1
|
Ciani E, Fontaine R, Maugars G, Nourizadeh-Lillabadi R, Andersson E, Bogerd J, von Krogh K, Weltzien FA. Gnrh receptor gnrhr2bbα is expressed exclusively in lhb-expressing cells in Atlantic salmon male parr. Gen Comp Endocrinol 2020; 285:113293. [PMID: 31580881 DOI: 10.1016/j.ygcen.2019.113293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (Gnrh) plays a major role in the regulation of physiological and behavioural processes related to reproduction. In the pituitary, it stimulates gonadotropin synthesis and release via activation of Gnrh receptors (Gnrhr), belonging to the G protein-coupled receptor superfamily. Evidence suggests that differential regulation of the two gonadotropins (Fsh and Lh) is achieved through activation of distinct intracellular pathways and, probably, through the action of distinct receptors. However, the roles of the different Gnrhr isoforms in teleosts are still not well understood. This study investigates the gene expression of Gnrhr in the pituitary gland of precociously maturing Atlantic salmon (Salmo salar) male parr. A total of six Gnrhr paralogs were identified in the Atlantic salmon genome and named according to phylogenetic relationship; gnrhr1caα, gnrhr1caβ, gnrhr1cbα, gnrhr1cbβ, gnrhr2bbα, gnrhr2bbβ. All paralogs, except gnrhr1caα, were expressed in male parr pituitary during gonadal maturation as evidenced by qPCR analysis. Only one gene, gnrhr2bbα, was differentially expressed depending on maturational stage (yearly cycle), with high expression levels in maturing fish, increasing in parallel with gonadotropin subunit gene expression. Additionally, a correlation in daily expression levels was detected between gnrhr2bbα and lhb (daily cycle) in immature fish in mid-April. Double fluorescence in situ hybridization showed that gnrhr2bbα was expressed exclusively in lhb gonadotropes in the pituitary, with no expression detected in fshb cells. These results suggest the involvement of receptor paralog gnrhr2bbα in the regulation of lhb cells, and not fshb cells, in sexually maturing Atlantic salmon male parr.
Collapse
Affiliation(s)
- Elia Ciani
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Romain Fontaine
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Gersende Maugars
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | | | - Jan Bogerd
- Utrecht University, Faculty of Science, Department of Biology, Reproductive Biology Group, Utrecht, The Netherlands
| | - Kristine von Krogh
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Finn-Arne Weltzien
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway.
| |
Collapse
|
2
|
Saha S, Patil S, Singh U, Singh O, Singru PS. Sexual dimorphism in the hypophysiotropic tyrosine hydroxylase-positive neurons in the preoptic area of the teleost, Clarias batrachus. Biol Sex Differ 2015; 6:23. [PMID: 26557978 PMCID: PMC4640419 DOI: 10.1186/s13293-015-0042-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dopamine (DA) neurons in the anteroventral periventricular nucleus (AVPV) in the preoptic area (POA) of mammals express estrogen receptors, regulate luteinizing hormone (LH) secretion, and show distinct sexual dimorphism. In teleosts, hypophysiotropic DA neurons of the nucleus preopticus periventricularis (NPP), located in the anteroventral POA, express estrogen receptors, innervate LH cells, and emerged as a neuroanatomical substrate for inhibiting LH cells. Interestingly, the NPP and AVPV seem to share several similarities. Whether DAergic neurons in the NPP show sexual dimorphism is, however, not known. Based on the proposed homology to AVPV and previous studies showing greater tyrosine hydroxylase (TH) mRNA and enzyme activity levels in the brain of female catfish, we hypothesize that females have greater number of DAergic neurons in the NPP and correspondingly more TH-immunoreactive fiber innervation of the pituitary. METHODS Adult, male and female Clarias batrachus collected during the prespawning phase of their reproductive cycle were used. Fish were anesthetized and perfused transcardially with phosphate-buffered saline (pH 7.4) and 4 % paraformaldehyde in phosphate buffer. Sections through the rostro-caudal extent of the POA and pituitary were processed for TH immunofluorescence. Using double immunofluorescence, the association between TH-immunoreactive fibers and LH cells in the pituitary was explored. Sections were analyzed using semiquantitative analysis. RESULTS NPP in POA of C. batrachus has two distinct subdivisions, viz, anterior (NPPa) and posterior (NPPp), and TH neurons were observed in both the subdivisions. Compared to that in the males, a significantly higher (P < 0.05) number of TH neurons was consistently observed in the NPPa of females. TH neurons in NPPp, however, showed no difference in the number or immunoreactivity. Since DA neurons in NPPa are hypophysiotropic, we compared TH-fiber innervation of the pituitary in both sexes. Compared to males, proximal pars distalis and LH cells in this region of the pituitary in females were densely innervated by TH fibers. CONCLUSIONS Neurons of NPPa and their innervation to the pituitary seem to be a distinct sexually dimorphic DAergic system in C. batrachus. The DAergic system may serve as a component of the neural mechanisms controlling the sexually dimorphic LH surge in teleosts. Given the similarities shared by NPPa and AVPV, homology between these two nuclei is suggested.
