1
|
Teng L, Guo X, Ma Y, Xu L, Wei J, Xiao P. A comprehensive review on traditional and modern research of the genus Bupleurum (Bupleurum L., Apiaceae) in recent 10 years. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116129. [PMID: 36638855 DOI: 10.1016/j.jep.2022.116129] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Bupleurum (family Apiaceae), comprising approximately 248 accepted species, is widely distributed and used in China, Japan, India, Central Asia, North Africa and some European countries as traditional herbal medicines. Certain species have been reported to have significant therapeutic effects in fever, inflammatory disorders, cancer, gastric ulcer, virus infection and other diseases. AIM OF THE REVIEW we performed a comprehensive review of the ten-year research progress in phytochemistry, pharmacology, toxicity, along with bibliometrics research of the genus Bupleurum, aiming to identify knowledge gaps for future research. MATERIALS AND METHODS All the literatures are retrieved from library and electronic sources including Web of Science, PubMed, Elsevier, Google Scholar, CNKI and Baidu Scholar. These papers cover studies of the traditional use, phytochemistry, pharmacology, and toxicology of the genus Bupleurum. RESULTS There is a long history of using the genus Bupleurum in traditional herbal medicine that dated back to over 2000 years ago. Twenty-five species and 8 varieties with 3 variants within this genus have been reported to be effective to treat fever, pain, liver disease, inflammation, thoracolumbar pain, irregular menstruation and rectal prolapse. The main phytochemicals found in these plants are triterpene saponins, volatile oil, flavonoid, lignans, and polysaccharides. Many of these compounds have also been shown to have anti-inflammatory, anti-tumor, antimicrobial, immunoregulation, neuroregulation, hepatoprotective and antidiabetic activities. Meanwhile, improper usage of Bupleurum may induce cytotoxic effects, and polyacetylenes may be the main poisonous compounds. CONCLUSIONS This article summarized recent findings about Bupleurum research from many different aspects. While a small number of Bupleurum species have been investigated through modern pharmacology methods, there are still major knowledge gaps due to inadequate studies and ambiguous findings. Future research could focus on more specific phytochemistry studies combined with mechanistic analysis to provide better guidance to utilize Bupleurum as medicinal resources.
Collapse
Affiliation(s)
- Lili Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Yuzhi Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Kametaka S, Isobe M, Komata K, Morinaga M, Nagahata K, Lee-Hotta S, Uchiyama Y, Shibata M, Sugiura H. Protective effects of hachimijiogan (HJG), a Japanese Kampo medicine, on cancer cachectic muscle wasting in mice. Biomed Res 2023; 44:199-207. [PMID: 37779032 DOI: 10.2220/biomedres.44.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Myogenesis is required to generate skeletal muscle tissue and to maintain skeletal muscle mass. Decreased myogenesis under various pathogenic conditions results in muscular atrophy. Through a small screening of Japanese traditional (Kampo) medicines, hachimijiogan (HJG) was shown to promote the myogenic differentiation of C2C12 myoblasts through the upregulation of myogenin. In tumor-bearing cancer-cachectic mice, HJG was also found to have a protective effect against cancer-cachectic muscle wasting. This effect was significant when HJG was administered in combination with aerobic exercise by treadmill running. Moreover, HJG ameliorated the cellular atrophy of C2C12 myotubes induced by treatment with conditioned medium derived from a colon-26 cancer cell culture. In addition, HJG suppressed H2O2-dependent myotube atrophy, suggesting that HJG could reverse the atrophic phenotypes by eliminating reactive oxygen species.
