1
|
Canning BJ, Liu Q, Tao M, DeVita R, Perelman M, Hay DW, Dicpinigaitis PV, Liang J. Evidence for Alpha 7 Nicotinic Receptor Activation During the Cough Suppressing Effects Induced by Nicotine and Identification of ATA-101 as a Potential Novel Therapy for the Treatment of Chronic Cough. J Pharmacol Exp Ther 2022; 380:94-103. [PMID: 34782407 PMCID: PMC8969114 DOI: 10.1124/jpet.121.000641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
Studies performed in healthy smokers have documented a diminished responsiveness to tussive challenges, and several lines of experimental evidence implicate nicotine as an antitussive component in both cigarette smoke and the vapors generated by electronic cigarettes (eCigs). We set out to identify the nicotinic receptor subtype involved in the antitussive actions of nicotine and to further evaluate the potential of nicotinic receptor-selective agonists as cough-suppressing therapeutics. We confirmed an antitussive effect of nicotine in guinea pigs. We additionally observed that the alpha-4 beta-2 (α 4 β 2)-selective agonist Tc-6683 was without effect on evoked cough responses in guinea pigs, while the α 7-selective agonist PHA 543613 dose-dependently inhibited evoked coughing. We subsequently describe the preclinical evidence in support of ATA-101, a potent and highly selective (α 7) selective nicotinic receptor agonist, as a potential candidate for antitussive therapy in humans. ATA-101, formerly known as Tc-5619, was orally bioavailable and moderately central nervous system (CNS) penetrant and dose-dependently inhibited coughing in guinea pigs evoked by citric acid and bradykinin. Comparing the effects of airway targeted administration versus systemic dosing and the effects of repeated dosing at various times prior to tussive challenge, our data suggest that the antitussive actions of ATA-101 require continued engagement of α 7 nicotinic receptors, likely in the CNS. Collectively, the data provide the preclinical rationale for α 7 nicotinic receptor engagement as a novel therapeutic strategy for cough suppression. The data also suggest that α 7 nicotinic acetylcholine receptor (nAChR) activation by nicotine may be permissive to nicotine delivery in a way that may promote addiction. SIGNIFICANCE STATEMENT: This study documents the antitussive actions of nicotine and identifies the α7 nicotinic receptor subtype as the target for nicotine during cough suppression described in humans. We additionally present evidence suggesting that ATA-101 and other α7 nicotinic receptor-selective agonists may be promising candidates for the treatment of chronic refractory cough.
Collapse
Affiliation(s)
- Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Qi Liu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Mayuko Tao
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Robert DeVita
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Michael Perelman
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Douglas W Hay
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Peter V Dicpinigaitis
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Jing Liang
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| |
Collapse
|
2
|
McGovern AE, Robusto J, Rakoczy J, Simmons DG, Phipps S, Mazzone SB. The effect of hyperpolarization-activated cyclic nucleotide-gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone. Br J Pharmacol 2016; 171:3633-50. [PMID: 24762027 DOI: 10.1111/bph.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Subtypes of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of cation channels are widely expressed on nerves and smooth muscle cells in many organ systems, where they serve to regulate membrane excitability. Here we have assessed whether HCN channel inhibitors alter the function of airway smooth muscle or the neurons that regulate airway smooth muscle tone. EXPERIMENTAL APPROACH The effects of the HCN channel inhibitors ZD7288, zatebradine and Cs(+) were assessed on agonist and nerve stimulation-evoked changes in guinea pig airway smooth muscle tone using tracheal strips in vitro, an innervated tracheal tube preparation ex vivo or in anaesthetized mechanically ventilated guinea pigs in vivo. HCN channel expression in airway nerves was assessed using immunohistochemistry, PCR and in situ hybridization. KEY RESULTS HCN channel inhibition did not alter airway smooth muscle reactivity in vitro to exogenously administered smooth muscle spasmogens, but significantly potentiated smooth muscle contraction evoked by the sensory nerve stimulant capsaicin and electrical field stimulation of parasympathetic cholinergic postganglionic neurons. Sensory nerve hyperresponsiveness was also evident in in vivo following HCN channel blockade. Cs(+) , but not ZD7288, potentiated preganglionic nerve-dependent airway contractions and over time induced autorhythmic preganglionic nerve activity, which was not mimicked by inhibitors of potassium channels. HCN channel expression was most evident in vagal sensory ganglia and airway nerve fibres. CONCLUSIONS AND IMPLICATIONS HCN channel inhibitors had a previously unrecognized effect on the neural regulation of airway smooth muscle tone, which may have implications for some patients receiving HCN channel inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Alice E McGovern
- School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | | | | | | | | | | |
Collapse
|
3
|
McGovern AE, Mazzone SB. Guinea pig models of asthma. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:5.26.1-5.26.38. [PMID: 25446291 DOI: 10.1002/0471141755.ph0526s67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Described in this unit are methods for establishing guinea pig models of asthma. Sufficient detail is provided to enable investigators to study bronchoconstriction, cough, airway hyperresponsiveness, inflammation, and remodeling.
