1
|
Machado NL, Silva FC, Chianca DA, de Menezes RC. Nitric oxide modulates blood pressure through NMDA receptors in the rostral ventrolateral medulla of conscious rats. Brain Res 2016; 1643:159-67. [DOI: 10.1016/j.brainres.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 02/06/2023]
|
2
|
Alves FHF, Crestani CC, Resstel LBM, Corrêa FMA. Both α1- and α2-adrenoceptors in the insular cortex are involved in the cardiovascular responses to acute restraint stress in rats. PLoS One 2014; 9:e83900. [PMID: 24404141 PMCID: PMC3880272 DOI: 10.1371/journal.pone.0083900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
The insular cortex (IC) is a limbic structure involved in cardiovascular responses observed during aversive threats. However, the specific neurotransmitter mediating IC control of cardiovascular adjustments to stress is yet unknown. Therefore, in the present study we investigated the role of local IC adrenoceptors in the cardiovascular responses elicited by acute restraint stress in rats. Bilateral microinjection of different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective α1-adrenoceptor antagonist WB4101 into the IC reduced both the arterial pressure and heart rate increases elicited by restraint stress. However, local IC treatment with different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective α2-adrenoceptor antagonist RX821002 reduced restraint-evoked tachycardia without affecting the pressor response. The present findings are the first direct evidence showing the involvement of IC adrenoceptors in cardiovascular adjustments observed during aversive threats. Our findings indicate that IC noradrenergic neurotransmission acting through activation of both α1- and α2-adrenoceptors has a facilitatory influence on pressor response to acute restraint stress. Moreover, IC α1-adrenoceptors also play a facilitatory role on restraint-evoked tachycardiac response.
Collapse
Affiliation(s)
- Fernando H. F. Alves
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| | - Carlos C. Crestani
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences of Araraquara, Univ. Estudual Paulista - UNESP, Araraquara, SP, Brazil
| | - Leonardo B. M. Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando M. A. Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Kenney MJ, Ganta CK, Fels RJ. Disinhibition of RVLM neural circuits and regulation of sympathetic nerve discharge at peak hyperthermia. J Appl Physiol (1985) 2013; 115:1297-303. [PMID: 23990239 DOI: 10.1152/japplphysiol.00494.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia is a potent activator of visceral sympathetic nerve discharge (SND), and the functional integrity of the rostral ventral lateral medulla (RVLM) is critically important for sustaining sympathoexcitation at peak hyperthermia. However, RVLM mechanisms mediating SND activation to acute heat stress are not well understood. Because RVLM GABA is tonically inhibitory to sympathetic nerve outflow, it is plausible to hypothesize that disinhibition of RVLM sympathetic neural circuits, via withdrawal of GABAergic tone, may affect SND regulation at peak hyperthermia. The effect of RVLM bicuculline (BIC; GABAA receptor antagonist, 100-200 pmol) microinjections on the level of renal SND in anesthetized rats was determined after internal body temperature (Tc) had been increased to 41.5°C. Temperature-control experiments involved RVLM BIC (100-200 pmol) microinjections, with Tc maintained at 38°C. As expected, acute heating significantly increased renal SND from control levels. Bilateral RVLM BIC microinjections at 41.5°C produced immediate and significant increases in renal SND above heating-induced levels of activation. Bilateral RVLM BIC microinjections at 38°C increased renal SND to similar levels as produced by RVLM BIC microinjections after Tc had been increased to 41.5°C (heating + RVLM BIC). These results demonstrate that a considerable level of RVLM GABAergic inhibition is sustained at peak hyperthermia, an interesting physiological response profile based on the significance of SND activation to cardiovascular regulation during heat stress.