Collapse
Affiliation(s)
- Soham Saha
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India ; Present address: Institut Pasteur, Affiliated to: Ecole des neurosciences Paris (ENP) Graduate program, 28, rue du docteur Roux, 75724 Paris, Cedex 15 France
| | - Saurabh Patil
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| | - Uday Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India
| |
Collapse
|
3
|
Chiang G, Barra R, Díaz-Jaramillo M, Rivas M, Bahamonde P, Munkittrick KR. Estrogenicity and intersex in juvenile rainbow trout (Oncorhynchus mykiss) exposed to Pine/Eucalyptus pulp and paper production effluent in Chile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 164:126-134. [PMID: 25956323 DOI: 10.1016/j.aquatox.2015.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
Pulp and paper mill effluents (PPMEs) have been shown to increase gonad size, cause early maturation, and disrupt hormone functions in native and non-native Chilean fish. In this study, we assessed reproductive (plasma vitellogenin; VTG, gonad development) and metabolic (ethoxyresorufin-O-deethylase activity; EROD) end points, relative liver size (LSI) and condition factor (K) of juvenile female and male rainbow trout exposed to effluents. Unlike previous studies, which have focus either on the specific effects of effluent on fish in laboratory exposures or biotic population statuses downstream of discharge sites, we simultaneously assessed the impacts of PPMES on trout using two approaches: (1) laboratory exposures of tertiary treated PPME produced from processing Eucalyptus globulus or Pinus radiata; and (2) in situ bioassay downstream of the combined discharge of the same pulp mill. Despite an increase in the average gonadosomatic index (GSI) in exposed fish, no statistical differences in gonad size between exposed and unexposed individuals was detected. However, both female and male fish exposed to effluents showed significantly higher concentrations of plasma VTG, so more in fish exposed to Eucalyptus-based effluent when compared to Pinus PPME. In addition, male fish showed intersex characteristics in all exposure assays (Eucaliptus and Pinus) and, despite the low concentration of effluent in the river (<1% [v/v]), similar responses were observed in the caged fish. Finally, EROD activity was induced in both in situ exposures and laboratory assays at the higher PPME concentration (60-85% PPME). This study confirms estrogenic effects in Chilean fish exposed to PPME and the necessity for biological effects monitoring in addition to the assessment of physical-chemical endpoints as required in current government regulations.