Collapse
Affiliation(s)
- Alice E McGovern
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
4
|
Narula M, McGovern AE, Yang SK, Farrell MJ, Mazzone SB. Afferent neural pathways mediating cough in animals and humans. J Thorac Dis 2014; 6:S712-9. [PMID: 25383205 DOI: 10.3978/j.issn.2072-1439.2014.03.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
The airways and lungs are densely innervated by sensory nerves, which subserve multiple roles in both the normal physiological control of respiratory functions and in pulmonary defense. These sensory nerves are therefore not homogeneous in nature, but rather have physiological, molecular and anatomical phenotypes that reflect their purpose. All sensory neuron subtypes provide input to the central nervous system and drive reflex changes in respiratory and airway functions. But less appreciated is that ascending projections from these brainstem inputs to higher brain regions can also induce behavioural changes in respiration. In this brief review we provide an overview of the current understanding of airway sensory pathways, with specific reference to those involved in reflex and behavioural cough responses following airways irritation.
Collapse
Affiliation(s)
- Monica Narula
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Alice E McGovern
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Seung-Kwon Yang
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Michael J Farrell
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Stuart B Mazzone
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| |
Collapse
|
5
|
Abstract
The airways and lungs are innervated by both sympathetic and parasympathetic nerves. Cholinergic parasympathetic innervation is well conserved in the airways while the distribution of noncholinergic parasympathetic and adrenergic sympathetic nerves varies considerably amongst species. Autonomic nerve function is regulated primarily through reflexes initiated upon bronchopulmonary vagal afferent nerves. Central regulation of autonomic tone is poorly described but some key elements have been defined.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | | |
Collapse
|
6
|
Corboz MR, Rivelli MA, Fernandez X, Greenfeder S. Neuromodulation mediated by the tachykinin NK3-receptor agonist [MePhe7]-neurokinin B in the isolated perfused lung of nonsensitized nonchallenged and ovalbumin-sensitized and -challenged guinea pig. Exp Lung Res 2012; 38:233-49. [PMID: 22536826 DOI: 10.3109/01902148.2012.673050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neuromodulatory action of the tachykinin NK(3)-receptor agonist [MePhe(7)]-neurokinin B ([MePhe(7)]-NKB) was evaluated on vagal stimulation-induced bronchoconstriction in nonsensitized nonchallenged and ovalbumin (OVA)-sensitized and -challenged guinea pig using the isolated perfused lung preparation. Lungs were placed inside a warmed (37°C) glass chamber and suspended from a force displacement transducer (Grass FT-03) with both vagi connected to a stimulating electrode. Isolated lungs were stimulated at a constant voltage (20 V) and pulse duration (5 ms) with electrical stimulation frequencies ranging from 1 to 128 Hz. The authors demonstrated that vagal stimulation produced frequency-dependent bronchoconstriction and [MePhe(7)]-NKB, at a dose (0.1 μM) that does not produce bronchoconstriction by itself, potentiated the vagally induced bronchoconstriction at all frequencies in nonsensitized nonchallenged animals and to a greater extent in OVA-sensitized and -challenged guinea pigs; the potentiations were totally inhibited by the tachykinin NK(3)-receptor antagonist SR 142801 (1 μM). In a second set of experiments, [MePhe(7)]-NKB produced bronchoconstriction in a dose-dependent (1 to 300 μg/mL) manner with similar potencies and maximum responses in nonsensitized nonchallenged (EC(50) = 8.6 ± 1.1 μM; E(Max) = 61.1 ± 3.5 mm Hg) and OVA-sensitized and -challenged (EC(50) = 8.5 ± 1.3 μM; E(Max) = 63.5 ± 3.7 mm Hg) animals. In conclusion, these results demonstrated that [MePhe(7)]-NKB potentiated vagal stimulation-induced bronchoconstriction via the tachykinin NK(3)-receptors and OVA sensitization caused development of airway hyperresponsiveness in these potentiations. However, OVA sensitization had no effect on airway responsiveness of vagal stimulation-and [MePhe(7)]-NKB-induced bronchoconstrictions.
