1
|
Ohlrogge AH, Frost L, Schnabel RB. Harmful Impact of Tobacco Smoking and Alcohol Consumption on the Atrial Myocardium. Cells 2022; 11:2576. [PMID: 36010652 PMCID: PMC9406618 DOI: 10.3390/cells11162576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Tobacco smoking and alcohol consumption are widespread exposures that are legal and socially accepted in many societies. Both have been widely recognized as important risk factors for diseases in all vital organ systems including cardiovascular diseases, and with clinical manifestations that are associated with atrial dysfunction, so-called atrial cardiomyopathy, especially atrial fibrillation and stroke. The pathogenesis of atrial cardiomyopathy, atrial fibrillation, and stroke in context with smoking and alcohol consumption is complex and multifactorial, involving pathophysiological mechanisms, environmental, and societal aspects. This narrative review summarizes the current literature regarding alterations in the atrial myocardium that is associated with smoking and alcohol.
Collapse
Affiliation(s)
- Amelie H. Ohlrogge
- Department of Cardiology, University Heart and Vascular Centre Hamburg, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Lars Frost
- Diagnostic Centre, University Clinic for Development of Innovative Patient Pathways, Silkeborg Regional Hospital, 8600 Silkeborg, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Renate B. Schnabel
- Department of Cardiology, University Heart and Vascular Centre Hamburg, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Kodirov SA. Probability that there is a mammalian counterpart of cardiac clock in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21867. [PMID: 35106839 PMCID: PMC9250754 DOI: 10.1002/arch.21867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Whether or not the hyperpolarization-activated cyclic nucleotide-gated nonselective cation channel (HCN or funny current If ) is involved in pacemaking - recurrent heartbeat, it is attributed to electrical activities in all excitable cells, including those of invertebrates. In latter group of animals prevailingly the electrical signals and function of heart in terms of chrono- and inotropy are elucidated. Although in simpler models including insects experimental outcomes are reproducible and robust, involvement of "cardiac clock" mechanism in pacemaking is not conclusive. In this assay, the mechanisms of heartbeat are synthesized by focused comparisons between insect and mammalian hearts.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, Texas, USA
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Bébarová M, Horáková Z, Kula R. Addictive drugs, arrhythmias, and cardiac inward rectifiers. Europace 2017; 19:346-355. [PMID: 27302393 DOI: 10.1093/europace/euw071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/20/2016] [Indexed: 12/30/2022] Open
Abstract
In many addictive drugs including alcohol and nicotine, proarrhythmic effects were reported. This review provides an overview of the current knowledge in this field (with a focus on the inward rectifier potassium currents) to promote the lacking data and appeal for their completion, thus, to improve understanding of the proarrhythmic potential of addictive drugs.
Collapse
|
4
|
Kratz JM, Grienke U, Scheel O, Mann SA, Rollinger JM. Natural products modulating the hERG channel: heartaches and hope. Nat Prod Rep 2017; 34:957-980. [PMID: 28497823 PMCID: PMC5708533 DOI: 10.1039/c7np00014f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers natural products modulating the hERG potassium channel. Risk assessment strategies, structural features of blockers, and the duality target/antitarget are discussed.
Covering: 1996–December 2016 The human Ether-à-go-go Related Gene (hERG) channel is a voltage-gated potassium channel playing an essential role in the normal electrical activity in the heart. It is involved in the repolarization and termination of action potentials in excitable cardiac cells. Mutations in the hERG gene and hERG channel blockage by small molecules are associated with increased risk of fatal arrhythmias. Several drugs have been withdrawn from the market due to hERG channel-related cardiotoxicity. Moreover, as a result of its notorious ligand promiscuity, this ion channel has emerged as an important antitarget in early drug discovery and development. Surprisingly, the hERG channel blocking profile of natural compounds present in frequently consumed botanicals (i.e. dietary supplements, spices, and herbal medicinal products) is not routinely assessed. This comprehensive review will address these issues and provide a critical compilation of hERG channel data for isolated natural products and extracts over the past two decades (1996–2016). In addition, the review will provide (i) a solid basis for the molecular understanding of the physiological functions of the hERG channel, (ii) the translational potential of in vitro/in vivo results to cardiotoxicity in humans, (iii) approaches for the identification of hERG channel blockers from natural sources, (iv) future perspectives for cardiac safety guidelines and their applications within phytopharmaceuticals and dietary supplements, and (v) novel applications of hERG channel modulation (e.g. as a drug target).