Collapse
Affiliation(s)
- Satoshi Kametaka
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1- 20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi 461-0047, Japan
| | - Mari Isobe
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenshin Komata
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1- 20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi 461-0047, Japan
- Division of Home-visiting Nursing, Magokoronomori, Youmeikai Medical Corp. 17-10 Hatanocho, Atsutaku, Nagoya, Aichi 456-0077, Japan
| | - Makoto Morinaga
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1- 20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi 461-0047, Japan
- Product development Center 2, R&D Institute, Morinaga & Co., Ltd
| | - Kazuma Nagahata
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1- 20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi 461-0047, Japan
| | - Sachiko Lee-Hotta
- Division of Creative Physical Therapy, Department of Integrated Health Sciences, Gradu- ate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi 461-0047, Japan
| | - Yasushi Uchiyama
- Division of Creative Physical Therapy, Department of Integrated Health Sciences, Gradu- ate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi 461-0047, Japan
| | - Masahiro Shibata
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hideshi Sugiura
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1- 20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi 461-0047, Japan
| |
Collapse
|
3
|
Effects of Origanum vulgare and Scutellaria baicalensis on the Physiological Activity and Biochemical Parameters of the Blood in Rats on a High-Fat Diet. Sci Pharm 2022. [DOI: 10.3390/scipharm90030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pharmacological effects of medicinal plants play a primary role in the mild correction of body weight in humans and animals, reducing the accumulation of fat in their bodies during a state of obesity. Origanum vulgare L. and Scutellaria baicalensis Georgi are widely used as food additives and medicinal plants, but their comprehensive physiological evaluation in model animals in a state of obesity has not been carried out. In a 30-day laboratory experiment on male rats which had developed obesity through a hypercaloric diet, the effects of adding the dry crushed grass O. vulgare or dry crushed roots of S. baicalensis to their feed was evaluated. During the experiment, the rats fed with O. vulgare increased in body weight to only 105.5% of their initial weight, while the body weight of the control group increased to 111.5%, and that of animals fed on S. baicalensis increased to 124.0% of their initial body weight. The average daily increase in the rats’ body weight when O. vulgare was added to their diet decreased to 205 mg/day, and when S. baicalensis was added, on the contrary, it increased to 1417 mg/day, compared to 700 mg/day among the control group. Under the influence of O. vulgare, the lipid metabolism of the rats normalized: the atherogenic index decreased to 33.7%, compared with the values of the control group, due to an increase in the concentration of high-density lipoproteins from cholesterol. The concentration of triglycerides decreased, and the concentration of glucose decreased. The roots of S. baicalensis being added into the diet of rats increased the activity of alkaline phosphatase and decreased the concentration of urea. The atherogenic index also decreased (by up to 35.5% in the control group) and the concentration of high-density lipoprotein cholesterol increased, while the concentrations of triglycerides and glucose decreased. The physical activity of the rats showed a slight tendency to decrease when both O. vulgare and S. baicalensis were added to their diet. Both plant species contributed to a decrease in the emotional status of animals, which was most pronounced when the O. vulgare grass was added to the feed. The results of the study demonstrate the potential of the use of O. vulgare and S. baicalensis as herbal supplementations for the correction of hyperlipidemia and type-2 diabetes mellitus in overweight patients.
Collapse
|
4
|
Wang K, Qian R, Li H, Wang C, Ding Y, Gao Z. Interpreting the Pharmacological Mechanisms of Sho-saiko-to on Thyroid Carcinoma through Combining Network Pharmacology and Experimental Evaluation. ACS OMEGA 2022; 7:11166-11176. [PMID: 35415320 PMCID: PMC8991932 DOI: 10.1021/acsomega.1c07335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sho-saiko-to is a well-known traditional Chinese medicine compound and is considered to have therapeutic effects against many diseases, including thyroid cancer (TC). However, the mechanisms and therapeutic targets of Sho-saiko-to against TC remain unclear. In this study, network pharmacology, molecular docking, and cell experiments were combined to predict and verify the targets and mechanisms of the active ingredients of Sho-saiko-to against TC. The results demonstrated that the main chemical ingredients of Sho-saiko-to could suppress the viability and proliferation of TC cells, promote apoptosis through the caspase3 pathway, and induce autophagy through the PI3K-AKT pathway. In addition, Sho-saiko-to could also induce the redifferentiation of anaplastic thyroid cancer. Our study provides a novel approach for treating differentiated thyroid cancer (DTC) or radioactive iodine refractory differentiated thyroid cancer (RAIR-DTC).