Collapse
Affiliation(s)
- Michael J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | | | |
Collapse
|
4
|
Angiotensin type 1A receptors in C1 neurons of the rostral ventrolateral medulla modulate the pressor response to aversive stress. J Neurosci 2012; 32:2051-61. [PMID: 22323719 DOI: 10.1523/jneurosci.5360-11.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rise in blood pressure during an acute aversive stress has been suggested to involve activation of angiotensin type 1A receptors (AT(1A)Rs) at various sites within the brain, including the rostral ventrolateral medulla. In this study we examine the involvement of AT(1A)Rs associated with a subclass of sympathetic premotor neurons of the rostral ventrolateral medulla, the C1 neurons. The distribution of putative AT(1A)R-expressing cells was mapped throughout the brains of three transgenic mice with a bacterial artificial chromosome-expressing green fluorescent protein under the control of the AT(1A)R promoter. The overall distribution correlated with that of the AT(1A)Rs mapped by other methods and demonstrated that the majority of C1 neurons express the AT(1A)R. Cre-recombinase expression in C1 neurons of AT(1A)R-floxed mice enabled demonstration that the pressor response to microinjection of angiotensin II into the rostral ventrolateral medulla is dependent upon expression of the AT(1A)R in these neurons. Lentiviral-induced expression of wild-type AT(1A)Rs in C1 neurons of global AT(1A)R knock-out mice, implanted with radiotelemeter devices for recording blood pressure, modulated the pressor response to aversive stress. During prolonged cage-switch stress, expression of AT(1A)Rs in C1 neurons induced a greater sustained pressor response when compared to the control viral-injected group (22 ± 4 mmHg for AT(1A)R vs 10 ± 1 mmHg for GFP; p < 0.001), which was restored toward that of the wild-type group (28 ± 2 mmHg). This study demonstrates that AT(1A)R expression by C1 neurons is essential for the pressor response to angiotensin II and that this pathway plays an important role in the pressor response to aversive stress.
Collapse
|
5
|
Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice. J Hypertens 2012; 29:2156-66. [PMID: 21941207 DOI: 10.1097/hjh.0b013e32834bbb6b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Schlager hypertensive (BPH/2J) mice have been suggested to have high blood pressure (BP) due to an overactive sympathetic nervous system (SNS), but the contribution of the renin-angiotensin system (RAS) is unclear. In the present study, we examined the cardiovascular effects of chronically blocking the RAS in BPH/2J mice. METHODS Schlager normotensive (BPN/3J, n = 6) and BPH/2J mice (n = 8) received the angiotensin AT 1A-receptor antagonist losartan (150 mg/kg per day) in drinking water for 2 weeks. Pre-implanted telemetry devices were used to record mean arterial pressure (MAP), heart rate (HR) and locomotor activity. RESULTS MAP was reduced by losartan treatment in BPN/3J (-23 mmHg, P < 0.01) and in BPH/2J mice (-25 mmHg, P < 0.001), whereas HR was increased. Losartan had little effect on initial pressor responses to feeding or to stress, but did attenuate the sustained pressor response to cage-switch stress. During the active period, the hypotension to sympathetic blockade with pentolinium was greater in BPH/2J than BPN/3J (suggesting neurogenic hypertension), but was not affected by losartan. During the inactive period, a greater depressor response to pentolinium was observed in losartan-treated animals. CONCLUSION The hypotensive actions of losartan suggest that although the RAS provides an important contribution to BP, it contributes little, if at all, to the hypertension-induced or the greater stress-induced pressor responses in Schlager mice. The effects of pentolinium suggest that the SNS is mainly responsible for hypertension in BPH/2J mice. However, the RAS inhibits sympathetic vasomotor tone during inactivity and prolongs sympathetic activation during periods of adverse stress, indicating an important sympatho-modulatory role.
Collapse
|
6
|
Mischel NA, Mueller PJ. (In)activity-dependent alterations in resting and reflex control of splanchnic sympathetic nerve activity. J Appl Physiol (1985) 2011; 111:1854-62. [PMID: 21979802 PMCID: PMC3233897 DOI: 10.1152/japplphysiol.00961.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/30/2011] [Indexed: 02/07/2023] Open
Abstract
The negative effects of sympathetic overactivity on long-term cardiovascular health are becoming increasingly clear. Moreover, recent work done in animal models of cardiovascular disease suggests that sympathetic tone to the splanchnic vasculature may play an important role in the development and maintenance of these disease states. Work from our laboratory and others led us to hypothesize that a lack of chronic physical activity increases resting and reflex-mediated splanchnic sympathetic nerve activity, possibly through changes occurring in a key brain stem center involved in sympathetic regulation, the rostral ventrolateral medulla (RVLM). To address this hypothesis, we recorded mean arterial pressure (MAP) and splanchnic sympathetic nerve activity (SSNA) in a group of active and sedentary animals that had been housed for 10-13 wk with or without running wheels, respectively. In experiments performed under Inactin anesthesia, we tested responses to RVLM microinjections of glutamate, responses to baroreceptor unloading, and vascular reactivity, the latter of which was performed under conditions of autonomic blockade. Sedentary animals exhibited enhanced resting SSNA and MAP, augmented increases in SSNA to RVLM activation and baroreceptor unloading, and enhanced vascular reactivity to α(1)-receptor mediated vasoconstriction. Our results suggest that a sedentary lifestyle increases the risk of cardiovascular disease by augmenting resting and reflex-mediated sympathetic output to the splanchnic circulation and also by increasing vascular sensitivity to adrenergic stimulation. We speculate that regular physical exercise offsets or reverses the progression of these disease processes via similar or disparate mechanisms and warrant further examination into physical (in)activity-induced sympathetic nervous system plasticity.