Collapse
Affiliation(s)
- Michel R Corboz
- In Vivo Pharmacology Department, Merck Research Laboratory, Kenilworth, New Jersey, USA
| | | | | | | |
Collapse
|
7
|
Chen Y, Wang L, Zhou X, Ge D, Yuan W, Wang J. Agonist of 5-HT1A/7 receptors but not that of 5-HT2 receptors disinhibits tracheobronchial-projecting airway vagal preganglionic neurons of rats. Neuroscience 2012; 207:78-87. [PMID: 22342968 DOI: 10.1016/j.neuroscience.2012.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/16/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
Abstract
The vagus nerves supply the major cholinergic tone to airway smooth muscles physiologically and play critical roles in the genesis of airway hyperreactivity under some pathological conditions. Postganglionic airway cholinergic tone relies largely on the ongoing activity of medullary airway vagal preganglionic neurons (AVPNs), of which the tracheobronchial-projecting ones are primarily located in the external formation of the nucleus ambiguus (eNA). AVPNs are regulated by 5-HT, and 5-HT(1A/7) and 5-HT(2) receptors have been indicated to be involved. But the mechanisms at synaptic level are unknown. In the present study, tracheobronchial-projecting AVPNs (T-AVPNs) were retrogradely labeled from the trachea wall; fluorescently labeled T-AVPNs in the eNA were recorded with whole-cell voltage patch clamp; and the effects of 5-HT(1A/7) receptor agonist (±)-8-Hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT) (1 μmol L(-1)) and 5-HT(2) receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10 μmol L(-1)) on the synaptic inputs were examined. 8-OH-DPAT significantly inhibited the GABAergic and glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) of T-AVPNs in both the frequency and amplitude but had no effect on the GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs). The 8-OH-DPAT inhibition of the GABAergic and glycinergic sIPSCs was prevented by 5-HT(1A/7) receptor antagonist N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY-100635) (1 μmol L(-1)). 8-OH-DPAT had no effect on the glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) and caused no alterations in the baseline current and input resistance of T-AVPNs. DOI had no effect on any types of the synaptic inputs of T-AVPNs. These results suggest that 5-HT(1A/7) receptor agonist causes "disinhibition" of T-AVPNs, which might, in part, account for the reflex increase of airway resistance.
Collapse
Affiliation(s)
- Y Chen
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
8
|
McGovern AE, Mazzone SB. Characterization of the vagal motor neurons projecting to the Guinea pig airways and esophagus. Front Neurol 2010; 1:153. [PMID: 21188271 PMCID: PMC3007679 DOI: 10.3389/fneur.2010.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/04/2010] [Indexed: 01/07/2023] Open
Abstract
Distinct parasympathetic postganglionic neurons mediate contractions and relaxations of the guinea pig airways. We set out to characterize the vagal inputs that regulate contractile and relaxant airway parasympathetic postganglionic neurons. Single and dual retrograde neuronal tracing from the airways and esophagus revealed that distinct, but intermingled, subsets of neurons in the compact formation of the nucleus ambiguus (nAmb) innervate these two tissues. Tracheal and esophageal neurons identified in the nAmb were cholinergic. Esophageal projecting neurons also preferentially (greater than 70%) expressed the neuropeptide CGRP, but could not otherwise be distinguished immunohistochemically from tracheal projecting preganglionic neurons. Few tracheal or esophageal neurons were located in the dorsal motor nucleus of the vagus. Electrical stimulation of the vagi in vitro elicited stimulus dependent tracheal and esophageal contractions and tracheal relaxations. The voltage required to evoke tracheal smooth muscle relaxation was significantly higher than that required for evoking either tracheal contractions or esophageal longitudinal striated muscle contractions. Together our data support the hypothesis that distinct vagal preganglionic pathways regulate airway contractile and relaxant postganglionic neurons. The relaxant preganglionic neurons can also be differentiated from the vagal motor neurons that innervate the esophageal striated muscle.
