1
|
Davutoglu MG, Geyer VF, Niese L, Soltwedel JR, Zoccoler ML, Sabatino V, Haase R, Kröger N, Diez S, Poulsen N. Gliding motility of the diatom Craspedostauros australis coincides with the intracellular movement of raphid-specific myosins. Commun Biol 2024; 7:1187. [PMID: 39313522 PMCID: PMC11420354 DOI: 10.1038/s42003-024-06889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Raphid diatoms are one of the few eukaryotes capable of gliding motility, which is remarkably fast and allows for quasi-instantaneous directional reversals. Besides other mechanistic models, it has been suggested that an actomyosin system provides the force for diatom gliding. However, in vivo data on the dynamics of actin and myosin in diatoms are lacking. In this study, we demonstrate that the raphe-associated actin bundles required for diatom movement do not exhibit a directional turnover of subunits and thus their dynamics do not contribute directly to force generation. By phylogenomic analysis, we identified four raphid diatom-specific myosins in Craspedostauros australis (CaMyo51A-D) and investigated their in vivo localization and dynamics through GFP-tagging. Only CaMyo51B-D but not CaMyo51A exhibited coordinated movement during gliding, consistent with a role in force generation. The characterization of raphid diatom-specific myosins lays the foundation for unraveling the molecular mechanisms that underlie the gliding motility of diatoms.
Collapse
Affiliation(s)
- Metin G Davutoglu
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Veikko F Geyer
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Lukas Niese
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Johannes R Soltwedel
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo L Zoccoler
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Valeria Sabatino
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Robert Haase
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
2
|
Demailly F, Elfeky I, Malbezin L, Le Guédard M, Eon M, Bessoule JJ, Feurtet-Mazel A, Delmas F, Mazzella N, Gonzalez P, Morin S. Impact of diuron and S-metolachlor on the freshwater diatom Gomphonema gracile: Complementarity between fatty acid profiles and different kinds of ecotoxicological impact-endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:960-969. [PMID: 31726578 DOI: 10.1016/j.scitotenv.2019.06.347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
Fatty acids (FA) are crucial for the maintenance of membrane fluidity and play a central role in metabolic energy storage. Polyunsaturated fatty acids play an essential ecological role since they are key parameters in the nutritional value of algae. Pesticide impacts on fatty acid profiles have been documented in marine microalgae, but remain understudied in freshwater diatoms. The aims of this study were to: 1) investigate the impact of diuron and S-metolachlor on "classical descriptors" (photosynthesis, growth rate, pigment contents, and on the expression levels of target genes in freshwater diatoms), 2) examine the impact of these pesticides on diatom fatty acid profiles and finally, 3) compare fatty acid profiles and "classical descriptor" responses in order to evaluate their complementarity and ecological role. To address this issue, the model freshwater diatom Gomphonema gracile was exposed during seven days to diuron and S-metolachlor at 10 μg.L-1. G. gracile was mostly composed of the following fatty acids: 20:5n3; 16:1; 16:0; 16:3n4; 14:0 and 20:4n6 and highly unsaturated fatty acids were overall the best represented fatty acid class. S-metolachlor decreased the growth rate and chlorophyll a content of G. gracile and induced the expression of cox1, nad5, d1 and cat genes, while no significant impacts were observed on photosynthesis and carotenoid content. In a more global way, S-metolachlor did not impact the fatty acid profiles of G. gracile. Diuron inhibited photosynthesis, growth rate, chlorophyll a content and induced cat and d1 gene expressions but no significant effect was observed on carotenoid content. Diuron decreased the percentage of highly unsaturated fatty acids but increased the percentage of monounsaturated fatty acids. These results demonstrated that fatty acids responded to diuron conversely to pigment content, suggesting that fatty acids can inform on energy content variation in diatoms subjected to herbicide stress.