Collapse
Affiliation(s)
- Kun Wang
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ruijie Qian
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hongyan Li
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chenyang Wang
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Ding
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zairong Gao
- Department
of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
5
|
Abstract
Summary
Acquired immunodeficiency syndrome (AIDS) is an immunosuppressive disease caused by human immunodeficiency virus (HIV). The urgent need for searching novel anti-HIV/AIDS medicines is a global concern. So far, a lot of medicinal and aromatic plants (MAPs) have been analyzed to select those that could assist in the prevention and/or amelioration of the disease. Among biologically active compounds present in these plants, one of the most promising group are phenolics. The purpose of this article was to report anti-HIV activity of selected phenolic compounds of plant origin.
Collapse
|
6
|
Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-Activity-Relationship and Mechanistic Insights for Anti-HIV Natural Products. Molecules 2020; 25:E2070. [PMID: 32365518 PMCID: PMC7249135 DOI: 10.3390/molecules25092070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS), which chiefly originatesfroma retrovirus named Human Immunodeficiency Virus (HIV), has impacted about 70 million people worldwide. Even though several advances have been made in the field of antiretroviral combination therapy, HIV is still responsible for a considerable number of deaths in Africa. The current antiretroviral therapies have achieved success in providing instant HIV suppression but with countless undesirable adverse effects. Presently, the biodiversity of the plant kingdom is being explored by several researchers for the discovery of potent anti-HIV drugs with different mechanisms of action. The primary challenge is to afford a treatment that is free from any sort of risk of drug resistance and serious side effects. Hence, there is a strong demand to evaluate drugs derived from plants as well as their derivatives. Several plants, such as Andrographis paniculata, Dioscorea bulbifera, Aegle marmelos, Wistaria floribunda, Lindera chunii, Xanthoceras sorbifolia and others have displayed significant anti-HIV activity. Here, weattempt to summarize the main results, which focus on the structures of most potent plant-based natural products having anti-HIV activity along with their mechanisms of action and IC50 values, structure-activity-relationships and important key findings.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| | - Pooja Sharma
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Girish K. Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot 145001, India;
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Dinesh Kumar
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| |
Collapse
|
7
|
Kong DZ, Liang N, Yang GL, Zhang Z, Liu Y, Li J, Liu X, Liang S, Nikolova D, Jakobsen JC, Gluud C, Liu JP. Xiao Chai Hu Tang, a herbal medicine, for chronic hepatitis B. Cochrane Database Syst Rev 2019; 2019:CD013090. [PMID: 31697415 PMCID: PMC6953322 DOI: 10.1002/14651858.cd013090.pub2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic hepatitis B is associated with high morbidity and mortality. Chronic hepatitis B requires long-term management aiming at reduction of the risks of hepatocellular inflammatory necrosis, liver fibrosis, decompensated liver cirrhosis, liver failure, and liver cancer, and improving health-related quality of life. The Chinese herbal medicine formula Xiao Chai Hu Tang has been used to decrease discomfort and replication of the virus in people with chronic hepatitis B. However, the benefits and harms of Xiao Chai Hu Tang formula have never been established with rigorous review methodology. OBJECTIVES To assess the benefits and harms of Xiao Chai Hu Tang formula versus placebo or no intervention in people with chronic hepatitis B. SEARCH METHODS We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE Ovid, Embase Ovid, and seven other databases to 1 March 2019. We also searched the World Health Organization International Clinical Trials Registry Platform (www.who.int/ictrp), ClinicalTrials.gov (www.clinicaltrials.gov/), and the Chinese Clinical Trial Registry for ongoing or unpublished trials to 1 March 2019. SELECTION CRITERIA We included randomised clinical trials, irrespective of publication status, language, and