Collapse
Affiliation(s)
- Gustavo Chiang
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada.
| | - Ricardo Barra
- Aquatic Systems Research Unit, EULA-Chile Environmental Sciences Centre, University of Concepción, Concepcion, Chile
| | - Mauricio Díaz-Jaramillo
- Laboratorio de Ecotoxicología y Contaminación Ambiental (ECoA), IIMyC-CONICET-UNMdP, Mar del Plata, Argentina
| | - Meyling Rivas
- Department of Zoology, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Concepcion, Chile
| | - Paulina Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
4
|
Gomes C, Costa F, Borella M. Distribution of GnRH in the brain of the freshwater teleost Astyanax altiparanae (). Micron 2013; 52-53:33-8. [DOI: 10.1016/j.micron.2013.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/05/2013] [Accepted: 07/29/2013] [Indexed: 01/24/2023]
|
5
|
Brummett RE. Environmental regulation of sexual maturation and reproduction in tilapia. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641269509388573] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Weltzien FA, Andersson E, Andersen Ø, Shalchian-Tabrizi K, Norberg B. The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 2004; 137:447-77. [PMID: 15123185 DOI: 10.1016/j.cbpb.2003.11.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/05/2003] [Accepted: 11/06/2003] [Indexed: 02/03/2023]
Abstract
The key component regulating vertebrate puberty and sexual maturation is the endocrine system primarily effectuated along the brain-pituitary-gonad (BPG) axis. By far most investigations on the teleost BPG axis have been performed on salmonids, carps, catfish and eels. Accordingly, earlier reviews on the BPG axis in teleosts have focused on these species, and mainly on females (e.g. 'Fish Physiology, vol. IXA. Reproduction (1983) pp. 97'; 'Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish. FishSymp91, Sheffield, UK, 1991, pp. 2'; 'Curr. Top. Dev. Biol. 30 (1995) pp. 103'; 'Rev. Fish Biol. Fish. 7 (1997) pp. 173'; 'Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. John Grieg A/S, Bergen, Norway, 2000, pp. 211'). However, in recent years new data have emerged on the BPG axis in flatfish, especially at the level of the brain and pituitary. The evolutionarily advanced flatfishes are important model species both from an evolutionary point of view and also because many are candidates for aquaculture. The scope of this paper is to review the present status on the male teleost BPG axis, with an emphasis on flatfish. In doing so, we will first discuss the present understanding of the individual constituents of the axis in the best studied teleost models, and thereafter discuss available data on flatfish. Of the three constituents of the BPG axis, we will focus especially on the pituitary and gonadotropins. In addition to reviewing recent information on flatfish, we present some entirely new information on the phylogeny and molecular structure of teleost gonadotropins.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway.
| | | | | | | | | |
Collapse
|
7
|
Okuzawa K, Gen K, Bruysters M, Bogerd J, Gothilf Y, Zohar Y, Kagawa H. Seasonal variation of the three native gonadotropin-releasing hormone messenger ribonucleic acids levels in the brain of female red seabream. Gen Comp Endocrinol 2003; 130:324-32. [PMID: 12606275 DOI: 10.1016/s0016-6480(02)00629-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the seasonal variation of the expression of genes encoding the three native gonadotropin-releasing hormones (GnRHs), namely salmon(s) GnRH, chicken(c) GnRH-II, and seabream(sb) GnRH in red seabream, Pagrus (Chrysophrys) major, in order to better understand the regulatory mechanisms of GnRH gene expression by environmental and endocrine factors. Female red seabream, reared under natural conditions, were collected monthly or bimonthly from October to June, and the levels of the three distinct GnRH messenger ribonucleic acids (mRNAs) in the brains of those fish (n = 4-6) were determined by ribonuclease (RNase) protection analysis. The levels of sbGnRH mRNA correlated well with the observed ovarian histology; the levels of sbGnRH mRNA of immature fish in October and December were low, and increased in February and March in conjunction with active vitellogenesis. The sbGnRH mRNA levels reached a maximum level in April (spawning season), after which they rapidly decreased together with the observed ovarian regression in June. In contrast, the levels of sGnRH mRNA showed no variation, while those of cGnRH-II mRNA were elevated only slightly in March and April. The increase in sbGnRH mRNA levels correlates with the increase in day length, water temperature and serum steroids levels, suggesting that these factors are candidates for regulators of sbGnRH synthesis.