Collapse
Affiliation(s)
- Nicholas A Mischel
- Dept. of Physiology, Wayne State Univ. School of Medicine, Detroit MI 48201, USA
| | | |
Collapse
|
7
|
Kenney MJ, Meyer CN, Hosking KG, Fels RJ. Is visceral sympathoexcitation to heat stress dependent on activation of ionotropic excitatory amino acid receptors in the rostral ventrolateral medulla? Am J Physiol Regul Integr Comp Physiol 2011; 301:R548-57. [PMID: 21632850 DOI: 10.1152/ajpregu.00113.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute heat stress activates visceral sympathetic nerve discharge (SND) in young rats, and the functional integrity of the rostral ventrolateral medulla (RVLM) is required for sustaining visceral sympathoexcitation during peak increases in internal body temperature (T(c)). However, RVLM mechanisms mediating SND activation to hyperthermia remain unknown. In the present study, we investigated the role of RVLM ionotropic excitatory amino acid receptors in mediating visceral SND activation to heat stress in anesthetized, young rats. The effects of bilateral RVLM kynurenic acid (Kyn; 2.7 and 5.4 nmol), saline, or muscimol (400-800 pmol) microinjections on renal SND and splenic SND responses to heat stress were determined at peak hyperthermia (T(c) 41.5°C), during progressive hyperthermia (T(c) 40°C), and at the initiation of heating (T(c) increased from 38 to 38.5°C). RVLM Kyn microinjections did not reduce renal and splenic SND recorded during progressive or peak hyperthermia and did not attenuate SND activation at the initiation of heating. In fact, renal and splenic SND tended to be or were significantly increased following RVLM Kyn microinjections at the initiation of heating and during hyperthermia (40 and 41.5°C). RVLM muscimol microinjections at 39, 40, and 41.5°C resulted in immediate reductions in SND. These data indicate that RVLM ionotropic glutamate receptors are required for mediating visceral sympathoexcitation to acute heating and suggest that acute heating activates an RVLM ionotropic excitatory amino acid receptor dependent inhibitory input, which reduces the level of visceral SND to heating.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | |
Collapse
|
8
|
Davern PJ, Head GA. Role of the medial amygdala in mediating responses to aversive stimuli leading to hypertension. Clin Exp Pharmacol Physiol 2011; 38:136-43. [DOI: 10.1111/j.1440-1681.2010.05413.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Davern P, Jackson K, Nguyen-Huu T, La Greca L, Head G. Cardiovascular reactivity and neuronal activation to stress in Schlager genetically hypertensive mice. Neuroscience 2010; 170:551-8. [DOI: 10.1016/j.neuroscience.2010.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 11/17/2022]
|
10
|
Mayorov DN. Nitric oxide synthase inhibition in rostral ventrolateral medulla attenuates pressor response to psychological stress in rabbits. Neurosci Lett 2007; 424:89-93. [PMID: 17709184 DOI: 10.1016/j.neulet.2007.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/22/2007] [Accepted: 07/20/2007] [Indexed: 01/16/2023]
Abstract
Nitric oxide (NO) has been critically implicated in the central regulation of autonomic function. We recently found, however, that acute (up to 30min) blockade of NO synthase (NOS) in the rostral ventrolateral medulla (RVLM) inhibited sympathetic baroreflex transmission, without altering the cardiovascular response to psychological (air-jet) stress in rabbits. In the present study, we examined the effect of the later phase (1-3h) of NOS inhibition in the RVLM on the pressor and sympathetic responses to air-jet stress in conscious rabbits. Air-jet evoked a sustained increase in blood pressure (+14+/-2mmHg), heart rate (+37+/-9beats/min) and renal sympathetic nerve activity (+52+/-8%). Bilateral microinjection of a NOS inhibitor l-NAME (10nmol) into RVLM did not affect resting parameters or stress responses during the first 30min after injection. Conversely, in the later phase of NOS inhibition, the pressor, tachycardic and renal sympathetic responses to air-jet stress were reversibly attenuated by 48-72%. Microinjection of l-NAME outside the RVLM did not change stress responses. Microinjection of glutamate (3nmol) into the RVLM induced similar pressor effects before and after l-NAME (+30+/-6mmHg and +26+/-6mmHg, respectively). Microinjection of d-NAME altered neither stress responses nor pressor response to glutamate. These results suggest that NOS inhibition in the RVLM has a dual effect on the autonomic response to psychological stress. In the early phase, NOS inhibition has little impact on this response. However, in the later phase, NOS inhibition attenuates the stress response, perhaps via indirect mechanisms such as altering the local redox state.