blinding, comparing Xiao Chai Hu Tang formula versus no intervention or placebo in people with chronic hepatitis B. We included participants of any sex and age, diagnosed with chronic hepatitis B according to guidelines or as defined by the trialists. We allowed co-interventions when the co-interventions were administered equally to all the intervention groups. DATA COLLECTION AND ANALYSIS Review authors independently retrieved data from reports and after correspondence with investigators. Our primary outcomes were all-cause mortality, serious adverse events, and health-related quality of life. Our secondary outcomes were hepatitis B-related mortality, hepatitis B-related morbidity, and adverse events considered 'not to be serious'. We presented the meta-analysed results as risk ratios (RR) with 95% confidence intervals (CI). We assessed the risks of bias using risk of bias domains with predefined definitions. We used GRADE methodology to evaluate our certainty in the evidence. MAIN RESULTS We included 10 randomised clinical trials with 934 participants, but only five trials with 490 participants provided data for analysis. All the trials compared Xiao Chai Hu Tang formula with no intervention. All trials appeared to have been conducted and published only in China. The included trials assessed heterogeneous forms of Xiao Chai Hu Tang formula, administered for three to eight months. One trial included participants with hepatitis B and comorbid tuberculosis, and one trial included participants with hepatitis B and liver cirrhosis. The remaining trials included participants with hepatitis B only. All the trials were at high risk of bias, and the certainty of evidence for all outcomes that provided data for analyses was very low. We downgraded the evidence by one or two levels because of outcome risk of bias, inconsistency or heterogeneity of results (opposite direction of effect), indirectness of evidence (use of surrogate outcomes instead of clinically relevant outcomes), imprecision of results (the CIs were wide), and publication bias (small sample size of the trials). Additionally, 47 trials lacked the necessary methodological information needed to ensure the inclusion of these trials in our review. None of the included trials aimed to assess clinically relevant outcomes such as all-cause mortality, serious adverse events, health-related quality of life, hepatitis B-related mortality, or hepatitis B-related morbidity. The effects of Xiao Chai Hu Tang formula on the proportion of participants with adverse events considered 'not to be serious' is uncertain (RR 0.43, 95% CI 0.02 to 11.98; I2 = 69%; very low-certainty evidence). Only three trials with 222 participants reported the proportion of people with detectable hepatitis B virus DNA (HBV-DNA), but the evidence that Xiao Chai Hu Tang formula reduces the presence of HBV-DNA in the blood (a surrogate outcome) is uncertain (RR 0.62, 95% CI 0.45 to 0.85; I2 = 0%; very low-certainty evidence). Only two trials with 160 participants reported the proportion of people with detectable hepatitis B virus e-antigen (HBeAg; a surrogate outcome) (RR 0.72, 95% CI 0.50 to 1.02; I2 = 38%; very low-certainty evidence) and the evidence is uncertain. The evidence is also uncertain for separately reported adverse events considered 'not to be serious'. FUNDING two of the 10 included trials received academic funding from government or hospital. None of the remaining eight trials reported information on funding. AUTHORS' CONCLUSIONS The clinical effects of Xiao Chai Hu Tang formula for chronic hepatitis B remain unclear. The included trials were small and of low methodological quality. Despite the wide use of Xiao Chai Hu Tang formula, we lack data on all-cause mortality, serious adverse events, health-related quality of life, hepatitis B-related mortality, and hepatitis B-related morbidity. The evidence in this systematic review comes from data obtained from a maximum three trials. We graded the certainty of evidence as very low for adverse events considered not to be serious and the surrogate outcomes HBeAg and HBV-DNA. We found a large number of trials which lacked clear description of their design and conduct, and hence, these trials are not included in the present review. As all identified trials were conducted in China, there might be a concern about the applicability of this review outside China. Large-sized, high-quality randomised sham-controlled trials with homogeneous groups of participants and transparent funding are lacking.