Collapse
Affiliation(s)
- Alice E McGovern
- School of Biomedical Sciences, University of Queensland St Lucia, QLD, Australia
| | | |
Collapse
|
9
|
Mazzone SB, Lim LHK, Wagner EM, Mori N, Canning BJ. Sympathetic nerve-dependent regulation of mucosal vascular tone modifies airway smooth muscle reactivity. J Appl Physiol (1985) 2010; 109:1292-300. [PMID: 20724568 DOI: 10.1152/japplphysiol.00632.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The airways contain a dense subepithelial microvascular plexus that is involved in the supply and clearance of substances to and from the airway wall. We set out to test the hypothesis that airway smooth muscle reactivity to bronchoconstricting agents may be dependent on airway mucosal blood flow. Immunohistochemical staining identified vasoconstrictor and vasodilator nerve fibers associated with subepithelial blood vessels in the guinea pig airways. Intravital microscopy of the tracheal mucosal microvasculature in anesthetized guinea pigs revealed that blockade of α-adrenergic receptors increased baseline arteriole diameter by ~40%, whereas the α-adrenergic receptor agonist phenylephrine produced a modest (5%) vasoconstriction in excess of the baseline tone. In subsequent in vivo experiments, tracheal contractions evoked by topically applied histamine were significantly reduced (P < 0.05) and enhanced by α-adrenergic receptor blockade and activation, respectively. α-Adrenergic ligands produced similar significant (P < 0.05) effects on airway smooth muscle contractions evoked by topically administered capsaicin, intravenously administered neurokinin A, inhaled histamine, and topically administered antigen in sensitized animals. These responses were independent of any direct effect of α-adrenergic ligands on the airway smooth muscle tone. The data suggest that changes in blood flow in the vessels supplying the airways regulate the reactivity of the underlying airway smooth muscle to locally released and exogenously administered agents by regulating their clearance. We speculate that changes in mucosal vascular function or changes in neuronal regulation of the airway vasculature may contribute to airways responsiveness in disease.
Collapse
Affiliation(s)
- Stuart B Mazzone
- The University of Queensland, School of Biomedical Sciences, St. Lucia, Queensland, Australia.
| | | | | | | | | |
Collapse
|
10
|
Mazzone SB, McGovern AE. Innervation of tracheal parasympathetic ganglia by esophageal cholinergic neurons: evidence from anatomic and functional studies in guinea pigs. Am J Physiol Lung Cell Mol Physiol 2010; 298:L404-16. [PMID: 20061441 DOI: 10.1152/ajplung.00166.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we describe a subset of nerve fibers, characterized by their immunoreactivity for the calcium-binding protein calretinin, that are densely and selectively associated with cholinergic postganglionic neurons in the guinea pig tracheal ganglia. Retrograde neuronal tracing with cholera toxin B, combined with immunohistochemical analyses, showed that these nerve fibers do not originate from sensory neurons in the nodose, jugular, or dorsal root ganglia or from motor neurons in the nucleus ambiguus, dorsal motor nucleus of the vagus nerve, spinal cord, stellate ganglia, or superior cervical ganglia. Calretinin-immunoreactive nerve fibers disappeared from tracheal segments after 48 h in organotypic culture, indicating that the fibers were of extrinsic origin. However, calretinin-positive nerve fibers persisted in tracheal ganglia when tracheae were cocultured with the adjacent esophagus intact. Immunohistochemical analysis of the esophagus revealed a population of cholinergic neurons in the esophageal myenteric plexus that coexpressed calretinin. In functional studies, electrical stimulation of the esophagus in vitro evoked measurable contractions of the trachea. These contractions were not altered by prior organotypic culture of the trachea and esophagus to remove the extrinsic innervation to the airways but were significantly (P < 0.05) inhibited by the ganglionic blocker hexamethonium or by physical disruption of the tissue connecting the trachea and esophagus. These data suggest that a subset of esophageal neurons, characterized by the expression of calretinin and acetylcholine, provide a previously unrecognized excitatory input to tracheal cholinergic ganglia in guinea pigs.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
11
|
Chou YL, Scarupa MD, Mori N, Canning BJ. Differential effects of airway afferent nerve subtypes on cough and respiration in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1572-84. [PMID: 18768768 DOI: 10.1152/ajpregu.90382.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hypothesis that respiratory reflexes, such as cough, reflect the net and often opposing effects of activation of multiple afferent nerve subpopulations throughout the airways was evaluated. Laryngeal and tracheal mucosal challenge with either citric acid or mechanical probing reliably evoked coughing in anesthetized guinea pigs. No other stimulus reliably evoked coughing in these animals, regardless of route of administration and despite some profound effects on respiration. Selectively activating vagal C-fibers arising from the nodose ganglia with either adenosine or 2-methyl-5-HT evoked only tachypnea. Selectively activating vagal afferents arising from the jugular ganglia induced respiratory slowing and apnea. Nasal afferent nerve activation by capsaicin, citric acid, hypertonic saline, or histamine evoked only respiratory slowing. Histamine, which activates intrapulmonary rapidly adapting receptors but not airway or lung C-fibers or tracheal bronchial cough receptors induced bronchospasm and tachypnea, but no coughing. The results indicate that the reflexes initiated by stimuli thought to be selective for some afferent nerve subtypes will likely depend on the net and potentially opposing effects of multiple afferent nerve subpopulations throughout the airways. The data also provide further evidence that the afferent nerves regulating cough in anesthetized guinea pigs are distinct from either C-fibers or intrapulmonary rapidly adapting receptors.