Collapse
Affiliation(s)
- Jadel M Kratz
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
5
|
Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:471-481. [DOI: 10.1007/s00210-017-1341-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
6
|
Gaffin RD, Chowdhury SAK, Alves MSL, Dias FAL, Ribeiro CTD, Fogaca RTH, Wieczorek DF, Wolska BM. Effects of nicotine administration in a mouse model of familial hypertrophic cardiomyopathy, α-tropomyosin D175N. Am J Physiol Heart Circ Physiol 2011; 301:H1646-55. [PMID: 21743000 DOI: 10.1152/ajpheart.00277.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of nicotine (NIC) on normal hearts are fairly well established, yet its effects on hearts displaying familial hypertrophic cardiomyopathy have not been tested. We studied both the acute and chronic effects of NIC on a transgenic (TG) mouse model of FHC caused by a mutation in α-tropomyosin (Tm; i.e., α-Tm D175N TG, or Tm175). For acute effects, intravenously injected NIC increased heart rate, left ventricular (LV) pressure, and the maximal rate of LV pressure increase (+dP/dt) in non-TG (NTG) and Tm175 mice; however, Tm175 showed a significantly smaller increase in the maximal rate of LV pressure decrease (-dP/dt) compared with NTGs. Western blots revealed phosphorylation of phospholamban Ser16 and Thr17 residue increased in NTG mice following NIC injection but not in Tm175 mice. In contrast, phosphorylation of troponin I at serine residues 23 and 24 increased equally in both NTG and Tm175. Thus the attenuated increase in relaxation in Tm175 mice following acute NIC appears to result primarily from attenuated phospholamban phosphorylation. Chronic NIC administration (equivalent to smoking 2 packs of cigarettes/day for 4 mo) also increased +dP/dt in NTG and Tm175 mice compared with chronic saline. However, chronic NIC had little effect on heart rate, LV pressure, -dP/dt, LV wall and chamber dimensions, or collagen content for either group of mice.
Collapse
Affiliation(s)
- Robert D Gaffin
- Department of Physiology and Biophysics, Section of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kimura J, Ono T, Sakamoto K, Ito E, Watanabe S, Maeda S, Shikama Y, Yatabe MS, Matsuoka I. Na+ -Ca2+ exchanger expression and its modulation. Biol Pharm Bull 2009; 32:325-31. [PMID: 19252272 DOI: 10.1248/bpb.32.325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we reviewed our recent work on the chronic effects of nicotine on the Na+ -Ca2+ exchanger (NCX) gene and protein expressions in various organs of rats treated with nicotine in the drinking water for 4-12 weeks. Microarray analysis and reverse transcriptase-polymerase chain reaction (RT-PCR) did not detect significant changes in NCX mRNA expression in cerebral cortex, hippocampus, heart and skeletal muscle. However, NCX1 protein was up-regulated by nicotine in cerebral cortex and hippocampus, but was down-regulated in the heart. NCX2 protein was up-regulated by nicotine in hippocampus. We suggest that although mRNA change was insignificant, NCX protein expression was altered by chronic nicotine administration in brain and heart in rats. We also reviewed our work on modulators of NCX gene expression and function in cardiac myocytes.