Collapse
Affiliation(s)
- De Zhao Kong
- Liaoning University of Traditional Chinese MedicineChong Shan East Road 79ShenyangLiaoning ProvinceChina110032
- The Affiliated Hospital of Liaoning University of Traditional Chinese MedicineDepartment of CardiologyBeiling Street 33ShenyangLiaoning ProvinceChina110032
- Liaoning University of Traditional Chinese MedicineCo‐construct Key Laboratory of Theory of Visceral Manifestations and ApplicationsChong Shan East Road 79ShenyangLiaoning ProvinceChina110032
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupCopenhagenDenmark
| | - Ning Liang
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupCopenhagenDenmark
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese MedicineBei San Huan Dong Lu 11, Chaoyang DistrictBeijingChina100029
| | - Guan Lin Yang
- Liaoning University of Traditional Chinese MedicineChong Shan East Road 79ShenyangLiaoning ProvinceChina110032
| | - Zhe Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese MedicineChong Shan East Street 79ShenyangLiaoning ProvinceChina110032
| | - Yue Liu
- Liaoning University of Traditional Chinese MedicineCo‐construct Key Laboratory of Theory of Visceral Manifestations and ApplicationsChong Shan East Road 79ShenyangLiaoning ProvinceChina110032
| | - Jing Li
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese MedicineBei San Huan Dong Lu 11, Chaoyang DistrictBeijingChina100029
| | - Xuehan Liu
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese MedicineBei San Huan Dong Lu 11, Chaoyang DistrictBeijingChina100029
| | - Shibing Liang
- Shanxi University of Traditional Chinese MedicineSchool of Basic MedicineJinci road, Wan Bailin districtTaiyuanShanxi ProvinceChina030000
| | - Dimitrinka Nikolova
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupCopenhagenDenmark
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupCopenhagenDenmark
- Holbaek HospitalDepartment of CardiologyHolbaekDenmark4300
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupCopenhagenDenmark
| | - Jian Ping Liu
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese MedicineBei San Huan Dong Lu 11, Chaoyang DistrictBeijingChina100029
| | | |
Collapse
|
8
|
Sun R, Basu S, Zeng M, Sunsong R, Li L, Ghose R, Wang W, Liu Z, Hu M, Gao S. Xiao-Chai-Hu-Tang (XCHT) Intervening Irinotecan’s Disposition: The Potential of XCHT in Alleviating Irinotecan-Induced Diarrhea. Curr Cancer Drug Targets 2019; 19:551-560. [DOI: 10.2174/1568009618666181029153255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
<P>Background: Diarrhea is a severe side effect of irinotecan, a pro-drug of SN-38 used for the treatment of many types of cancers. Pre-clinical and clinical studies showed that decreasing the colonic exposure of SN-38 can mitigate irinotecan-induced diarrhea. </P><P> Objective: The purpose of this study is to evaluate the anti-diarrhea potential of Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese herbal formula, against irinotecan-induced diarrhea by determining if and how XCHT alters the disposition of SN-38. </P><P> Methods: LC-MS/MS was used to quantify the concentrations of irinotecan and its major metabolites (i.e., SN-38, SN-38G). An Intestinal perfusion model was used to determine the effect of XCHT on the biliary and intestinal secretions of irinotecan, SN-38, and SN-38G. Pharmacokinetic (PK) studies were performed to determine the impact of XCHT on the blood and fecal concentrations of irinotecan, SN-38, and SN-38G. </P><P> Results: The results showed that XCHT significantly inhibits both biliary and intestinal excretions of irinotecan, SN-38, and SN-38G (range: 35% to 95%). PK studies revealed that the fecal concentrations of irinotecan and SN-38 were significantly decreased from 818.35 ± 120.2 to 411.74 ± 138.83 µg/g or from 423.95 ± 76.44 to 245.63 ± 56.72 µg/g (p<0.05) by XCHT, respectively, suggesting the colonic exposure of SN-38 is significantly decreased by XCHT. PK studies also showed that the plasma concentrations of irinotecan, SN-38, and SN-38G were not affected by XCHT. </P><P> Conclusion: In conclusion, XCHT significantly decreased the exposure of SN-38 in the gut without affecting its plasma level, thereby possessing the potential of alleviating irinotecan-induced diarrhea without negatively impacting its therapeutic efficacy.</P>