Collapse
Affiliation(s)
- Koichi Okuzawa
- Inland Station, National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Watarai, Mie 519-0423, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Li WS, Lin HR, Wong AOL. Effects of gonadotropin-releasing hormone on growth hormone secretion and gene expression in common carp pituitary. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:335-41. [PMID: 12031458 DOI: 10.1016/s1096-4959(02)00039-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using radioimmuno- and ribonuclease protection assays, we examined the effects of gonadotropin-releasing hormone and its analogs on the growth hormone mRNA level and growth hormone secretion in common carp (Cyprinus carpio) pituitary fragments with static incubation. After a 24 h treatment, sGnRH ([Trp(7),Leu(8)]-LHRH) and sGnRH-A ([D-Arg(6),Pro(9)]-LHRH) (0.1 nM-1 microM) elevated the GH mRNA level and stimulated the GH secretion in a dose-dependent manner, with a higher potency for sGnRH-A. In a time-course experiment, the function of sGnRH and sGnRH-A (10 nM) on GH secretion was observed after 6 h incubation, while no action on the GH mRNA level were noted until 12 h after treatment. Comparing mammalian GnRH, avian GnRH and piscine GnRH, sGnRH and sGnRH-A showed the highest potency in increasing GH mRNA level and GH-release, followed by cGnRH-II ([His(5),Tyr(8)]-LHRH), and finally LHRH and LHRH-A([D-Trp(6), Pro(9)]-LHRH). These findings, taken together, suggest that GnRH not only can influence GH release, but also play a role in the regulation of GH synthesis.
Collapse
Affiliation(s)
- Wen-Sheng Li
- School of Life Sciences, Zhongshan University, Guangzhou 510275, PR China
| | | | | |
Collapse
|
9
|
Lo A, Chang JP. In vitro application of testosterone potentiates gonadotropin-releasing hormone-stimulated gonadotropin-II secretion from cultured goldfish pituitary cells. Gen Comp Endocrinol 1998; 111:334-46. [PMID: 9707479 DOI: 10.1006/gcen.1998.7117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The in vitro effects of overnight treatment with testosterone (T) on gonadotropin (GTH)-II secretion from primary cultures of dispersed female goldfish pituitary cells were examined. T (100 nM) did not affect basal GTH-II release, but increased GTH-II responses to initial applications of 0.5-h pulses of sGnRH or cGnRH-II in cells from females at sexually regressed, recrudescing, or mature (prespawning) stages. Pretreatment with 10 nM T was also effective, except in experiments with cells from sexually regressed females. Analysis of GTH-II response profiles to the first GnRH pulse revealed that T increased the size of the initial (first 15 min) and sustained (rest of response) release phases, and the duration of the total response to both GnRHs. These results indicate that direct positive influence of T on GnRH-stimulated GTH-II release is demonstrable in cells from female goldfish at all ovarian maturational stages; in addition, T affects both the initial and the sustained response phases. However, compared to the initial GnRH challenge, responses to a second 0.5-h GnRH pulse were decreased in T-treated but not in control cells, suggesting that T also enhanced desensitization. Ovarian maturational conditions modulated the effects of T on the GTH-II response kinetics. In cells prepared from sexually regressed females, T treatment changed the "monophasic" (initial phase only) GTH-II response to sGnRH to a "biphasic" one characteristic of cells prepared from fish at later stages of gonadal recrudescence. Advancing gonadal maturity increased the magnitude of both initial and sustained phases of the T-enhanced GTH-II response to sGnRH, but only elevated the initial phase of T-potentiated cGnRH-II-induced release. Direct actions of T on pituitary cells may play a role in ovarian steroid feedback regulation of GTH-II secretion during the seasonal reproductive cycle in goldfish.
