1
|
Interhemispheric compensation: A hypothesis of TMS-induced effects on language-related areas. Eur Psychiatry 2020; 23:281-8. [DOI: 10.1016/j.eurpsy.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) applied over brain regions responsible for language processing is used to curtail potentially auditory hallucinations in schizophrenia patients and to investigate the functional organisation of language-related areas. Variability of effects is, however, marked across studies and between subjects. Furthermore, the mechanisms of action of rTMS are poorly understood.Here, we reviewed different factors related to the structural and functional organisation of the brain that might influence rTMS-induced effects. Then, by analogy with aphasia studies, and the plastic-adaptive changes in both the left and right hemispheres following aphasia recovery, a hypothesis is proposed about rTMS mechanisms over language-related areas (e.g. Wernicke, Broca). We proposed that the local interference induced by rTMS in language-related areas might be analogous to aphasic stroke and might lead to a functional reorganisation in areas connected to the virtual lesion for language recovery.
Collapse
|
2
|
Effect of Transcranial Direct Current Stimulation on Severely Affected Arm-Hand Motor Function in Patients After an Acute Ischemic Stroke. Am J Phys Med Rehabil 2017; 96:S178-S184. [DOI: 10.1097/phm.0000000000000823] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Silvanto J, Cattaneo Z. Common framework for "virtual lesion" and state-dependent TMS: The facilitatory/suppressive range model of online TMS effects on behavior. Brain Cogn 2017; 119:32-38. [PMID: 28963993 PMCID: PMC5652969 DOI: 10.1016/j.bandc.2017.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022]
Abstract
Transcranial magnetic stimulation can either facilitate or impair behavior. Nature of behavioral effects depends on factors such as brain state and intensity. We present a common framework to account for these effects. There are distinct intensity ranges for facilitatory and suppressive effects of TMS. Changes in excitability shift these ranges and account for behavioral effects.
The behavioral effects of Transcranial Magnetic Stimulation (TMS) are often nonlinear; factors such as stimulation intensity and brain state can modulate the impact of TMS on observable behavior in qualitatively different manner. Here we propose a theoretical framework to account for these effects. In this model, there are distinct intensity ranges for facilitatory and suppressive effects of TMS – low intensities facilitate neural activity and behavior whereas high intensities induce suppression. The key feature of the model is that these ranges are shifted by changes in neural excitability: consequently, a TMS intensity, which normally induces suppression, can have a facilitatory effect if the stimulated neurons are being inhibited by ongoing task-related processes or preconditioning. For example, adaptation reduces excitability of adapted neurons; the outcome is that TMS intensities which inhibit non-adapted neurons induce a facilitation on adapted neural representations, leading to reversal of adaptation effects. In conventional “virtual lesion” paradigms, similar effects occur because neurons not involved in task-related processes are inhibited by the ongoing task. The resulting reduction in excitability can turn high intensity “inhibitory” TMS to low intensity “facilitatory” TMS for these neurons, and as task-related neuronal representations are in the inhibitory range, the outcome is a reduction in signal-to-noise ratio and behavioral impairment.
Collapse
Affiliation(s)
- Juha Silvanto
- University of Westminster, Faculty of Science and Technology, Department of Psychology, 115 New Cavendish Street, W1W 6UW London, UK.