Collapse
Affiliation(s)
- Rongjin Sun
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 51006, China
| | - Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Min Zeng
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Robin Sunsong
- Department of Pharmaceutical and Environmental Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 51006, China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Song Gao
- Department of Pharmaceutical and Environmental Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| |
Collapse
|
9
|
Characterizing the Neuroprotective Effects of S/B Remedy ( Scutellaria baicalensis Georgi and Bupleurum scorzonerifolfium Willd) in Spinal Cord Injury. Molecules 2019; 24:molecules24101885. [PMID: 31100896 PMCID: PMC6571778 DOI: 10.3390/molecules24101885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
The main causes of dysfunction after a spinal cord injury (SCI) include primary and secondary injuries that occur during the first minutes, hours, to days after injury. This treatable secondary cascade provides a window of opportunity for delivering therapeutic interventions. An S/B remedy (Scutellaria baicalensis Georgi and Bupleurum scorzonerifolfium Willd) has anti-inflammatory, cytoprotective, and anticarcinogenic effects in liver or neurodegenerative diseases. The present work examined the effect of S/B on injured spinal cord neurons in cultures and in vivo. S/B effectively reduced peroxide toxicity and lipopolysaccharide stimulation in both spinal cord neuron/glial and microglial cultures with the involvement of PKC and HSP70. The effect of S/B was further conducted in contusive SCI rats. Intraperitoneal injections of S/B to SCI rats preserved spinal cord tissues and effectively attenuated microglial activation. Consistently, S/B treatment significantly improved hindlimb functions of SCI rats. In the acute stage of injury, S/B treatment markedly reduced the levels of ED1 expression and lactate and had a tendency to decrease lipid peroxidation. Taken together, we demonstrated long-term hindlimb restoration alongside histological improvements with systemic S/B remedy treatment in a clinically relevant model of contusive SCI. Our findings highlight the potential of an S/B remedy for acute therapeutic intervention after SCI.
Collapse
|
10
|
Valadão ALC, Pezzuto P, Silva VAO, Gonçalves BS, Rossi ÁD, da Cunha RD, Siani AC, Tostes JBDF, Trovó M, Damasco P, Gonçalves G, Reis RM, Aguiar RS, Bento CADM, Tanuri A. Reactivation of latent HIV-1 in vitro using an ethanolic extract from Euphorbia umbellata (Euphorbiaceae) latex. PLoS One 2018; 13:e0207664. [PMID: 30481211 PMCID: PMC6258530 DOI: 10.1371/journal.pone.0207664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023] Open
Abstract
Euphorbia umbellata (E. umbellata) belongs to Euphorbiaceae family, popularly known as Janauba, and its latex contains a combination of phorbol esters with biological activities described to different cellular protein kinase C (PKC) isoforms. Here, we identified deoxi-phorbol esters present in E. umbellata latex alcoholic extract that are able to increase HIV transcription and reactivate virus from latency models. This activity is probably mediated by NF-kB activation followed by nuclear translocation and binding to the HIV LTR promoter. In addition, E. umbellata latex extract induced the production of pro inflammatory cytokines in vitro in human PBMC cultures. This latex extract also activates latent virus in human PBMCs isolated from HIV positive patients as well as latent SIV in non-human primate primary CD4+ T lymphocytes. Together, these results indicate that the phorbol esters present in E. umbellata latex are promising candidate compounds for future clinical trials for shock and kill therapies to promote HIV cure and eradication.