Collapse
Affiliation(s)
- A Lo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | | |
Collapse
|
10
|
Gelinas D, Callard GV. Immunolocalization of aromatase- and androgen receptor-positive neurons in the goldfish brain. Gen Comp Endocrinol 1997; 106:155-68. [PMID: 9169111 DOI: 10.1006/gcen.1997.6891] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Full expression of testosterone (T) actions in the brain requires both direct binding to androgen receptors (AR) and in situ aromatization to estradiol (E2). To determine the cellular basis of constitutively high aromatase and AR binding activities in teleost fish brain, and the neuroanatomic location and spatial relations of cells of each type, an immunocytochemical mapping study of goldfish (Carassius auratus) brain was carried out using antibodies to human placental aromatase and human/rat AR peptide and the avidin-biotin-peroxidase technique. Both antibodies specifically labeled cells that were neuronal in appearance and were most numerous in reproductive control centers: medial and ventral telencephalon (TEL) and preoptic and hypothalamic periventricular nuclei. Additional populations of aromatase- and AR-labeled cells were present in the olfactory bulbs, central telencephalon, and stratum periventriculare of the optic tectum. Anti-aromatase, but not anti-AR, labeled fiber tracts and fibrous layers in visual and auditory pathways, and perikarya and processes of premotor neurons known to integrate sensory input (reticulospinal neurons, Mauthner cells). Anti-AR selectively labeled lateral TEL regions, the nucleus ventromedialis thalami, and discrete cell clusters in the medial tegmental nucleus. Aromatase-immunoreactivity (-ir) was primarily cytoplasmic, whereas AR-ir was primarily nuclear, but relative intensity of nuclear vs cytoplasmic labeling with each antibody differed by brain region. Aromatase- and AR-ir cells were not obviously more numerous in goldfish brain than previously seen in birds and mammals, suggesting that enhanced expression occurs on a per cell basis. We conclude that T exerts its actions coordinately via direct and indirect pathways in most brain regions but independently via AR- or aromatase-mediated mechanisms in selected areas. These studies point to a wide role for androgen in modulating primary sensory signals as well as in classical reproductive processes.
Collapse
Affiliation(s)
- D Gelinas
- Department of Biology, Boston University, Massachusetts 02215, USA
| | | |
Collapse
|
11
|
Trudeau VL, Sloley BD, Peter RE. Norepinephrine turnover in the goldfish brain is modulated by sex steroids and GABA. Brain Res 1993; 624:29-34. [PMID: 8252402 DOI: 10.1016/0006-8993(93)90056-s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is known that norepinephrine (NE) is important in the neuroendocrine control of pituitary gonadotropin II (GTH-II) and growth hormone (GH) release but very little is known about the factors regulating NE neurons in the goldfish brain. Female gonad-intact goldfish were implanted intraperitoneally (100 micrograms/g) with testosterone (T) or estradiol (E2) to elevate serum steroid levels. High-performance liquid chromatography measurements showed that steroid implantation had no effect on NE content in the telencephalon, including preoptic area (TEL-POA), or the hypothalamus (HYP). The turnover rate of NE was estimated from the rate of depletion of NE content from tissues following inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine (240 micrograms/g). The present study demonstrates that E2 can decrease NE turnover rates in TEL-POA and HYP of sexually regressed goldfish (August). The results in recrudescent fish (November), however, indicate a more complex interaction of E2 with NE neurons since E2 increased NE turnover in TEL-POA and HYP in these animals. Testosterone (T) has less prominent effects on NE turnover rates in TEL-POA and HYP; the only significant effect of T-implantation was a small reduction of NE turnover in the TEL-POA of sexually recrudescent fish. Elevation of endogenous brain GABA concentrations by injection of the GABA transaminase inhibitor, gamma-vinyl-GABA (300 micrograms/g), significantly reduced NE turnover in TEL-POA. These data demonstrate that goldfish NE neurons in the TEL-POA are sensitive to regulation by changes in circulating sex steroids and by increases in brain GABA.