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, 27100 Pavia, Italy
| |
Collapse
|
4
|
David M, Dinse HR, Mainka T, Tegenthoff M, Maier C. High-Frequency Repetitive Sensory Stimulation as Intervention to Improve Sensory Loss in Patients with Complex Regional Pain Syndrome I. Front Neurol 2015; 6:242. [PMID: 26635719 PMCID: PMC4648023 DOI: 10.3389/fneur.2015.00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Achieving perceptual gains in healthy individuals or facilitating rehabilitation in patients is generally considered to require intense training to engage neuronal plasticity mechanisms. Recent work, however, suggested that beneficial outcome similar to training can be effectively acquired by a complementary approach in which the learning occurs in response to mere exposure to repetitive sensory stimulation (rSS). For example, high-frequency repetitive sensory stimulation (HF-rSS) enhances tactile performance and induces cortical reorganization in healthy subjects and patients after stroke. Patients with complex regional pain syndrome (CRPS) show impaired tactile performance associated with shrinkage of cortical maps. We here investigated the feasibility and efficacy of HF-rSS, and low-frequency rSS (LF-rSS) to enhance tactile performance and reduce pain intensity in 20 patients with CRPS type I. Intermittent high- or low-frequency electrical stimuli were applied for 45 min/day to all fingertips of the affected hand for 5 days. Main outcome measures were spatial two-point-discrimination thresholds and mechanical detection thresholds measured on the tip of the index finger bilaterally. Secondary endpoint was current pain intensity. All measures were assessed before and on day 5 after the last stimulation session. HF-rSS applied in 16 patients improved tactile discrimination on the affected hand significantly without changes contralaterally. Current pain intensity remained unchanged on average, but decreased in four patients by ≥30%. This limited pain relief might be due to the short stimulation period of 5 days only. In contrast, after LF-rSS, tactile discrimination was impaired in all four patients, while detection thresholds and pain were not affected. Our data suggest that HF-rSS could be used as a novel approach in CRPS treatment to improve sensory loss. Longer treatment periods might be required to induce consistent pain relief.
Collapse
Affiliation(s)
- Marianne David
- Department of Pain Medicine, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute for Neuroinformatics, Ruhr-University Bochum , Bochum , Germany ; Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Tina Mainka
- Department of Pain Medicine, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany ; Department of Neurology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Martin Tegenthoff
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Christoph Maier
- Department of Pain Medicine, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| |
Collapse
|
5
|
Fujimoto S, Yamaguchi T, Otaka Y, Kondo K, Tanaka S. Dual-hemisphere transcranial direct current stimulation improves performance in a tactile spatial discrimination task. Clin Neurophysiol 2014; 125:1669-74. [DOI: 10.1016/j.clinph.2013.12.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
|
6
|
Transcranial Magnetic Stimulation (TMS) Safety Considerations and Recommendations. TRANSCRANIAL MAGNETIC STIMULATION 2014. [DOI: 10.1007/978-1-4939-0879-0_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Transcranial Magnetic Stimulation (TMS) Clinical Applications: Therapeutics. TRANSCRANIAL MAGNETIC STIMULATION 2014. [DOI: 10.1007/978-1-4939-0879-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Naeser MA, Martin PI, Ho M, Treglia E, Kaplan E, Bashir S, Pascual-Leone A. Transcranial magnetic stimulation and aphasia rehabilitation. Arch Phys Med Rehabil 2012; 93:S26-34. [PMID: 22202188 DOI: 10.1016/j.apmr.2011.04.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 03/21/2011] [Accepted: 04/28/2011] [Indexed: 10/14/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been reported to improve naming in chronic stroke patients with nonfluent aphasia since 2005. In part 1, we review the rationale for applying slow, 1-Hz, rTMS to the undamaged right hemisphere in chronic nonfluent aphasia patients after a left hemisphere stroke; and we present a transcranial magnetic stimulation (TMS) protocol used with these patients that is associated with long-term, improved naming post-TMS. In part 2, we present results from a case study with chronic nonfluent aphasia where TMS treatments were followed immediately by speech therapy (constraint-induced language therapy). In part 3, some possible mechanisms associated with improvement after a series of TMS treatments in stroke patients with aphasia are discussed.
Collapse
Affiliation(s)
- Margaret A Naeser
- Veterans Affairs Boston Healthcare System and Harold Goodglass Boston University Aphasia Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Naeser MA, Martin PI, Theoret H, Kobayashi M, Fregni F, Nicholas M, Tormos JM, Steven MS, Baker EH, Pascual-Leone A. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia. BRAIN AND LANGUAGE 2011; 119:206-13. [PMID: 21864891 PMCID: PMC3195843 DOI: 10.1016/j.bandl.2011.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 07/11/2011] [Accepted: 07/21/2011] [Indexed: 05/14/2023]
Abstract
This study sought to discover if an optimum 1 cm(2) area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS. In aphasia patients, suppression of right pars triangularis (PTr) led to significant increase in pictures named, and significant decrease in RT. Suppression of right pars opercularis (POp), however, led to significant increase in RT, but no change in number of pictures named. Eight normals named all pictures correctly; similar to aphasia patients, RT significantly decreased following rTMS to suppress right PTr, versus right POp. Differential effects following suppression of right PTr versus right POp suggest different functional roles for these regions.