Collapse
Affiliation(s)
- Ana Luiza Chaves Valadão
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Barbara Simonson Gonçalves
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Átila Duque Rossi
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Delvecchio da Cunha
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Carlos Siani
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | | - Marcelo Trovó
- Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Damasco
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Gonçalves
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Renato Santana Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleonice Alves de Melo Bento
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Peng J. The Pharmacological Targets and Clinical Evidence of Natural Products With Anti-hepatic Inflammatory Properties. Front Pharmacol 2018; 9:455. [PMID: 29922155 PMCID: PMC5996099 DOI: 10.3389/fphar.2018.00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation contributes heavily to the pathogenesis of liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Inflammation is probably a promising target for treatment of liver diseases. The natural products are considered as the potential source of new drug discovery and their pharmacological effects on hepatic inflammation have been widely reported. In this review, the natural products with anti-hepatic inflammatory properties are summarized based on their pharmacological effects and mechanisms, which are related to the suppression on the inflammation mediators including cytokines and chemokines, pattern recognition receptors, the activated transcriptional factors, and the potential regulatory factors. The clinical evidence is also summarized.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
12
|
Wang YF, Tang ZH, Li T, Xu XH, Chen X, Wang Y, Wang YT, Lu JJ. Baicalein protects tert‑butyl hydroperoxide‑induced hepatotoxicity dependent of reactive oxygen species removal. Mol Med Rep 2017; 16:8392-8398. [PMID: 28944883 DOI: 10.3892/mmr.2017.7592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
Baicalein (BA), one of the major bioactive flavonoids isolated from Scutellariae Radix, possesses various pharmacological activities. The present study aimed to investigate the protective effects of BA on tert‑butyl hydroperoxide (t‑BHP)‑induced hepatotoxicity, and to investigate the potential mechanisms in LO2 cells. BA was demonstrated to possess protective properties against t‑BHP injury in LO2 cells, as evidenced by MTT and lactate dehydrogenase assays. BA significantly prevented t‑BHP‑induced depolarization of mitochondrial membrane potential (MMP), decreased the percentage of apoptotic cells caused by t‑BHP, and prevented intracellular reactive oxygen species (ROS) generation in LO2 cells. Furthermore, BA slightly triggered autophagy in LO2 cells, as evidenced by the elevation of LC3‑II expression, while BA combined treatment with an autophagy inhibitor (chloroquine) or activator (rapamycin) did not alter the hepatoprotective properties. In conclusion, BA may possess a hepatoprotective effect against t‑BHP‑induced liver cell injury, dependent on ROS removal. Therefore, BA may represent a potential drug candidate in protecting hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
13
|
Ohkoshi E, Umemura N. Induced overexpression of CD44 associated with resistance to apoptosis on DNA damage response in human head and neck squamous cell carcinoma cells. Int J Oncol 2016; 50:387-395. [PMID: 28035370 PMCID: PMC5238781 DOI: 10.3892/ijo.2016.3821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
CD44 is a marker of cancer stem cells in head and neck squamous cell carcinoma, and CD44 expression is related to prognosis in cancer patients. We examined whether herbal medicine components affect CD44 expression and induce cancer cell apoptosis. Baicalin enhanced apoptosis with no effect on CD44 levels, while baicalein did not enhance apoptosis and upregulated CD44 in head and neck squamous cell carcinoma. Furthermore, baicalein induced phosphorylation of CHK1, as a marker of DNA damage response to S-to-G2/M phase arrest. Our results clearly demonstrated that baicalein enhanced expression of CD44 and accordingly enhanced the DNA damage response. These data suggest that induction of CD44 inhibited cancer cell induction of apoptosis by increasing the DNA damage response. Together, our findings suggest that CD44 expression in head and neck squamous cell carcinoma plays a role in enhancing the DNA damage response.
Collapse
Affiliation(s)
- Emika Ohkoshi
- Department of Natural and Medicinal Chemistry, Faculty of Pharmaceutical Sciences Aomori University, Aomori, Aomori 030-0943, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| |
Collapse
|
14
|
Li J, Xu Q, Jiang H. Identification and Characterization of Two New Degradation Products of Saikosaponin A under Acid Hydrolytic Conditions. Molecules 2016; 21:molecules21091232. [PMID: 27649123 PMCID: PMC6274035 DOI: 10.3390/molecules21091232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 12/12/2022] Open
Abstract
Saikosaponin (SS) A is a compound with various pharmacological properties and is easily degraded into SS-B1 and SS-G under acid conditions. In the present work, two new degradation products of SS-A, formed under acid hydrolytic conditions, were detected and isolated using analytical and semi-preparative liquid chromatography technology; furthermore, their structures were characterized as hydroxy-saikosaponin A and SS-B2 by spectral analysis, which is not only essential in stability-indicating method development and validation, but also could be used as a worst case scenario to assess the analytical method performance of SS-A. Moreover, their structural transformation pathways are also proposed.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Qiang Xu
