1
|
Yang S, Lin HS, Zhang L, Chi-Lui Ho P. Formulating 10-hydroxycamptothecin into nanoemulsion with functional excipient tributyrin: An innovative strategy for targeted hepatic cancer chemotherapy. Int J Pharm 2024; 654:123945. [PMID: 38403088 DOI: 10.1016/j.ijpharm.2024.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/10/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
This study aimed to develop an innovative dosage form for 10-hydroxycamptothecin (HCPT), a chemotherapeutic agent with limited aqueous solubility and stability, to enhance its parenteral delivery and targeting to hepatic cancer. We formulated HCPT into a nanoemulsion using tributyrin, a dietary component with histone deacetylase inhibitor activity. The resulting HCPT-loaded tributyrin nanoemulsion (Tri-HCPT-E) underwent extensive evaluations. Tri-HCPT-E significantly improved the aqueous solubility, stability, and anti-cancer activities in HepG2 cells. Pharmacokinetic studies confirmed the increased stability and hepatic targeting, with Tri-HCPT-E leading to a 120-fold increase in plasma exposure of intact HCPT and a 10-fold increase in hepatic exposure compared to the commercial free solution. Co-administration of 17α-ethynylestradiol, an up-regulator of low-density lipoprotein (LDL) receptor, further enhanced the distribution and metabolism of HCPT, demonstrating an association between the LDL receptor pathway and hepatic targeting. Most importantly, Tri-HCPT-E exhibited superior in vivo anti-cancer efficacy in a mouse xenograft model compared to the commercial formulation, without causing escalated hepatic or renal toxicity. In conclusion, formulating HCPT into a nanoemulsion with tributyrin has proven to be an innovative and effective strategy for targeted hepatic cancer chemotherapy while tributyrin, a pharmacologically active dietary component, has emerged as a promising functional excipient for drug delivery.
Collapse
Affiliation(s)
- Shili Yang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Li Zhang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
2
|
Li K, Li Y, Wang L, Yang L, Ye B. Study the voltammetric behavior of 10-Hydroxycamptothecin and its sensitive determination at electrochemically reduced graphene oxide modified glassy carbon electrode. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Li HQ, Ye WL, Huan ML, Cheng Y, Liu DZ, Cui H, Liu M, Zhang BL, Mei QB, Zhou SY. Mitochondria and nucleus delivery of active form of 10-hydroxycamptothecin with dual shell to precisely treat colorectal cancer. Nanomedicine (Lond) 2019; 14:1011-1032. [PMID: 30925116 DOI: 10.2217/nnm-2018-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIM The objective of this study was to deliver a ring-closed form of 10-hydroxycamptothecin (HCPT) to the mitochondria and nucleus to treat colorectal cancer. MATERIALS & METHODS HCPT-loaded nanoparticle HCPT@PLGA-PEG2k-triphenylphosphonium/PLGA-hyd-PEG4k-folic acid (PT/PHF) and HCPT@PT/PLGA-SS-PEG4k-folic acid (PSF) were prepared by using emulsion-solvent evaporation method. RESULTS In vitro experimental results indicated HCPT@PT/PHF and HCPT@PT/PSF maintained a large amount of HCPT in active form, and delivered more HCPT to the nucleus and mitochondria of the tumor cell, which resulted in the enhancement of cytotoxicity of HCPT. In vivo experimental results indicated that HCPT@PT/PHF and HCPT@PT/PSF delivered more ring-closed form of HCPT to tumor tissue, which led to strong antitumor activity. CONCLUSION HCPT@PT/PHF and HCPT@PT/PSF could enhance therapeutic efficacy of HCPT to colorectal cancer.