Collapse
Affiliation(s)
- Margaret A Naeser
- V.A. Boston Healthcare System, Harold Goodglass Boston University Aphasia Research Center, Boston University School of Medicine, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tanaka S, Sandrini M, Cohen LG. Modulation of motor learning and memory formation by non-invasive cortical stimulation of the primary motor cortex. Neuropsychol Rehabil 2011; 21:650-75. [PMID: 21942897 DOI: 10.1080/09602011.2011.605589] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transcranial magnetic (TMS) and direct current (tDCS) stimulation are non-invasive brain stimulation techniques that allow researchers to purposefully modulate cortical excitability in focal areas of the brain. Recent work has provided preclinical evidence indicating that TMS and tDCS can facilitate motor performance, motor memory formation, and motor skill learning in healthy subjects and possibly in patients with brain lesions. Although the optimal stimulation parameters to accomplish these goals remain to be determined, and controlled multicentre clinical studies are lacking, these findings suggest that cortical stimulation techniques could become in the future adjuvant strategies in the rehabilitation of motor deficits. The aim of this article is to critically review these findings and to discuss future directions regarding the possibility of combining these techniques with other interventions in neurorehabilitation.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | |
Collapse
|
11
|
Treatment pulse application for magnetic stimulation. J Biomed Biotechnol 2011; 2011:278062. [PMID: 21738404 PMCID: PMC3123711 DOI: 10.1155/2011/278062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 02/11/2011] [Indexed: 11/17/2022] Open
Abstract
Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.
Collapse
|
12
|
The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 2010; 35:516-36. [PMID: 20599555 DOI: 10.1016/j.neubiorev.2010.06.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) has become a mainstay of cognitive neuroscience, thus facing new challenges due to its widespread application on behaviorally silent areas. In this review we will summarize the main technical and methodological considerations that are necessary when using TMS in cognitive neuroscience, based on a corpus of studies and technical improvements that has become available in most recent years. Although TMS has been applied only relatively recently on a large scale to the study of higher functions, a range of protocols that elucidate how this technique can be used to investigate a variety of issues is already available, such as single pulse, paired pulse, dual-site, repetitive and theta burst TMS. Finally, we will touch on recent promising approaches that provide powerful new insights about causal interactions among brain regions (i.e., TMS with other neuroimaging techniques) and will enable researchers to enhance the functional resolution of TMS (i.e., state-dependent TMS). We will end by briefly summarizing and discussing the implications of the newest safety guidelines.
Collapse
|
13
|
Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120:2008-2039. [PMID: 19833552 PMCID: PMC3260536 DOI: 10.1016/j.clinph.2009.08.016] [Citation(s) in RCA: 3647] [Impact Index Per Article: 243.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/12/2009] [Accepted: 08/21/2009] [Indexed: 12/12/2022]
Abstract
This article is based on a consensus conference, which took place in Certosa di Pontignano, Siena (Italy) on March 7-9, 2008, intended to update the previous safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings. Over the past decade the scientific and medical community has had the opportunity to evaluate the safety record of research studies and clinical applications of TMS and repetitive TMS (rTMS). In these years the number of applications of conventional TMS has grown impressively, new paradigms of stimulation have been developed (e.g., patterned repetitive TMS) and technical advances have led to new device designs and to the real-time integration of TMS with electroencephalography (EEG), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Thousands of healthy subjects and patients with various neurological and psychiatric diseases have undergone TMS allowing a better assessment of relative risks. The occurrence of seizures (i.e., the most serious TMS-related acute adverse effect) has been extremely rare, with most of the few new cases receiving rTMS exceeding previous guidelines, often in patients under treatment with drugs which potentially lower the seizure threshold. The present updated guidelines review issues of risk and safety of conventional TMS protocols, address the undesired effects and risks of emerging TMS interventions, the applications of TMS in patients with implanted electrodes in the central nervous system, and safety aspects of TMS in neuroimaging environments. We cover recommended limits of stimulation parameters and other important precautions, monitoring of subjects, expertise of the rTMS team, and ethical issues. While all the recommendations here are expert based, they utilize published data to the extent possible.
Collapse
Affiliation(s)
- Simone Rossi
- Dipartimento di Neuroscienze, Sezione Neurologia, Università di Siena, Italy.