Collapse
Affiliation(s)
- Junko Kimura
- Department of Pharmacology, Fukushima Medical University, School of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li N, Yang L, Dai DZ, Wang QJ, Dai Y. Chiral separation of racemate CPU86017, an anti-arrhythmic agent, produces stereoisomers possessing favourable ion channel blockade and less alpha-adrenoceptor antagonism. Clin Exp Pharmacol Physiol 2007; 35:643-50. [PMID: 18177475 DOI: 10.1111/j.1440-1681.2007.04854.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. CPU86017 is an effective anti-arrhythmic agent of the Class III complex that has two chiral centres, 7N and 13aC. As a promising anti-arrhythmic agent, the blockade on I(Kr), I(Ks) and calcium influx may be modulated to be mild, moderate and potent, with less a-adrenoceptor blockade. In order to improve activity at ion channels, four stereoisomers, namely SS ((+)-7S,13aS-CPU86017), SR ((-)-7S,13aR-CPU86017), RR ((-)-7R,13aR-CPU86017) and RS ((+)-7R,13aS-CPU86017), have been separated. In the present study, the effects of these four isomers on I(Kr) and I(Ks), calcium channels and a-adrenoceptors were compared with the effects of the racemate CPU86017. 2. In the present study, I(Kr) and I(Ks) were measured as tail currents (I(Kr.tail) and I(Ks.tail), respectively) using the whole-cell patch-clamp technique. Antagonism of receptor-operated calcium channels and voltage-dependent calcium channels (VDC) in vascular smooth muscle by CPU86017 and the four isomers were tested as suppression of phenylephrine- or KCl-induced contractions of aortic rings, respectively. 3. For I(Kr.tail) inhibition, the IC(50) of SS, SR, RR, RS and CPU86017 was 2.86 +/- 1.20, 39.4 +/- 8.5, 3.48 +/- 0.80, 7.65 +/- 1.50 and 12.5 +/- 7.8 x 10(-9) mol/L, respectively; for I(Ks.tail) inhibition IC(50) values were 16.9 +/- 4.0, 20.0 +/- 2.1, 99.1 +/- 5.9, 160 +/- 81 and 65.0 +/- 4.7 x 10(-9) mol/L, respectively. The SR isomer showed balanced blockade of I(Kr) and I(Ks) that was associated with a loss of a-adrenoceptor antagonism but enhanced VDC blockade. 4. Configuration of 13aC critically determines I(Kr) blockade and the Ca(2+) antagonism of the isomers of CPU86017. The SR isomer exhibits mild blockade of I(Kr), moderately enhanced blockade of I(Ks) and Ca(2+) influx and less a-adrenoceptor antagonism compared with the racemate and may be promising as an anti-arrhythmic.
Collapse
Affiliation(s)
- Na Li
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
9
|
Goette A, Lendeckel U, Kuchenbecker A, Bukowska A, Peters B, Klein HU, Huth C, Röcken C. Cigarette smoking induces atrial fibrosis in humans via nicotine. Heart 2007; 93:1056-63. [PMID: 17395670 PMCID: PMC1955003 DOI: 10.1136/hrt.2005.087171] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) promotes endothelial dysfunction and atherosclerosis in the vascular bed. The impact of smoking on atrial myocardium is not defined in humans. OBJECTIVE To determine the effect of CS on the development of interstitial fibrosis in atrial myocardium. DESIGN Case-control study. PATIENTS 95 patients (46 smokers and 49 non-smokers) undergoing coronary artery bypass grafting (CABG). MAIN OUTCOME MEASURES Amount of atrial fibrosis, collagen I, III and IV expression pattern, and quantitative reverse transcriptase-PCR. Occurrence of postoperative atrial fibrillation (AF). RESULTS In the study population, patient age correlated significantly with the amount of atrial fibrosis (r = 0.18; p<0.05). Nicotine misuse (pack years) was identified as the only factor related to atrial fibrosis in smokers (r = 0.311; p<0.05). The amount of fibrosis was higher in patients with postoperative AF (22.9% (6.2%) vs. 27.0% (8.2%); p<0.05). To show a causal relationship between CS and atrial fibrosis, atrial tissue slices from non-smokers (n = 8) were cultured in the presence of nicotine base (185 and 740 nmol/l). Nicotine base induced mRNA expression of collagen III (up to 10-fold) in a concentration-dependent manner resembling the immunohistological collagen expression pattern observed in CS. CONCLUSION CS contributes to the development of atrial fibrosis via nicotine. Atrial fibrosis by itself has been shown to provide an arrhythmogenic substrate, which may increase the likelihood of the occurrence of atrial arrhythmias, including postoperative AF.