Collapse
Affiliation(s)
- Huai-Qiu Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Dao-Zhou Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Han Cui
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Bang-le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, PR China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China.,Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
4
|
Liu J, Xu F, Huang J, Xu J, Liu Y, Yao Y, Ao M, Li A, Hao L, Cao Y, Hu Z, Ran H, Wang Z, Li P. Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery. Biomater Sci 2018; 6:2838-2849. [PMID: 30229771 DOI: 10.1039/c8bm00726h] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Theranostics is a new trend in the tumor research field, which involves the integration of diagnostic and therapeutic functions using imageable nanoparticles coupled with therapeutic drugs. Imaging-guided targeted delivery of therapeutics and diagnostics using nanocarriers hold great promise to minimize the side effects of conventional chemotherapy. Ultrasound microbubbles have been employed as theranostic agents over the last decade, which provide both real-time dynamic imaging for diagnosis and precise control for targeted tumor therapy. However, the intrinsic defects of microbubbles such as poor tissue penetration, short circulation time and instability hinder microbubble-based theranostic applications. In recent years, liquid-to-gas transitional perfluorocarbon nanoparticles have been developed as promising diagnostic and therapeutic nanoagents to solve the abovementioned problems. In this study, phase-changeable, folate-targeted perfluoropentane nanodroplets loaded with 10-hydroxycamptothecin (HCPT) and superparamagnetic Fe3O4 (denoted as FA-HCPT-Fe3O4-PFP NDs) are prepared and investigated for multimodal tumor imaging and targeted therapy. After intravenous administration into nude mice bearing SKOV3 ovarian cancer, FA-HCPT-Fe3O4-PFP NDs exhibit the ability to enhance MR and PA imaging. Furthermore, after the phase transition activated by low-intensity focused ultrasound (LIFU) sonication, FA-HCPT-Fe3O4-PFP NDs remarkably enhance US imaging at the tumor location. Meanwhile, the HCPT released from FA-HCPT-Fe3O4-PFP NDs during the liquid-to-gas transition provides a therapeutic effect on tumor cells with relatively low side effects to normal tissue. Therefore, the combination of LIFU and FA-HCPT-Fe3O4-PFPNDs presents an ideal modality for tumor-targeted theranostics.
Collapse
Affiliation(s)
- Jianxin Liu
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China. and Department of Ultrasound, Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science&technology, Wuhan, 430014, P.R. China
| | - Fenfen Xu
- Department of Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
| | - Ju Huang
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Jinshun Xu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Yang Liu
- Department of Ultrasound, Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science&technology, Wuhan, 430014, P.R. China
| | - Yuanzhi Yao
- Department of Ultrasound, Chongqing Cancer Institute & Hospital & Cancer, Chongqing 400030, P.R. China
| | - Meng Ao
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Ao Li
- Department of Ultrasound, the First Affiliated Hospitalof Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Lan Hao
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Yang Cao
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, Southeast University, Nanjing 210009, P.R. China
| | - Haitao Ran
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Zhigang Wang
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Pan Li
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| |
Collapse
|
5
|
Preparation and application of a restricted access material with hybrid poly(glycerol mono-methacrylate) and cross-linked bovine serum albumin as hydrophilic out layers for directly on-line high performance liquid chromatography analysis of enrofloxacin and gatifloxacin in milk samples. J Chromatogr A 2018; 1573:59-65. [DOI: 10.1016/j.chroma.2018.08.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
|
6
|
de Faria HD, Abrão LCDC, Santos MG, Barbosa AF, Figueiredo EC. New advances in restricted access materials for sample preparation: A review. Anal Chim Acta 2017; 959:43-65. [DOI: 10.1016/j.aca.2016.12.047] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/27/2022]
|
7
|
Li G, Cai C, Ren T, Tang X. Development and application of a UPLC–MS/MS method for the pharmacokinetic study of 10-hydroxy camptothecin and hydroxyethyl starch conjugate in rats. J Pharm Biomed Anal 2014; 88:345-53. [DOI: 10.1016/j.jpba.2013.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
|
8
|
Hou Z, Li L, Zhan C, Zhu P, Chang D, Jiang Q, Ye S, Yang X, Li Y, Xie L, Zhang Q. Preparation and in vitro evaluation of an ultrasound-triggered drug delivery system: 10-hydroxycamptothecin loaded PLA microbubbles. ULTRASONICS 2012; 52:836-841. [PMID: 22542992 DOI: 10.1016/j.ultras.2011.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 12/11/2010] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
10-Hydroxycamptothecin (HCPT) loaded PLA microbubbles, used as an ultrasound-triggered drug delivery system, were fabricated by a double emulsion-solvent evaporation method. The obtained microbubbles were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and confocal laser scanning microscope (CLSM). In addition, the effect of diagnostic ultrasound exposure on BEL-7402 cells combined with HCPT-loaded PLA microbubbles was evaluated using cytotoxicity assay, CLSM and flow cytometry (FCM). It was found that the HCPT-loaded PLA microbubbles showed smooth surface and spherical shape, and the drug was amorphously dispersed within the shell and the drug loading content reached up to 1.69%. Nearly 20% of HCPT was released upon exposure to diagnostic ultrasound at frequency of 3.5MHz for 10min. Moreover, HCPT fluorescence in the cells treated only with the HCPT-loaded PLA microbubbles was discernible, but less intense, while those treated with the microbubbles in conjunction with ultrasound exposure was evident and intense, indicating an increased cellular uptake of HCPT by ultrasound exposure. Cytotoxicity test on BEL-7402 cells indicated that the HCPT-loaded PLA microbubbles combined with ultrasound exposure were more cytotoxic than the microbubbles alone. The results suggest that the combination of drug loaded PLA microbubbles and diagnostic ultrasound exposure exhibit an effective intracellular drug uptake by tumor cells, indicating their great potential for antitumor therapy.