Collapse
Affiliation(s)
- Yang-Ling Chou
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
12
|
Absence of cholinergic airway tone in normal BALB/c mice. Respir Physiol Neurobiol 2008; 161:223-9. [DOI: 10.1016/j.resp.2008.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/24/2008] [Accepted: 01/30/2008] [Indexed: 11/15/2022]
|
13
|
Abstract
The guinea pig has been the most commonly used small animal species in preclinical studies related to asthma and COPD. The primary advantages of the guinea pig are the similar potencies and efficacies of agonists and antagonists in human and guinea pig airways and the many similarities in physiological processes, especially airway autonomic control and the response to allergen. The primary disadvantages to using guinea pigs are the lack of transgenic methods, limited numbers of guinea pig strains for comparative studies and a prominent axon reflex that is unlikely to be present in human airways. These attributes and various models developed in guinea pigs are discussed.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
14
|
Mazzone SB, McGovern AE. Na+-K+-2Cl− cotransporters and Cl− channels regulate citric acid cough in guinea pigs. J Appl Physiol (1985) 2006; 101:635-43. [PMID: 16627683 DOI: 10.1152/japplphysiol.00106.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Loop diuretics have been shown to inhibit cough and other airway defensive reflexes via poorly defined mechanisms. We test the hypothesis that the furosemide-sensitive Na+-K+-2Cl− cotransporter (NKCC1) is expressed by sensory nerve fibers innervating the airways where it plays an important role in regulating sensory neural activity. NKCC1 immunoreactivity was present on the cell membranes of most nodose and jugular ganglia neurons projecting to the trachea, and it was present on the peripheral terminals of putative mechanosensory nerve fibers in the airways. In urethane-anesthetized, spontaneously breathing guinea pigs, bolus application of citric acid (1 mM to 2 M) to an isolated and perfused segment of the tracheal mucosa evoked coughing and respiratory slowing. Removal of Cl− from the tracheal perfusate evoked spontaneous coughing and significantly potentiated cough and respiratory slowing reflexes evoked by citric acid. The NKCC1 inhibitor furosemide (10–100 μM) significantly reduced both the number of coughs evoked by citric acid and the degree of acid-evoked respiratory slowing ( P < 0.05). Localized tracheal pretreatment with the Cl− channel inhibitors DIDS or niflumic acid (100 μM) also significantly reduced cough, whereas the GABAA receptor agonist muscimol potentiated acid-evoked responses. These data suggest that vagal sensory neurons may accumulate Cl− due to the expression of the furosemide-sensitive Cl− transporter, NKCC1. Efflux of intracellular Cl−, in part through calcium-activated Cl− channels, may play an important role in regulating airway afferent neuron activity.