Collapse
Affiliation(s)
- Andreas Goette
- Institute of Experimental Internal Medicine, Division of Cardiology, Department of Cardiovascular Surgery, University Hospital Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zarrindast MR, Mohajeri S. Influence of ATP-dependent K+ channels on nicotine-induced inhibition of withdrawal in morphine-dependent mice. Eur J Pharmacol 2006; 552:90-8. [PMID: 17049514 DOI: 10.1016/j.ejphar.2006.08.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/25/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
In the present study, we have investigated the effect of nicotine and diazoxide, a potassium channel opener and glibenclamide, a potassium channel (K(ATP)) blocker on naloxone-precipitated physical withdrawal signs, including jumping and diarrhea. Then, the interactions of nicotine with diazoxide and glibenclamide were tested. Mice were rendered dependent on morphine by subcutaneous (s.c.) injections of morphine sulphate 3 times a day for 3 days, and jumping behavior and diarrhea were induced by intraperitoneal (i.p.) administration of naloxone 2 h after the 10th injection of morphine sulphate on day 4. Nicotine was administered 15 min and diazoxide and glibenclamide 30 min before naloxone injection. Nicotine (0.01-1 mg/kg, s.c.) and (0.1-1 mg/kg) reduced withdrawal jumping and diarrhea respectively. Diazoxide (8-64 mg/kg, i.p.) decreased jumping behavior significantly, but had no significant effect on diarrhea. On the other hand glibenclamide (0.25-1 mg/kg i.p.) and (1 mg/kg) augmented jumping and diarrhea respectively. The response of nicotine on jumping or on diarrhea was potentiated by diazoxide and decreased by glibenclamide pretreatment. The isobolographic analysis revealed synergistic interaction between diazoxide and nicotine on decreasing physical withdrawal signs including jumping and diarrhea in morphine-dependent mice. According to these results the interaction of nicotine with the K(ATP) channel opener and blocker in morphine physical withdrawal signs could be explained by direct and indirect effects of nicotine on membrane potassium currents.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
11
|
Abstract
Smoking is a leading cause of cardiovascular disease, hypertension, myocardial infarction, and stroke. Nicotine is one of the components of cigarette smoke. Nicotine effects on the cardiovascular system reflect the activity of the nicotine receptors centrally and on peripheral autonomic ganglia. It has been found that cigarette smoke extract-induced contraction of porcine coronary arteries is related to superoxide anion-mediated degradation of nitric oxide. Treatment of rabbit aortas with an oxygen free radicals scavenger attenuated cigarette smoke impairment of arterial relaxation. Treatment of smokers with vitamin C, an antioxidant, improved impaired endothelium-dependent reactivity of large peripheral arteries. Thus it appears that chronic smoking and acute exposure to cigarette smoke extract may alter endothelium-dependent reactivity via the production of oxygen derived free radicals. This review discusses the effects of nicotine on resistance arterioles, compliance arteries, smooth muscle cells, and ion channels in the cardiovascular system. We discuss studies performed on humans, nicotine-exposed animals, and cell cultures yielding varying and inconsistent results that may be due to differences in experimental design, species, and the dose of exposure. Nicotine exposure appears to induce a combination of free radical production, vascular wall adhesion, and a reduction of fibrinolytic activity in the plasma.
Collapse
Affiliation(s)
- Salma Toma Hanna
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
12
|
Karagueuzian HS, Chen PS, Mandel WJ. Mechanisms of Atrial Flutter-From MacWilliam in 1887 to Miyauchi in 2005-. J Arrhythm 2006. [DOI: 10.4020/jhrs.22.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Miyauchi M, Qu Z, Miyauchi Y, Zhou SM, Pak H, Mandel WJ, Fishbein MC, Chen PS, Karagueuzian HS. Chronic nicotine in hearts with healed ventricular myocardial infarction promotes atrial flutter that resembles typical human atrial flutter. Am J Physiol Heart Circ Physiol 2005; 288:H2878-86. [PMID: 15665050 DOI: 10.1152/ajpheart.01165.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential of chronic nicotine exposure for atrial fibrillation (AF) and atrial flutter (AFL) in hearts with and without chronic myocardial infarction (MI) remains poorly explored. MI was created in dogs by permanent occlusion of the left anterior descending coronary artery, and dogs were administered nicotine (5 mg·kg−1·day−1 sc) for 1 mo using osmotic minipumps. High-resolution epicardial (1,792 bipolar electrodes) and endocardial Halo catheters were used to map activation during induced atrial rhythms. Nicotine promoted inducible sustained AFL at a mean cycle length of 134 ± 10 ms in all MI dogs ( n = 6) requiring pacing and electrical shocks for termination. No AFL could be induced in MI dogs ( n = 6), control (non-MI) dogs ( n = 3) not exposed to nicotine, and dogs with no MI and exposed to nicotine ( n = 3). Activation maps during AFL showed a single reentrant wavefront in the right atrium that rotated either clockwise (60%) or counterclockwise (40%) around the crista terminalis and through the isthmus. Ablation of the isthmus prevented the induction of AFL. Nicotine caused a significant ( P < 0.01) but highly heterogeneous increase in atrial interstitial fibrosis (2- to 10-fold increase in left and right atria, respectively) in the MI group but only a 2-fold increase in the right atrium in the non-MI group. Nicotine also flattened ( P < 0.05) the slope of the epicardial monophasic action potential duration (electrical restitution) curve of both atria in the MI but not in non-MI dogs. Two-dimensional simulation in an excitable matrix containing an isthmus and nicotine's restitutional and reduced gap junctional coupling (fibrosis) parameters replicated the experiments. Chronic nicotine in hearts with MI promotes AFL that closely resembles typical human AFL. Increased atrial interstitial fibrosis and flattened electrical restitution are important substrates for the AFL.