Collapse
Affiliation(s)
- Zhenqing Hou
- Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Martins SM, Wendling T, Gonçalves VMF, Sarmento B, Ferreira DC. Development and validation of a simple reversed-phase HPLC method for the determination of camptothecin in animal organs following administration in solid lipid nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 880:100-7. [PMID: 22153332 DOI: 10.1016/j.jchromb.2011.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
Abstract
A simple, sensitive and specific high-performance liquid chromatography (HPLC) assay for the quantification of camptothecin (CPT), a potent anticancer candidate, incorporated into solid lipid nanoparticles (SLN) in several rat organs (brain, heart, kidneys liver, lung, spleen) and serum was developed and validated. The sample pre-treatment involved organs homogenisation followed by CPT extraction. The samples were injected onto an analytical reversed-phase (RP) Mediterranea™ Sea18 column maintained at 30°C. The chromatographic separation was achieved by gradient elution consisting of triethyamine buffer pH 5.5 and acetonitrile at a flow rate of 1.2 mL/min in 16 min of run time and retention time of 9.8 min (lactone). Fluorescence detection was used at the excitation and emission of 360 and 440 nm, respectively. The calibration curves in the different organs, serum and in PB3 were linear (r(2)>0.9999) over CPT concentrations ranging from 1 to 200 ng/mL or 0.5 to 200 ng/mL (n=6), respectively. The method was shown to be specific, accurate (between 94.4±4.5% and 108.9±0.6%) and precise at the intra-day and inter-day levels as reflected by the coefficient of variation (CV<6.3%) at three different concentrations (10, 50 and 100 ng/mL) in all matrices. Stability studies showed that CPT was stable in all matrices after 24h of incubation at room temperature (RT), after 24 h in the autosampler or after three freeze/thaw cycles. The mean recoveries of CPT in suspension, loaded into SLN and in a physical mixture with SLN at three concentrations of 10, 50 and 200 ng/mL were higher than 86.4%. The detection limit (DL) was ≤0.2 ng/mL and the quantification limit (QL) was ≤0.5 ng/mL. The method developed is reliable, precise and accurate and can be used in the determination of CPT amount in rat organ samples after i.v. administration of CPT in suspension, in physical mixture with SLN and incorporated in SLN.
Collapse
Affiliation(s)
- Susana M Martins
- Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences (LTF/CICF), Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
10
|
Preparation and physicochemical properties of 10-hydroxycamptothecin (HCPT) nanoparticles by supercritical antisolvent (SAS) process. Int J Mol Sci 2011; 12:2678-91. [PMID: 21731466 PMCID: PMC3127142 DOI: 10.3390/ijms12042678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 01/10/2023] Open
Abstract
The goal of the present work was to study the feasibility of 10-hydroxycamptothecin (HCPT) nanoparticle preparation using supercritical antisolvent (SAS) precipitation. The influences of various experimental factors on the mean particle size (MPS) of HCPT nanoparticles were investigated. The optimum micronization conditions are determined as follows: HCPT solution concentration 0.5 mg/mL, the flow rate ratio of CO2 and HCPT solution 19.55, precipitation temperature 35 °C and precipitation pressure 20 MPa. Under the optimum conditions, HCPT nanoparticles with a MPS of 180 ± 20.3 nm were obtained. Moreover, the HCPT nanoparticles obtained were characterized by Scanning electron microscopy, Dynamic light scattering, Fourier-transform infrared spectroscopy, High performance liquid chromatography-mass spectrometry, X-ray diffraction and Differential scanning calorimetry analyses. The physicochemical characterization results showed that the SAS process had not induced degradation of HCPT. Finally, the dissolution rates of HCPT nanoparticles were investigated and the results proved that there is a significant increase in dissolution rate compared to unprocessed HCPT.