Collapse
|
11
|
Mayorov DN. Brain superoxide as a key regulator of the cardiovascular response to emotional stress in rabbits. Exp Physiol 2007; 92:471-9. [PMID: 17303648 DOI: 10.1113/expphysiol.2006.036830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cardiovascular reactivity, an abrupt increase in blood pressure and heart rate in response to emotional stress, is a risk factor for hypertension and heart disease. Brain angiotensin II (Ang II) type 1 (AT(1)) receptor is increasingly recognized as an important regulator of cardiovascular reactivity. Given that a wide variety of AT(1) receptor signalling pathways exists in neurones, the precise molecular mechanisms that underlie central cardiovascular actions of Ang II during emotional stress are yet to be determined. Growing evidence, however, indicates that reactive oxygen species, and in particular superoxide (.O(2)(-)), are important intracellular messengers of many actions of brain Ang II. In particular, studies employing microinjection of .O(2)(-) scavengers directly into the rostral ventrolateral medulla (RVLM) and dorsomedial hypothalamus of rabbits have shown that the activation of AT(1) receptor-.O(2)(-) signalling is required for full manifestation of the cardiovascular response to emotional stress. This role of .O(2)(-) appears to be highly specific, because .O(2)(-) scavengers in the RVLM do not alter the sympathoexcitatory response to baroreceptor unloading or sciatic nerve stimulation. The subcellular mechanisms for the stress-induced .O(2)(-) production are likely to include the activation of NADPH oxidase and are essentially independent of nitric oxide. This review summarizes current knowledge of redox-sensitive signalling mechanisms in the brain that regulate cardiovascular effects of stress. Additionally, it presents initial evidence that .O(2)(-) may be less important in the activation of central pressor pathways mediating cardiovascular arousal associated with appetitive events, such as food anticipation and feeding.
Collapse
Affiliation(s)
- Dmitry N Mayorov
- Baker Heart Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia.
| |
Collapse
|
12
|
De Matteo R, Head GA, Mayorov DN. Angiotensin II in dorsomedial hypothalamus modulates cardiovascular arousal caused by stress but not feeding in rabbits. Am J Physiol Regul Integr Comp Physiol 2006; 290:R257-64. [PMID: 16141307 DOI: 10.1152/ajpregu.00372.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dorsomedial hypothalamus (DMH) is critically implicated in the cardiovascular response to emotional stress. This study aimed to determine whether the DMH is also important in cardiovascular arousal associated with appetitive feeding behavior and, if so, whether locally released angiotensin II and glutamate are important in this arousal. Emotional (air-jet) stress and feeding elicited similar tachycardic (+51 and +45 beats/min, respectively) and pressor (+16 and +9 mmHg, respectively) responses in conscious rabbits. Bilateral microinjection of GABAA agonist muscimol (500 pmol) into the DMH, but not nearby hypothalamic regions, attenuated pressor and tachycardic responses to air-jet by 56–63% and evoked anorexia. Conversely, stimulation of the DMH with the glutamate analog kainic acid (250 pmol) elicited hypertension (+25 mmHg) and tachycardia (+114 beats/min) and activated feeding behavior. Local microinjection of a glutamate receptor antagonist, kynurenic acid (10 nmol), decreased pressor responses to stress and eating by 46 and 72%, respectively, without affecting feeding behavior. Bilateral microinjection of a selective AT1-receptor antagonist, candesartan (500 pmol), into the DMH, but not nearby sites, attenuated pressor and tachycardic stress responses by 31 and 33%, respectively. Candesartan did not alter feeding behavior or circulatory response to feeding. These results indicate that, in addition to its role in mediating stress responses, the DMH may be important in regulating cardiovascular arousal associated with feeding. Local glutamatergic inputs appear to regulate cardiovascular response to both stress and feeding. Conversely, angiotensin II, acting via AT1 receptors, may selectively modulate, in the DMH, cardiovascular response to stress, but not feeding.