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Bethesda, USA
| | - Paolo M Rossini
- Università Campus Biomedico, Roma, Italy; Casa di Cura S. Raffaele, Cassino, Italy
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
14
|
Snyder A. Explaining and inducing savant skills: privileged access to lower level, less-processed information. Philos Trans R Soc Lond B Biol Sci 2009; 364:1399-405. [PMID: 19528023 PMCID: PMC2677578 DOI: 10.1098/rstb.2008.0290] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
I argue that savant skills are latent in us all. My hypothesis is that savants have privileged access to lower level, less-processed information, before it is packaged into holistic concepts and meaningful labels. Owing to a failure in top-down inhibition, they can tap into information that exists in all of our brains, but is normally beyond conscious awareness. This suggests why savant skills might arise spontaneously in otherwise normal people, and why such skills might be artificially induced by low-frequency repetitive transcranial magnetic stimulation. It also suggests why autistic savants are atypically literal with a tendency to concentrate more on the parts than on the whole and why this offers advantages for particular classes of problem solving, such as those that necessitate breaking cognitive mindsets. A strategy of building from the parts to the whole could form the basis for the so-called autistic genius. Unlike the healthy mind, which has inbuilt expectations of the world (internal order), the autistic mind must simplify the world by adopting strict routines (external order).
Collapse
Affiliation(s)
- Allan Snyder
- Centre for the Mind, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
15
|
Ahmed Z, Wieraszko A. Combined effects of acrobatic exercise and magnetic stimulation on the functional recovery after spinal cord lesions. J Neurotrauma 2009; 25:1257-69. [PMID: 18986227 DOI: 10.1089/neu.2008.0626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The objective of the study was to determine whether physical exercise combined with epidural spinal cord magnetic stimulation could improve recovery after injury of the spinal cord. Spinal cord lesioning in mice resulted in reduced locomotor function and negatively affected the muscle strength tested in vitro. Acrobatic exercise attenuated the behavioral effects of spinal cord injury. The exposure to magnetic fields facilitated further this improvement. The progress in behavioral recovery was correlated with reduced muscle degeneration and enhanced muscle contraction. The acrobatic exercise combined with stimulation with magnetic fields significantly facilitates behavioral recovery and muscle physiology in mice following spinal cord injury.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy, and CSI/IBR Center for Developmental Neuroscience, The College of Staten Island/CUNY, Staten Island, New York 10314, USA.
| | | |
Collapse
|
16
|
Hamidi M, Tononi G, Postle BR. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation. Neuropsychologia 2008; 47:295-302. [PMID: 18822306 DOI: 10.1016/j.neuropsychologia.2008.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/20/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
Abstract
The dorsolateral prefrontal cortex (dlPFC) plays an important role in working memory, including the control of memory-guided response. In this study, with 24 subjects, we used high frequency repetitive transcranial magnetic stimulation (rTMS) to evaluate the role of the dlPFC in memory-guided response to two different types of spatial working memory tasks: one requiring a recognition decision about a probe stimulus (operationalized with a yes/no button press), another requiring direct recall of the memory stimulus by moving a cursor to the remembered location. In half the trials, randomly distributed, rTMS was applied to the dlPFC and in a separate session, the superior parietal lobule (SPL), a brain area implicated in spatial working memory storage. A 10-Hz (3s, 110% of motor threshold) train of TMS was delivered at the onset of the response period. We found that only dlPFC rTMS significantly affected performance, with rTMS of right dlPFC decreasing accuracy on delayed-recall trials, and rTMS of left and right dlPFC decreasing and enhancing accuracy, respectively, on delayed-recognition trials. These findings confirm that the dlPFC plays an important role in memory-guided response, and suggest that the nature of this role varies depending on the processes required for making a response.