Collapse
Affiliation(s)
- V L Trudeau
- Department of Zoology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
12
|
Amano M, Oka Y, Aida K, Okumoto N, Kawashima S, Hasegawa Y. Immunocytochemical demonstration of salmon GnRH and chicken GnRH-II in the brain of masu salmon, Oncorhynchus masou. J Comp Neurol 1991; 314:587-97. [PMID: 1814976 DOI: 10.1002/cne.903140313] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently developed sensitive and specific radioimmunoassays (RIAs) for salmon gonadotropin-releasing hormone (sGnRH) and chicken GnRH-II (cGnRH-II) and have measured the contents of both GnRHs in the rainbow trout brain. Our results showed that contents of the two GnRHs are variable among different brain regions. Therefore, in order to confirm the differential distribution of the two GnRHs by a different technique, we examined the distribution of immunoreactive sGnRH and cGnRH-II in the brain of masu salmon by using immunocytochemical techniques. sGnRH immunoreactive (ir) cell bodies were scattered in the transitional areas between the olfactory nerve and the olfactory bulb, the ventral olfactory bulb, between the olfactory bulb and the telencephalon, the ventral telencephalon, and the preoptic area. These sGnRH-ir cell bodies were dispersed in a strip-like region running rostrocaudally in the most ventral part of the ventral telencephalon. sGnRH-ir fibers were distributed in the various brain regions from the olfactory bulb to the spinal cord. They were especially abundant in the olfactory bulb, ventral telencephalon, preoptic area, hypothalamus, deep layers of the optic tectum, and thalamus. sGnRH-ir fibers also innervated the pituitary directly. cGnRH-II-ir cell bodies were found in the nucleus of the medial longitudinal fasciculus (nMLF). The distribution of cGnRH-II-ir fibers was similar to that of sGnRH-ir fibers, except that cGnRH-II-ir fibers were absent in the pituitary. The number of cGnRH-II-ir fibers was much fewer than that of sGnRH-ir fibers. The results of the present immunocytochemical study are in basic agreement with those of our previous RIA study. Thus, we suggest that in masu salmon, sGnRH not only regulates gonadotropin (GTH) release from the pituitary but also functions as a neuromodulator in the brain, whereas cGnRH-II functions only as a neuromodulator.
Collapse
Affiliation(s)
- M Amano
- Department of Fisheries, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Habibi HR, De Leeuw R, Nahorniak CS, Goos HJ, Peter RE. Pituitary gonadotropin-releasing hormone (GnRH) receptor activity in goldfish and catfish: seasonal and gonadal effects. FISH PHYSIOLOGY AND BIOCHEMISTRY 1989; 7:109-118. [PMID: 24221761 DOI: 10.1007/bf00004696] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The goldfish pituitary contains two classes of gonadotropin-releasing hormone (GnRH) binding sites, a high affinity/low capacity site and a low affinity/high capacity site (Habibiet al. 1987a), whereas the catfish pituitary contains a single class of high affinity GnRH binding sites (De Leeuwet al. 1988a). Seasonal variations in pituitary GnRH receptor binding parameters, and the effect of castration on pituitary GnRH receptor binding were investigated in goldfish and catfish, respectively. In goldfish, GnRH receptors undergo seasonal variation with the highest pituitary content of both high and low affinity sites occurring during the late stages of gonadal recrudescence. The observed changes in pituitary GnRH receptor content correlate closely with responsiveness to a GnRH agonistin vivo in terms of serum gonadotropin (GTH) levels. In catfish, castration results in a two-fold increase in pituitary GnRH receptor content, which can be reversed by concomitant treatment with androstenedione, but not by the non-aromatizable androgen 11β-hydroxyandrostenedione; changes observed in GnRH receptor content correlate with variations in serum GTH levels and responsiveness to a GnRH agonist. In summary, the present study provides a clear evidence for seasonal variation in pituitary GnRH receptor activity in goldfish, and demonstrates a gonadal feedback mechanism regulating GnRH receptor activity in the catfish pituitary.