Collapse
Affiliation(s)
- Robert De Matteo
- Baker Heart Research Institute, P.O. Box 6492, St. Kilda Rd. Central, Melbourne, Victoria 8008, Australia
| | | | | |
Collapse
|
13
|
McDougall SJ, Widdop RE, Lawrence AJ. Central autonomic integration of psychological stressors: Focus on cardiovascular modulation. Auton Neurosci 2005; 123:1-11. [PMID: 16289941 DOI: 10.1016/j.autneu.2005.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/14/2005] [Accepted: 09/28/2005] [Indexed: 02/04/2023]
Abstract
During stress the sympathoadrenal system and the hypothalamo-pituitary-adrenal axis act in a coordinated manner to force changes within an animal's current physiological and behavioral state. Such changes have been described as 'fight flight' or stress responses. The central nervous system may generate a stress response by different neural circuits, this being dependent upon the type of stressor presented. For instance, the central control of the autonomic function during physical stress would seem to be based on existing homeostatic mechanisms. In contrast, with exposure to psychological stress the means by which autonomic outflow is regulated has not been fully established. This review discusses recent observations of autonomic flow, cardiovascular components in particular, during psychological stress and the possible implications these may have for our understanding of the central nervous system. In addition, an update of recent findings concerning several regions thought to be important to the regulation of autonomic function during psychological stress exposure is provided.
Collapse
Affiliation(s)
- Stuart J McDougall
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
14
|
Yoshino K, Hayakawa M, Niki E, Matsuoka K. Closed-loop analysis of cardiovascular variability in rats under restraint stress. Auton Neurosci 2005; 119:61-6. [PMID: 15893709 DOI: 10.1016/j.autneu.2005.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/05/2005] [Accepted: 02/14/2005] [Indexed: 11/20/2022]
Abstract
Causal transfer function analysis was applied to the heart rate variability and blood pressure variability in normotensive male Sprague-Dawley rats those were measured before, during, and after acute restraint stress. The causal transfer gain (CTG) from systolic blood pressure (SBP) to RR interval (RRI) and CTG from RRI to SBP were estimated. The mean value of the CTG from SBP to RRI in the low-frequency (LF) band (0.27-0.74 Hz) was significantly lower during the restraint period than during the baseline period and remained significantly lower during the recovery period. The mean value of the CTG from RRI to SBP in the LF band, in contrast, was significantly higher during the restraint period than during the baseline period, and during the recovery period it tended to return relatively rapidly to the baseline level. Arterial pressure tended to increase only at the onset of the restraint stress and then to decline not only during the restraint period but also during the recovery period, finally leveling off significantly below the baseline level. These results suggest that restraint stress suppresses the baroreflex control gain not only during the restraint period but also during the recovery period and that this results in the arterial hypotension during the recovery period.
Collapse
Affiliation(s)
- Kohzoh Yoshino
- Institute for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | | | | | | |
Collapse
|
15
|
Brooks VL, Freeman KL, O'Donaughy TL. Acute and chronic increases in osmolality increase excitatory amino acid drive of the rostral ventrolateral medulla in rats. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1359-68. [PMID: 15319216 DOI: 10.1152/ajpregu.00104.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Water deprivation is associated with increased excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), but the mechanism is unknown. This study tested the hypotheses that the increased EAA activity is mediated by decreased blood volume and/or increased osmolality. This was first tested in urethane-anesthetized rats by determining whether bilateral microinjection of kynurenate (KYN, 2.7 nmol) into the RVLM decreases arterial pressure less in water-deprived rats after normalization of blood volume by intravenous infusion of isotonic saline or after normalization of plasma osmolality by intravenous infusion of 5% dextrose in water (5DW). Water-deprived rats exhibited decreased plasma volume and elevated plasma osmolality, hematocrit, and plasma sodium, chloride, and protein levels (all P < 0.05). KYN microinjection decreased arterial pressure by 24 ± 2 mmHg ( P < 0.05; n = 17). The depressor response was not altered following isotonic saline infusion but, while still present ( P < 0.05), was reduced ( P < 0.05) to −13 ± 2 mmHg soon after 5DW infusion. These data suggest that the high osmolality, but not low blood volume, contributes to the KYN depressor response. To further investigate the action of increased osmolality on EAA input to RVLM, water-replete rats were also studied after hypertonic saline infusion. Whereas KYN microinjection did not decrease pressure immediately following the infusion, a depressor response gradually developed over the next 3 h. Lumbar sympathetic nerve activity also gradually increased to up to 167 ± 19% of control ( P < 0.05) 3 h after hypertonic saline infusion. In conclusion, acute and chronic increases in osmolality appear to increase EAA drive of the RVLM.