Collapse
Affiliation(s)
- Massihullah Hamidi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
17
|
Hamidi M, Tononi G, Postle BR. Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation. Brain Res 2008; 1230:202-10. [PMID: 18662678 DOI: 10.1016/j.brainres.2008.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/22/2008] [Accepted: 07/02/2008] [Indexed: 11/16/2022]
Abstract
Functional neuroimaging studies have produced contradictory data about the extent to which specific regions of the frontal and the posterior parietal cortices contribute to the retention of information in spatial working memory. We used high frequency repetitive transcranial magnetic stimulation (rTMS) to assess the necessity for the short-term retention of spatial information of brain areas identified by previous functional imaging studies: dorsolateral prefrontal cortex (dlPFC), frontal eye fields (FEF), superior parietal lobule (SPL) and intraparietal sulcus (IPS). 10 Hz rTMS spanned the 3-s delay period of a spatial delayed-recognition task. The postcentral gyrus (PCG) was included to control for any regionally non-specific effects of rTMS. The only regionally-specific effect was a significant decrease in reaction time when rTMS was applied to SPL. Additionally, rTMS lowered accuracy to a greater extent when applied to left than to right hemisphere, and was more disruptive when applied contralaterally vs. ipsilaterally to the visual field in which the memory probe was presented. Although seemingly paradoxical, the finding of rTMS-induced improvement in task performance has a precedent, and is consistent with the idea that regions associated with spatial sensory-motor processing make necessary contributions to the short-term retention of this information. Possible factors underlying rTMS-induced behavioral facilitation are considered.
Collapse
|
18
|
Cappelletti M, Fregni F, Shapiro K, Pascual-Leone A, Caramazza A. Processing nouns and verbs in the left frontal cortex: a transcranial magnetic stimulation study. J Cogn Neurosci 2008; 20:707-20. [PMID: 18052789 DOI: 10.1162/jocn.2008.20045] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neuropsychological and neurophysiological studies suggest that the production of verbs in speech depends on cortical regions in the left frontal lobe. However, the precise topography of these regions, and their functional roles in verb production, remains matters of debate. In an earlier study with repetitive transcranial magnetic stimulation (rTMS), we showed that stimulation to the left anterior midfrontal gyrus disrupted verb production, but not noun production, in a task that required subjects to perform simple morphological alternations. This result raises a number of questions: for example, is the effect of stimulation focal and specific to that brain region? Is the behavioral effect limited to rule-based, regular transformations, or can it be generalized over the grammatical category? In the present study, we used rTMS to suppress the excitability of distinct parts of the left prefrontal cortex to assess their role in producing regular and irregular verbs compared to nouns. We compared rTMS to sham stimulation and to stimulation of homologous areas in the right hemisphere. Response latencies increased for verbs, but were unaffected for nouns, following stimulation to the left anterior midfrontal gyrus. No significant interference specific for verbs resulted after stimulation to two other areas in the left frontal lobe, the posterior midfrontal gyrus and Broca's area. These results therefore reinforce the idea that the left anterior midfrontal cortex is critical for processing verbs. Moreover, none of the regions stimulated was preferentially engaged in the production of regular or irregular inflection, raising questions about the role of the frontal lobes in processing inflectional morphology.
Collapse
|
19
|
Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. ACTA ACUST UNITED AC 2007; 3:383-93. [PMID: 17611487 DOI: 10.1038/ncpneuro0530] [Citation(s) in RCA: 542] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/13/2007] [Indexed: 02/07/2023]
Abstract
In neurology, as in all branches of medicine, symptoms of disease and the resulting burden of illness and disability are not simply the consequence of the injury, inflammation or dysfunction of a given organ; they also reflect the consequences of the nervous system's attempt to adapt to the insult. This plastic response includes compensatory changes that prove adaptive for the individual, as well as changes that contribute to functional disability and are, therefore, maladaptive. In this context, brain stimulation techniques tailored to modulate individual plastic changes associated with neurological diseases might enhance clinical benefits and minimize adverse effects. In this Review, we discuss the use of two noninvasive brain stimulation techniques--repetitive transcranial magnetic stimulation and transcranial direct current stimulation--to modulate activity in the targeted cortex or in a dysfunctional network, to restore an adaptive equilibrium in a disrupted network for best behavioral outcome, and to suppress plastic changes for functional advantage. We review randomized controlled studies, in focal epilepsy, Parkinson's disease, recovery from stroke, and chronic pain, to illustrate these principles, and we present evidence for the clinical effects of these two techniques.