Collapse
Affiliation(s)
- Stuart B Mazzone
- Howard Florey Institute, University of Melbourne, Parkville 3010, Victoria, Australia.
| | | |
Collapse
|
15
|
Abstract
Autonomic nerves in most mammalian species mediate both contractions and relaxations of airway smooth muscle. Cholinergic-parasympathetic nerves mediate contractions, whereas adrenergic-sympathetic and/or noncholinergic parasympathetic nerves mediate relaxations. Sympathetic-adrenergic innervation of human airway smooth muscle is sparse or nonexistent based on histological analyses and plays little or no role in regulating airway caliber. Rather, in humans and in many other species, postganglionic noncholinergic parasympathetic nerves provide the only relaxant innervation of airway smooth muscle. These noncholinergic nerves are anatomically and physiologically distinct from the postganglionic cholinergic parasympathetic nerves and differentially regulated by reflexes. Although bronchopulmonary vagal afferent nerves provide the primary afferent input regulating airway autonomic nerve activity, extrapulmonary afferent nerves, both vagal and nonvagal, can also reflexively regulate autonomic tone in airway smooth muscle. Reflexes result in either an enhanced activity in one or more of the autonomic efferent pathways, or a withdrawal of baseline cholinergic tone. These parallel excitatory and inhibitory afferent and efferent pathways add complexity to autonomic control of airway caliber. Dysfunction or dysregulation of these afferent and efferent nerves likely contributes to the pathogenesis of obstructive airways diseases and may account for the pulmonary symptoms associated with extrapulmonary disorders, including gastroesophageal reflux disease, cardiovascular disease, and rhinosinusitis.
Collapse
|
16
|
Oh EJ, Mazzone SB, Canning BJ, Weinreich D. Reflex regulation of airway sympathetic nerves in guinea-pigs. J Physiol 2006; 573:549-64. [PMID: 16581869 PMCID: PMC1779716 DOI: 10.1113/jphysiol.2005.104661] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1-T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and pre-contraction of the trachealis with histamine, nebulized capsaicin (10-60 microm) evoked a 63+/-7% reversal of the histamine-induced contraction of the trachealis. Either the beta-adrenoceptor antagonist propranolol (2 microm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10+/-9% and 6+/-4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9+/-5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3+/-7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway contraction induced by parasympathetic nerve activation in the airways.
Collapse
Affiliation(s)
- Eun Joo Oh
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School Of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
17
|
Canning BJ, Farmer DG, Mori N. Mechanistic studies of acid-evoked coughing in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 2006; 291:R454-63. [PMID: 16914432 DOI: 10.1152/ajpregu.00862.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments carried out in conscious guinea pigs suggest that citric acid-evoked coughing is partly mediated by transient receptor potential vanilloid type 1 (TRPV1) receptor-dependent activation of tachykinin-containing, capsaicin-sensitive C fibers. In vitro electrophysiological analyses indicate, however, that acid also activates capsaicin-sensitive and -insensitive vagal afferent nerves by a TRPV1-independent mechanism, and studies in anesthetized guinea pigs show that coughing evoked by acid is mediated by activation of capsaicin-insensitive vagal afferent nerves. In the present study, we have characterized the mechanisms of citric acid-evoked coughing in anesthetized guinea pigs. Drugs were administered directly to the Krebs buffer perfusing the extrathoracic trachea. Citric acid was applied topically to the tracheal mucosa, directly into the tracheal perfusate in increasing concentrations and at 1-min intervals. Citric acid dose dependently evoked coughing in anesthetized guinea pigs. This was mimicked by hydrochloric acid but not by sodium citrate. The coughing evoked by acid was nearly or completely abolished by TTX or by cutting the recurrent laryngeal nerves. Perfusing the trachea with a low Cl- buffer potentiated the acid-induced cough reflex. In contrast, prior capsaicin desensitization, 10 microM capsazepine, Ca2+-free perfusate, 0.1 microM iberiotoxin, 1 microM atropine, 10 microM isoproterenol, 10 microM albuterol, 3 microM indomethacin, 0.1 microM HOE-140, a combination of neurokinin1 (NK1; CP-99994), NK2 (SR-48968), and NK3 (SB-223412) receptor antagonists (0.1 microM each), a combination of histamine H1 (3 microM pyrilamine) and cysLT1 (1 microM ICI-198615) receptor antagonists, superior laryngeal nerve transection, or epithelium removal did not inhibit citric acid-evoked coughing. These and other data indicate that citric acid-evoked coughing in anesthetized guinea pigs is mediated by direct activation of capsaicin-insensitive vagal afferent nerves, perhaps through sequential activation of acid-sensing ion channels and chloride channels.