Collapse
Affiliation(s)
- Virginia L Brooks
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
16
|
Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, Fukuda Y, Kuwaki T. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 2003; 285:R581-93. [PMID: 12750151 DOI: 10.1152/ajpregu.00671.2002] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The perifornical area of the hypothalamus has been known as the center for the defense response, or "fight or flight" response, which is characterized by a concomitant rise in arterial blood pressure (AP), heart rate (HR), and respiratory frequency (Rf). We examined whether orexin, a recently identified hypothalamic neuropeptide, contributes to the defense response and basal cardiovascular regulation using orexin knockout mice. Microinjection of a GABA-A receptor antagonist, bicuculline methiodide (0.1-1 mM in 20 nl), to the perifornical area in urethane-anesthetized wild-type mice elicited dose-dependent increases in AP, HR, and Rf. Although similar changes were observed in orexin knockout mice, intensities were smaller and duration was shorter than those in wild-type mice. Moreover, in an awake and freely moving condition, telemeter-indwelling orexin knockout mice showed diminished cardiovascular and behavioral responses to emotional stress in the resident-intruder test. We also found that basal AP in orexin knockout mice was significantly lower in both anesthetized (117 +/- 8 mmHg in wild type and 92 +/- 3 in knockout) and conscious (125 +/- 6 mmHg in wild type and 109 +/- 2 in knockout) conditions. alpha-Adrenergic blockade with prazosin or ganglion blockade with hexamethonium canceled the difference in basal AP. HR and cardiac contractile parameters by echocardiography did not differ between the two strains of mice. These results indicate lower sympathetic vasoconstrictor tone in knockout mice. The present study suggests that orexin-containing neurons in the perifornical area play a role as one of the efferent pathways of defense response and also operate as a regulator of AP at basal condition by activating sympathetic outflow.
Collapse
Affiliation(s)
- Yuji Kayaba
- Dept. of Molecular and Integrative Physiology, Chiba Univ. Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In this study, we examined the role of angiotensin type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM) in mediating the pressor action of emotional stress in conscious rabbits. Rabbits were chronically instrumented with guide cannulas for bilateral microinjections into the RVLM and an electrode for measuring renal sympathetic nerve activity (RSNA). Airjet stress evoked increases in arterial pressure, heart rate, and RSNA, which reached a maximum (+9+/-1 mm Hg, +20+/-5 beats/min, and +93+/-17%, respectively) in the first 2 minutes of stress exposure. Then RSNA rapidly returned to prestress values, while arterial pressure and heart rate remained close to the maximal level until the conclusion of the 7-minute airjet exposure. Microinjections of the nonselective angiotensin receptor antagonist sarile (0.5 nmol, n=8) or AT1 receptor antagonists losartan (2 nmol, n=6) or candesartan (0.2 nmol, n=6) into the RVLM did not alter resting cardiovascular parameters. By contrast, the antagonists attenuated the sustained phase (4 to 7 minutes) of the pressor stress response by 55% to 89%. However, only sarile decreased the onset of this response. The antagonists affected neither the stress-induced tachycardia nor the pressor response to glutamate microinjections. Microinfusion of angiotensin II (4 pmol/min, n=8) into the RVLM did not change the pressor response to airjet stress but attenuated tachycardic response by 47%. Microinjections of vehicle did not alter the cardiovascular stress response. Sarile, losartan, and angiotensin II did not affect the sympathoexcitatory response to baroreceptor unloading. These results suggest that AT1 receptors in the RVLM are important in mediating the pressor effects of emotional stress in conscious rabbits.
Collapse
Affiliation(s)
- Dmitry N Mayorov
- Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| | | |
Collapse
|