Collapse
|
11
|
Guo XM, Guo B, Zhang Q, Sun X. Absorption of 10-hydroxycamptothecin on Fe3O4 magnetite nanoparticles with layer-by-layer self-assembly and drug release response. Dalton Trans 2011; 40:3039-46. [PMID: 21327277 DOI: 10.1039/c0dt01455a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the structural and zeta potential properties of 10-hydroxycamptothecin (HCPT) were investigated by FT-IR and zeta potential analyzer under different pH. The anticancer drug HCPT as a model drug was used to prepare a high-performance and relatively easy-to-fabricate system on Fe(3)O(4) magnetite nanoparticles by using a polystyrene sulfonate (PSS) and HCPT interlayer self-assembly method. The results obtained from FT-IR and XRD confirmed that HCPT was molecularly dispersed into the nanoparticles. The method holds not only environment-friendly characteristics and the ability to mimic the self-organization process in biological systems but also greatly decreases adjuvant polymers. In addition, the system has an ideal drug payload for the delivery of insoluble HCPTs.
Collapse
Affiliation(s)
- Xi Ming Guo
- School of Materials Science and Engineering, Harbin Institute of Technology, Heilongjiang, 150001, China.
| | | | | | | |
Collapse
|
12
|
Sun H, Chen P, Shi S, Li L. Development of chemiluminescence method for determination of 10-hydroxycamptothecin based on luminol-[Ag(HIO6)2]5− reaction in alkaline solution. LUMINESCENCE 2010; 26:356-62. [DOI: 10.1002/bio.1238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 06/05/2010] [Accepted: 06/21/2010] [Indexed: 11/08/2022]
|
13
|
Ma J, Jia ZP, Guo ZQ, Fan PC, Wang R. Restricted-access material HPLC method for simultaneous determination of carboxylate and lactone forms of topotecan in human serum. JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1134/s1061934809080097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Rao RN, Shinde DD, Agawane SB. Rapid determination of rifaximin in rat serum and urine by direct injection on to a shielded hydrophobic stationary phase by HPLC. Biomed Chromatogr 2009; 23:563-7. [DOI: 10.1002/bmc.1149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Chen Y, Wu LP, Chen C, Ye LM. Development of predictive quantitative retention-activity relationship models of alkaloids by mixed micellar liquid chromatography. Biomed Chromatogr 2009; 24:195-201. [DOI: 10.1002/bmc.1272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Liu K, Sun J, Wang Y, Gao K, Wen B, He Y, He Z. LC–ESI-MS Determination of Hydroxycamptothecin in Rat Plasma. Chromatographia 2008. [DOI: 10.1365/s10337-008-0583-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Liqing L, Lin G, Ming S, Hanwen S. Determination of hydroxycamptothecinum by flow injection analysis with chemiluminescence detection. J Clin Lab Anal 2008; 21:356-62. [PMID: 18022919 DOI: 10.1002/jcla.20190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An novel analytical method consisting of flow-injection sampling and chemiluminescence (CL) detection for determination of anticancer drug hydroxycamptothecinum (HCPT) is described. It is based on the CL reaction of potassium permanganate-formaldehyde-HCPT system. The formaldehyde-sensitized CL emission mechanism was proposed for HCPT-potassium permanganate (KMnO(4))-HCOH systems by comparing the fluorescence emission with CL spectra. Illuminant was the single-state bimolecular oxygen, (1)O(2) (1)O(2)((1)Delta(g) (1)Delta(g)), which was from (1)O(2)((1)Delta(g)) produced in the reaction system, and emits CL spectra at 639 nm. The presence of formaldehyde can sensitized CL emission, because it may be to accelerate the generation of (1)O(2) ((1)Delta(g)). The optimum conditions for CL emission were investigated and optimized. The CL intensity was correlated linearly with concentration of HCPT in the range of 0.010-60.0 mg L(-1). The determination limit is 0.006 mg L(-1). The relative standard deviation is 1.6% for 11 parallel measurements of 0.20 mg L(-1) HCPT standard solution. The proposed method has been applied for the determination of HCPT in pharmaceutical preparations, serum, and urine. The results of the quantitative analysis for HCPT studied using the developed method showed a good agreement with provided by using an official method.