Collapse
Affiliation(s)
- Mizuho Miyauchi
- Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Silva-Barrat C, Velluti J, Szente M, Batini C, Champagnat J. Exaggeration of epileptic-like patterns by nicotine receptor activation during the GABA withdrawal syndrome. Brain Res 2005; 1042:133-43. [PMID: 15854585 DOI: 10.1016/j.brainres.2005.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 02/02/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
To understand how nicotinic cholinergic receptors may participate in epileptic seizures, we tested the effects of nicotine and of the competitive nicotinic antagonists dihydro-beta-erythroidine and alpha-bungarotoxin on synaptic paroxysmal depolarization shifts (PDSs) and intrinsic bursts of action potentials recorded in slices from rats presenting a cortical status epilepticus. This model named GABA-withdrawal syndrome (GWS) appears consecutive to the interruption of a prolonged intracortical GABA infusion. Effects of both nicotinic antagonists suggest a distinct involvement of alpha4-beta2 and alpha7 subunits in shaping individual PDSs and patterning repetitive bursts. On one hand, in GWS rats, an increase of PDS latency and prolongation of PDS and bursts were induced by nicotine and reduced by dihydro-beta-erythroidine, but not by alpha-bungarotoxin. The K+ blocker tetraethylammonium also increased duration without changing latency. Thus, dihydro-beta-erythroidine-sensitive receptors exert distinct controls on the presynaptic generation of PDS and on the process which terminates PDSs and bursts. On the other hand, alpha-bungarotoxin depolarized neurons and generated rhythmic discharges of clustered bursts. Clustered bursts were also observed in slices obtained from GWS rats treated with the acetylcholinesterase inhibitor eserine. We suggest that both dihydro-beta-erythroidine and alpha-bungarotoxin-sensitive sites control paroxysmic activities in GWS and could be involved in some human and animal epilepsies presenting mutations of nicotinic cholinergic receptors.
Collapse
Affiliation(s)
- Carmen Silva-Barrat
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, UMR 7091, CNRS, 75634 Paris, France.
| | | | | | | | | |
Collapse
|
15
|
Abstract
We studied modulation of current in human embryonic kidney tsA-201 cells coexpressing rat erg1 channels with M(1) muscarinic receptors. Maximal current was inhibited 30% during muscarinic receptor stimulation, with a small positive shift of the midpoint of activation. Inhibition was attenuated by coexpression of the regulator of G-protein signalling RGS2 or of a dominant-negative protein, G(q), but not by N-ethylmaleimide or C3 toxin. Overexpression of a constitutively active form of G(q) (but not of G(13) or of G(s)) abolished the erg current. Hence it is likely that G(q/11), and not G(i/o) or G(13), mediates muscarinic inhibition. Muscarinic suppression of erg was attenuated by chelating intracellular Ca(2+) to < 1 nm free Ca(2+) with 20 mm BAPTA in the pipette, but suppression was normal if internal Ca(2+) was strongly clamped to a 129 nm free Ca(2+) level with a BAPTA buffer and this was combined with numerous other measures to prevent intracellular Ca(2+) transients (pentosan polysulphate, preincubation with thapsigargin, and removal of extracellular Ca(2+)). Hence a minimum amount of Ca(2+) was necessary for the inhibition, but a Ca(2+) elevation was not. The ATP analogue AMP-PCP did not prevent inhibition. The protein kinase C (PKC) blockers staurosporine and bisindolylmaleimide I did not prevent inhibition, and the PKC-activating phorbol ester PMA did not mimic it. Neither the tyrosine kinase inhibitor genistein nor the tyrosine phosphatase inhibitor dephostatin prevented inhibition by oxotremorine-M. Hence protein kinases are not needed. Experiments with a high concentration of wortmannin were consistent with recovery being partially dependent on PIP(2) resynthesis. Wortmannin did not prevent muscarinic inhibition. Our studies of muscarinic inhibition of erg current suggest a role for phospholipase C, but not the classical downstream messengers, such as PKC or a calcium transient.
Collapse
Affiliation(s)
- Wiebke Hirdes
- Department of Physiology and Biophysics, University of Washington School of Medicine, G-424 Health Sciences Building, Box 357290, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|