Collapse
Affiliation(s)
| | - Imane Elfeky
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Laura Malbezin
- Univ. Bordeaux, EPOC, UMR CNRS 5805, Station Marine d'Arcachon, Place du Docteur Bertrand Peyneau, 33120 Arcachon Cedex, France
| | - Marina Le Guédard
- LEB Aquitaine Transfert, ADERA, Bâtiment A3, INRA Bordeaux Aquitaine, 71 avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Mélissa Eon
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Jean-Jacques Bessoule
- CNRS - Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, Bâtiment A3, INRA Bordeaux Aquitaine, 71 avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Agnès Feurtet-Mazel
- Univ. Bordeaux, EPOC, UMR CNRS 5805, Station Marine d'Arcachon, Place du Docteur Bertrand Peyneau, 33120 Arcachon Cedex, France
| | - François Delmas
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Nicolas Mazzella
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Patrice Gonzalez
- Univ. Bordeaux, EPOC, UMR CNRS 5805, Station Marine d'Arcachon, Place du Docteur Bertrand Peyneau, 33120 Arcachon Cedex, France
| | - Soizic Morin
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| |
Collapse
|
3
|
Thompson SEM, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms - potential targets for antifouling: a review. BIOFOULING 2017; 33:410-432. [PMID: 28508711 DOI: 10.1080/08927014.2017.1319473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Understanding the underlying signalling pathways that enable fouling algae to sense and respond to surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and diverse diatoms are important ecologically and economically as they are persistent biofoulers. Ulva spores exhibit rapid secretion, allowing them to adhere quickly and permanently to a ship, whilst diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly adaptable to different environmental conditions. There is evidence, now supported by molecular data, for complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved in surface sensing and/or adhesion. Moreover, adaptation to stress has profound effects on the biofouling capability of both types of organism. Targets for future antifouling coatings based on surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially universal antifouling strategy.
Collapse
Affiliation(s)
| | - Juliet C Coates
- a School of Biosciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
4
|
Cartaxana P, Cruz S, Gameiro C, Kühl M. Regulation of Intertidal Microphytobenthos Photosynthesis Over a Diel Emersion Period Is Strongly Affected by Diatom Migration Patterns. Front Microbiol 2016; 7:872. [PMID: 27375593 PMCID: PMC4894885 DOI: 10.3389/fmicb.2016.00872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/24/2016] [Indexed: 12/02/2022] Open
Abstract
Changes in biomass and photosynthesis of a diatom-dominated microphytobenthos (MPB) intertidal community were studied over a diel emersion period using a combination of O2 and scalar irradiance microprofiling, variable chlorophyll (Chl) fluorescence, and pigment analysis. The MPB biomass in the photic zone (0–0.5 mm) of the sediment exposed to low irradiance (150 μmol photons m-2 s-1) showed a >2-fold increase during the first hours of the emersion period, reaching >0.2 mg Chl a cm-3. Concentrations of Chl a started to decrease half-way through the emersion period, almost 2 h before tidal inundation. Similarly, O2 concentrations and volumetric gross photosynthesis in the photic zone increased during the first half of the emersion period and then decreased toward the timing of incoming tide/darkness. The results suggest that intertidal MPB community-level photosynthesis is mainly controlled by changes in the productive biomass of the photic zone determined by cell migration. A diel pattern in the photosynthesis vs. irradiance parameters α (photosynthetic efficiency at limiting irradiance) and ETRmax (photosynthetic capacity at saturating irradiance) was also observed, suggesting photoacclimation of MPB. Under high light exposure (2000 μmol photons m-2 s-1), lower α, ETRmax and sediment O2 concentrations were observed when cell migration was inhibited with the diatom motility inhibitor latrunculin A (Lat A), showing that migration is also used by MPB to maximize photosynthesis by reducing exposure to potentially photoinhibitory light levels. A higher de-epoxidation state in sediment treated with Lat A indicates that the involvement of the xanthophyll cycle in physiological photoprotection is more relevant in MPB when cells are inhibited from migrating. In the studied diatom-dominated MPB intertidal community, cell migration seems to be the key factor regulating photosynthesis over a diel emersion period and upon changes in light exposure.
Collapse
Affiliation(s)
- Paulo Cartaxana
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Sónia Cruz
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, Universidade de AveiroAveiro, Portugal
| | - Carla Gameiro
- Centro de Ciências do Mar e Ambiente, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| |
Collapse
|
5
|
Umemura K, Miyabayashi T, Taira H, Suzuki A, Kumashiro Y, Okano T, Mayama S. Use of a microchamber for analysis of thermal variation of the gliding phenomenon of single Navicula pavillardii cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:113-9. [DOI: 10.1007/s00249-015-1006-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
6
|
Gutiérrez-Medina B, Guerra AJ, Maldonado AIP, Rubio YC, Meza JVG. Circular random motion in diatom gliding under isotropic conditions. Phys Biol 2014; 11:066006. [DOI: 10.1088/1478-3975/11/6/066006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|