y, Wei G, Ma Q, Han Y. Knockdown of long noncoding RNA TP73-AS1 suppresses the malignant progression of breast cancer cells in vitro through targeting miRNA-125a-3p/metadherin axis. Thorac Cancer 2020; 11:394-407. [PMID: 31901156 PMCID: PMC6996984 DOI: 10.1111/1759-7714.13283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND TP73 antisense RNA 1 (TP73-AS1) is a long noncoding RNA which has been shown to be involved in the progression of multiple malignant tumors. Previous studies have demonstrated the oncogenic role of TP73-AS1 in breast cancer. However, its molecular mechanism remains largely unknown in breast tumorigenesis. METHODS Expression of TP63-AS1, miRNA-125a-3p (miR-125a) and metadherin (MTDH) was detected by real-time quantitative PCR and western blotting. The malignancy was evaluated by cell counting kit 8 (CCK-8), transwell assays, flow cytometry and western blotting. The target binding was confirmed by dual luciferase reporter assay. Xenograft tumor model was performed to detect tumor growth in vivo. RESULTS Expression of TP73-AS1 was higher in breast cancer tissues and cell lines. Biologically, its knockdown could promote cell apoptosis rate, and inhibit proliferative capacity, migration and invasion ability in HCC-70 and MB231 cells, accompanied with higher cleaved caspase 3 level and lower Ki67, N-cadherin and Vimentin level. Moreover, TP73-AS1 downregulation restrained the tumor growth of HCC-70 cells in vivo. Mechanically, TP73-AS1 functioned as a molecular "sponge" for miR-125a to modulate MTDH, a downstream target of miR-125a. Intriguingly, both miR-125a overexpression and MTDH silencing exerted a tumor-suppressive effect in the malignant progression of HCC-70 and MB231 cells, which was counteracted by TP73-AS1 upregulation and miR-125a downregulation, respectively. CONCLUSION Knockdown of TP73-AS1 inhibited cell proliferation, migration and invasion, but facilitated apoptosis in breast cancer cells in vitro through targeting miR-125a and upregulating MTDH, suggesting a novel TP73-AS1/miR-125a/MTDH pathway in the malignant progression of breast cancer.
Collapse
Affiliation(s)
- Yuxiong Liu
- Department of General SurgeryChangji Huizu People's Hospital of XinjiangChangjiChina
| | - Guangqing Wei
- Department of General SurgeryHutubi People's Hospital of XinjiangChangjiChina
| | - Qian Ma
- Department of General SurgeryChangji Huizu People's Hospital of XinjiangChangjiChina
| | - Yanyan Han
- Department of Otolaryngology Head and Neck SurgeryXinjiang Urumqi Eye and ENT HospitalUrumqiChina
| |
Collapse
|