Collapse
Affiliation(s)
- Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
18
|
Mazzone SB, Mori N, Canning BJ. Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. J Physiol 2005; 569:559-73. [PMID: 16051625 PMCID: PMC1464254 DOI: 10.1113/jphysiol.2005.093153] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cough initiated from the trachea and larynx in anaesthetized guinea-pigs is mediated by capsaicin-insensitive, mechanically sensitive vagal afferent neurones. Tachykinin-containing, capsaicin-sensitive C-fibres also innervate the airways and have been implicated in the cough reflex. Capsaicin-sensitive nerves act centrally and synergistically to modify reflex bronchospasm initiated by airway mechanoreceptor stimulation. The hypothesis that polymodal mechanoreceptors and capsaicin-sensitive afferent nerves similarly interact centrally to regulate coughing was addressed in this study. Cough was evoked from the tracheal mucosa either electrically (16 Hz, 10 s trains, 1-10 V) or by citric acid (0.001-2 m). Neither capsaicin nor bradykinin evoked a cough when applied to the trachea of anaesthetized guinea-pigs, but they substantially reduced the electrical threshold for initiating the cough reflex. The TRPV1 receptor antagonist capsazepine prevented the increased cough sensitivity induced by capsaicin. These effects of topically applied capsaicin and bradykinin were not due to interactions between afferent nerve subtypes within the tracheal wall or a direct effect on the cough receptors, as they were mimicked by nebulizing 1 mg ml(-1) bradykinin into the lower airways and by microinjecting 0.5 nmol capsaicin into nucleus of the solitary tract (nTS). Citric acid-induced coughing was also potentiated by inhalation of bradykinin. The effects of tracheal capsaicin challenge on cough were mimicked by microinjecting substance P (0.5-5 nmol) into the nTS and prevented by intracerebroventricular administration (20 nmol h(-1)) of the neurokinin receptor antagonists CP99994 or SB223412. Tracheal application of these antagonists was without effect. C-fibre activation may thus sensitize the cough reflex via central mechanisms.
Collapse
Affiliation(s)
- Stuart B Mazzone
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
19
|
Canning B, Mazzone S. Reflexes Initiated by Activation of the Vagal Afferent Nerves Innervating the Airways and Lungs. ADVANCES IN VAGAL AFFERENT NEUROBIOLOGY 2005. [DOI: 10.1201/9780203492314.ch15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Li PC, Shaw CF, Kuo TF, Chien CT. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation. Neurosci Lett 2005; 378:117-22. [PMID: 15774269 DOI: 10.1016/j.neulet.2004.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/07/2004] [Accepted: 12/08/2004] [Indexed: 11/15/2022]
Abstract
The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.
Collapse
Affiliation(s)
- Ping-Chia Li
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 2004; 557:543-58. [PMID: 15004208 PMCID: PMC1665106 DOI: 10.1113/jphysiol.2003.057885] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/04/2004] [Indexed: 11/08/2022] Open
Abstract
We have identified the tracheal and laryngeal afferent nerves regulating cough in anaesthetized guinea-pigs. Cough was evoked by electrical or mechanical stimulation of the tracheal or laryngeal mucosa, or by citric acid applied topically to the trachea or larynx. By contrast, neither capsaicin nor bradykinin challenges to the trachea or larynx evoked cough. Bradykinin and histamine administered intravenously also failed to evoke cough. Electrophysiological studies revealed that the majority of capsaicin-sensitive afferent neurones (both Adelta- and C-fibres) innervating the rostral trachea and larynx have their cell bodies in the jugular ganglia and project to the airways via the superior laryngeal nerves. Capsaicin-insensitive afferent neurones with cell bodies in the nodose ganglia projected to the rostral trachea and larynx via the recurrent laryngeal nerves. Severing the recurrent nerves abolished coughing evoked from the trachea and larynx whereas severing the superior laryngeal nerves was without effect on coughing. The data indicate that the tracheal and laryngeal afferent neurones regulating cough are polymodal Adelta-fibres that arise from the nodose ganglia. These afferent neurones are activated by punctate mechanical stimulation and acid but are unresponsive to capsaicin, bradykinin, smooth muscle contraction, longitudinal or transverse stretching of the airways, or distension. Comparing these physiological properties with those of intrapulmonary mechanoreceptors indicates that the afferent neurones mediating cough are quite distinct from the well-defined rapidly and slowly adapting stretch receptors innervating the airways and lungs. We propose that these airway afferent neurones represent a distinct subtype and that their primary function is regulation of the cough reflex.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|