Collapse
Affiliation(s)
- H R Habibi
- Department of Zoology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
14
|
Timmers RJ, Lambert JG. Catechol-O-methyltransferase in the brain of the male African catfish,Clarias gariepinus; distribution and significance for the metabolism of catecholestrogens and dopamine. FISH PHYSIOLOGY AND BIOCHEMISTRY 1989; 7:201-210. [PMID: 24221773 DOI: 10.1007/bf00004708] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Catechol-O-methyltransferase, involved in the methylation of catechol substrates, was localized in the brain of the male African catfish,Clarias gariepinus, by means of a radiometric assay using [Methyl-(3)H]S-adenosylmethionine as methyldonor and catecholestrone as substrate. Fore- and midbrain were divided into eighteen, 500 μm thick, transverse sections. With a hollow needle (diameter 1 mm), specific areas of the brain were punched out and assayed. The catechol-O-methyltransferase activity was calculated from the amount of radioactive methoxyestrone formed from catecholestrone and expressed in pmol.mg(-1) tissue.h(-1).The enzyme could be demonstrated throughout the brain. Although the enzyme activity did not differ very much between the various brain regions (max. 15.4; min. 7.5 pmol), there were some areas in the brain with a more than average activity,i.e., the lateral telencephalon (10.3 pmol), the nucleus preopticus (13.1 pmol), nucleus lateralis tuberis (11.0 pmol) and nucleus recessus posterioris (12.0 pmol) of the diencephalon, the tectum opticum (15.4 pmol) and torus semicircularis (13.6 pmol) of the mesencephalon, and the caudal cerebellum of the metencephalon (10.8 pmol). The lowest activity was detected in the caudal metencephalon (7.5 pmol).The presence of the enzyme catechol-O-methyltransferase in the brain of the African catfish and the observation that both catecholestrogens and dopamine can be methylated by this enzyme suggest that catecholestrogens can influence the methylation (inactivation) of dopamine. Incubations of forebrain homogenates with dopamine and catecholestrone or catecholestradiol confirmed that both catecholestrogens can inhibit the methylation of dopamine. Lineweaver-burk plots with various concentrations of the catecholestrogens indicated that the inhibition is competitive. Dixon plots from the inhibition studies gave inhibition constants of 1.4 and 0.6 μM for catecholestrone and catecholestradiol, respectively, indicating that catecholestradiol is a two times stronger inhibitor than catecholestrone.The significance of the inhibition of the methylation of dopamine by the catecholestrogens in the brain is discussed in the light of the negative feedback of gonadal steroids on the central regulation of reproductive processes.
Collapse
Affiliation(s)
- R J Timmers
- Department of Experimental Zoology, Research Group of Comparative Endocrinology, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | |
Collapse
|
15
|
Ram RN, Joy KP. Mercurial induced changes in the hypothalamo-neurohypophysical complex in relation to reproduction in the teleostean fish, Channa punctatus (Bloch). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1988; 41:329-336. [PMID: 3219425 DOI: 10.1007/bf01688875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- R N Ram
- Centre of Advanced Study in Zoology, Banaras Hindu University, Varansai, India
| | | |
Collapse
|
16
|
Dufour S, Fontaine YA, Kerdelhue B. Increase in brain and pituitary radioimmunoassayable gonadotropin releasing hormone (GnRH) in the European silver eel treated with sexual steroid or human chorionic gonadotropin. Neuropeptides 1985; 6:495-502. [PMID: 3908963 DOI: 10.1016/0143-4179(85)90111-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the female silver eel, a single estradiol 17 beta (E2) injection significantly increased radioimmunoassayable GnRH (IRGnRH) in the di- and mesencephalon and also in the telencephalon and olfactory lobes, during the first following days; after a chronic estradiol treatment, the pituitary IRGnRH was doubled. In the male silver eel, a single injection of human chorionic gonadotropin (hCG), which is able to induce a progressive testicular development and a durable increase in androgens production, produced a long-term effect on IRGnRH: IRGnRH was significantly increased in the same brain areas as in E2-treated females; a more important rise (10-fold) was observed for pituitary IRGnRH, probably reflecting the accumulation of GnRH in the axonal endings which directly innervate the pituitary in teleosts. These results suggest a positive effect of sexual steroids on GnRH synthesis but not release in the silver eel.
Collapse
|