Collapse
Affiliation(s)
- Li Liqing
- Department of Chemistry, Taishan University, Taian, China.
| | | | | | | |
Collapse
|
18
|
Wen Y, Fan Y, Zhang M, Feng YQ. Determination of camptothecin and 10-hydroxycamptothecin in human plasma using polymer monolithic in-tube solid phase microextraction combined with high-performance liquid chromatography. Anal Bioanal Chem 2005; 382:204-10. [PMID: 15900473 DOI: 10.1007/s00216-005-3194-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/19/2005] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
A biocompatible in-tube solid-phase microextraction (SPME) device was used for the direct and on-line extraction of camptothecin and 10-hydroxycamptothecin in human plasma. Biocompatibility was achieved through the use of a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column for extraction. Coupled to high performance liquid chromatography (HPLC) with UV detection, this on-line in-tube SPME method was successfully applied to the simultaneous determination of camptothecin and 10-hydroxycamptothecin in human plasma. The calculated detection limits for camptothecin and 10-hydroxycamptothecin were found to be 2.62 and 1.79 ng/mL, respectively. The method was linear over the range of 10-1000 ng/mL. Excellent method reproducibility was achieved, yielding RSDs of 2.49 and 1.59%, respectively. The detection limit (S/N = 3) of camptothecin was found to reach 0.1 ng/mL using fluorescence detection. The proposed method was shown to cope robustly with the extraction and analysis of camptothecin and 10-hydroxycamptothecin in plasma samples.
Collapse
Affiliation(s)
- Yi Wen
- Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Souverain S, Rudaz S, Veuthey JL. Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 801:141-56. [PMID: 14751782 DOI: 10.1016/j.jchromb.2003.11.043] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An analytical process generally involves four main steps: (1) sample preparation; (2) analytical separation; (3) detection; and (4) data handling. In the bioanalytical field, sample preparation is often considered as the time-limiting step. Indeed, the extraction techniques commonly used for biological matrices such as liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are achieved in the off-line mode. In order to perform a high throughput analysis, efforts have been engaged in developing a faster sample purification process. Among different strategies, the introduction of special extraction sorbents, such as the restricted access media (RAM) and large particle supports (LPS), allowing the direct and repetitive injection of complex biological matrices, represents a very attractive approach. Integrated in a liquid chromatography (LC) system, these extraction supports lead to the automation, simplification and speeding up of the sample preparation process. In this paper, RAM and LPS are reviewed and particular attention is given to commercially available supports. Applications of these extraction supports, are presented in single column and column-switching configurations, for the direct analysis of compounds in various biological fluids.
Collapse
Affiliation(s)
- S Souverain
- Laboratory of Pharmaceutical Analytical Chemistry, School of Pharmacy, University of Geneva, 20 Bd. d'Yvoy, 12114 Geneva, Switzerland
| | | | | |
Collapse
|
20
|
Pistos C, Stewart JT. Direct injection HPLC method for the determination of selected benzodiazepines in plasma using a Hisep column. J Pharm Biomed Anal 2003; 33:1135-42. [PMID: 14656604 DOI: 10.1016/s0731-7085(03)00426-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A direct plasma injection HPLC method has been developed for the determination of selected benzodiazepines (nitrazepam, clobazam, oxazepam, lorazepam). The method uses an analytical hydrophobic shielded phase (Hisep) column equipped with a Hisep guard column, are easy to perform and requires 20 ul of a filtered plasma sample. The chromatographic run time is less than 15 min using a mobile phase of 15:85 v/v acetonitrile-0.18 M ammonium acetate pH 2.5. The method is good for 175 injections before replacement of the guard column. The method was linear in the range 0.5-18 ug ml(-1) (r>0.99, n=6) for the analytes with R.S.D. less than 10.82%. Interday and intraday variability were found to be less than 14%. The limits of detection and quantitation were 0.16 (s/n>3) and 0.5 ug ml(-1) (s/n>10), respectively, for each of the four benzodiazepines.