Collapse
Affiliation(s)
- Felipe Fregni
- Harvard Medical School and the Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | |
Collapse
|
20
|
Cappelletti M, Barth H, Fregni F, Spelke ES, Pascual-Leone A. rTMS over the intraparietal sulcus disrupts numerosity processing. Exp Brain Res 2007; 179:631-42. [PMID: 17216413 PMCID: PMC2567820 DOI: 10.1007/s00221-006-0820-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/26/2006] [Indexed: 10/23/2022]
Abstract
It has been widely argued that the intraparietal sulcus (IPS) is involved in tasks that evoke representations of numerical magnitude, among other cognitive functions. However, the causal role of this parietal region in processing symbolic and non-symbolic numerosity has not been established. The current study used repetitive Transcranial Magnetic Stimulation (rTMS) to the left and right IPS to investigate the effects of temporary deactivations of these regions on the capacity to represent symbolic (Arabic numbers) and non-symbolic (arrays of dots) numerosities. We found that comparisons of both symbolic and non-symbolic numerosities were impaired after rTMS to the left IPS but enhanced by rTMS to the right IPS. A signature effect of numerical distance was also found: greater impairment (or lesser facilitation) when comparing numerosities of similar magnitude. The reverse pattern of impairment and enhancement was found in a control task that required judging an analogue stimulus property (ellipse orientation) but no numerosity judgements. No rTMS effects for the numerosity tasks were found when stimulating an area adjacent but distinct from the IPS, the left and right angular gyrus. These data suggest that left IPS is critical for processing symbolic and non-symbolic numerosity; this processing may thus depend on common neural mechanisms, which are distinct from mechanisms supporting the processing of analogue stimulus properties.
Collapse
Affiliation(s)
- Marinella Cappelletti
- Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
21
|
Canli T, Brandon S, Casebeer W, Crowley PJ, Du Rousseau D, Greely HT, Pascual-Leone A. Neuroethics and national security. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2007; 7:3-13. [PMID: 17497494 DOI: 10.1080/15265160701290249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
|
22
|
Ueki Y, Mima T, Nakamura K, Oga T, Shibasaki H, Nagamine T, Fukuyama H. Transient functional suppression and facilitation of Japanese ideogram writing induced by repetitive transcranial magnetic stimulation of posterior inferior temporal cortex. J Neurosci 2006; 26:8523-30. [PMID: 16914678 PMCID: PMC6674341 DOI: 10.1523/jneurosci.0846-06.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Japanese writing system is unique in that it is composed of two different orthographies: kanji (morphograms) and kana (syllabograms). The retrieval of the visual orthographic representations of Japanese kanji is crucial to the process of writing in Japanese. We used low-frequency repetitive transcranial magnetic stimulation (rTMS) to clarify the functional relevance of the left and right posterior inferior temporal cortex (PITC) to this process in native Japanese speakers. The experimental paradigms included the mental recall of kanji, kana-to-kanji transcription, semantic judgment, oral reading, and copying of kana and kanji. The first two tasks require the visualization of the kanji image of the word. We applied 0.9 Hz rTMS (600 total pulses) over individually determined left or right PITC to suppress cortical activity and measured subsequent task performance. In the mental recall of kanji and kana-to-kanji transcription, rTMS over the left PITC prolonged reaction times (RTs), whereas rTMS over the right PITC reduced RTs. In the other tasks, which do not involve the mental visualization of kanji, rTMS over the left or right PITC had no effect on performance. These results suggest that the left PITC is crucial for the retrieval of the visual graphic representation of kanji. Furthermore, the right PITC may work to suppress the dominant left PITC in the neural network for kanji writing, which involves visual word recognition.
Collapse
|
23
|
Steven MS, Pascual-Leone A. Transcranial magnetic stimulation and the human brain: an ethical evaluation. NEUROETHICS-NETH 2004. [DOI: 10.1093/acprof:oso/9780198567219.003.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Transcranial magnetic stimulation (TMS) is a neuroscientific technique that induces an electric current in the brain via application of a localized magnetic field pulse. The pulse penetrates the scalp and skull non-invasively and, depending on the parameters of stimulation, facilitates or depresses the local neuronal response with effects that can be transient or long lasting. While the mechanisms by which TMS acts remain largely unknown, the behavioral effects of the stimulation are reproducible and, in some cases, are highly beneficial. This chapter reviews the technique in detail and discusses safety as the paramount ethics issue for TMS. It further examines the ethical arguments for and against neuroenhancement with TMS and how the framework for acceptable practice must differ for patient and non-patient populations.
Collapse
|