Collapse
Affiliation(s)
- C Pistos
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA 30602-2352, USA
| | | |
Collapse
|
21
|
Ma J, Jia ZP, Zhang Q, Fan JJ, Jiang NX, Wang R, Xie H, Wang J. Liquid chromatography determination of 10-hydroxycamptothecin in human serum by a column-switching system containing a pre-column with restricted access media and its application to a clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 796:195-200. [PMID: 14552831 DOI: 10.1016/s1570-0232(03)00612-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A simple, rapid, sensitive column-switching HPLC method is described for the analysis of the 10-hydroxycamptothecin (HCPT) in human serum. A pre-column containing restricted access media (RAM) is used for the sample clean-up and trace enrichment and is combined with a C18 column for the final separation. The analytical time is 8 min. The HCPT is monitored with fluorescence detector, excitation and emission wavelengths being 385 and 539 nm, respectively. There is a linear response range of 1-1000 ng/ml with correlation coefficient of 0.998 while the limit of quantification is 0.1 ng/ml. The intra-day and inter-day variations are less than 5%. This analytic procedure has been applied to a pharmacokinetic study of HCPT in clinical patients and the pharmacokinetic parameters of one-compartment model are calculated.
Collapse
Affiliation(s)
- Jun Ma
- Department of Pharmacy, General Hospital of Lanzhou Command of PLA, Lanzhou 730050, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Upreti VV, Mamidi RNVS, Katneni K, Srinivas NR. Quantitative determination of DRF-1042 in human plasma by HPLC: validation and application in clinical pharmacokinetics. Biomed Chromatogr 2003; 17:385-90. [PMID: 13680849 DOI: 10.1002/bmc.253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed and validated for the determination of DRF-1042, a novel orally active camptothecin (CPT) analog, in human plasma. The sample preparation was a simple deproteinization with acidified methanol yielding almost 100% recovery of DRF-1042. An isocratic reverse-phase HPLC separation was developed on a Supelcosil-LC318 column (250 x 4.6 mm, 5 microm) with mobile phase consisting of 1% v/v triethylamine acetate, pH 5.5 and acetonitrile (80:20, v/v) at a fl ow rate of 1.0 mL/min. The eluate was monitored with a fluorescence detector set at excitation and emission wavelengths of 370 and 430 nm, respectively. The standard curves were linear (r(2) > 0.999) in the concentration ranges 5.0-2004 ng/mL. The lower limit of quantification (LLQ) of the assay was 5 ng/mL. The mean measured quality control (QC) concentrations (range 5 ng/mL to 40 microg/mL) deviated from the nominal concentrations in the range of -10.5-0.08 and -14.5-7.97%, inter- and intra-day, respectively. The inter- and intra-day precisions in the measurement of QC samples at four tested concentrations, were in the range 0.64-5.89% relative standard deviation (RSD) and 0.33-14.7% RSD, respectively. The method was found to be suitable for measurement of plasma concentrations above the calibration curve after serial dilutions. Stability of DRF-1042 was confirmed in a battery of studies, viz., on bench-top, in the auto-sampler, in the stock solutions, after four quick freeze-thaw cycles, up to one month at -20 degree C in human plasma and up to 2 months in the ex vivo samples. The method is simple, sensitive and reliable and has been successfully implemented to investigate the clinical pharmacokinetics of DRF-1042 in cancer patients in a phase I clinical trial.
Collapse
Affiliation(s)
- Vijay V Upreti
- Research Bioanalysis, Drug Metabolism and Pharmacokinetics, Discovery Research, Dr Reddy's Laboratories Ltd., Miyapur, Hyderabad 500 050, India
| | | | | | | |
Collapse
|