- College of Chemistry and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Hua Jiang
- College of Chemistry and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
15
|
Sun R, Zeng M, Du T, Li L, Yang G, Hu M, Gao S. Simultaneous determinations of 17 marker compounds in Xiao-Chai-Hu-Tang by LC-MS/MS: Application to its pharmacokinetic studies in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1003:12-21. [PMID: 26397748 DOI: 10.1016/j.jchromb.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/29/2023]
Abstract
The purpose of this study is to develop and validate an UPLC-MS/MS method to quantify different marker compounds from Xiao-Chai-Hu-Tang (XCHT, a Chinese traditional herbal) in biological samples and apply the method to pharmacokinetic study. A Waters BEH C18 UPLC column was used with acetonitrile/0.1% formic acid mobile phases. The mass analysis was performed in a triple quadrupole mass spectrometer using multiple reaction monitoring (MRM) with positive scan mode. A one-step protein precipitation by methanol was used to extract the analytes from blood. Seventeen commercially available compounds from the different compositing herbals were selected as markers. The results revealed that all of the calibration curves showed good linear regression (r(2)>0.9918). The intra-day and inter-day precisions (RSD) of all of these markers at three different levels were less than 15.0% and the bias of the accuracies ranged from -13.5% to 16.6%.The extraction recoveries of all of these 17 markers were from 70.8% to 113.7% and the matrix effects ranged from 71.8% to 114.8%. The stabilities of these compounds in blood were evaluated by analyzing three replicates of QC samples at three different concentrations following storage at 25°C for 6h, 4°C for 24h, and -80°C for 30 days. All the samples displayed 85-115% precision and accuracy after various stability tests. The validated method was successfully applied to pharmacokinetic study in A/J mouse with oral administration of XCHT. All of these markers were detected and the pharmacokinetic parameters of 8 compounds were able to be calculated. This method is sensitive and reproducible that can be used for XCHT's in vivo study.
Collapse
Affiliation(s)
- Rongjin Sun
- College of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, China; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | - Min Zeng
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, Hubei, China
| | - Ting Du
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, Hubei, China
| | - Li Li
- College of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, China; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | - Guangyi Yang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, Hubei, China
| | - Ming Hu
- College of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, China; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | - Song Gao
- College of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, China; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Developing a QSAR model for hepatotoxicity screening of the active compounds in traditional Chinese medicines. Food Chem Toxicol 2015; 78:71-7. [DOI: 10.1016/j.fct.2015.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
|
17
|
Yao M, Yang J, Cao L, Zhang L, Qu S, Gao H. Saikosaponin‑d inhibits proliferation of DU145 human prostate cancer cells by inducing apoptosis and arresting the cell cycle at G0/G1 phase. Mol Med Rep 2014; 10:365-72. [PMID: 24736800 DOI: 10.3892/mmr.2014.2153] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/12/2014] [Indexed: 11/05/2022] Open
Abstract
Saikosaponin‑d (SSd), a triterpene saponin compound derived from Bupleurum radix, has been shown to have a cytotoxic effect on various cancer cell lines. However, its effect on prostate cancer cells has remained unexplored. The present study reports the apoptosis‑inducing effect of SSd on the DU145 human prostate carcinoma cell line. Treatment with SSd inhibited DU145 cell proliferation in a concentration‑dependent manner. Flow cytometric analysis showed that SSd inhibited the proliferation of DU145 cells by induction of apoptosis and cell cycle arrest at G0/G1 phase. Further mechanistic experiments demonstrated that SSd arrested the cell cycle at G0/G1 phase via upregulation of p53 and p21 and induced apoptosis by modulating B‑cell lymphoma 2 family proteins, dissipation of the mitochondrial membrane potential, release of cytochrome c into the cytosol and activation of caspase‑3. In conclusion the present study indicated that SSd induced apoptosis in DU145 cells by the intrinsic apoptotic pathway. Therefore, SSd may become a leading candidate drug for the therapy of prostate carcinoma.
Collapse
Affiliation(s)
- Min Yao
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Jingbo Yang
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Lanqing Cao
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Lian Zhang
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Shanshan Qu
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| | - Hongwen Gao
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
18
|
Song KH, Kim YH, Kim BY. Sho-saiko-to, a traditional herbal medicine, regulates gene expression and biological function by way of microRNAs in primary mouse hepatocytes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:14. [PMID: 24410935 PMCID: PMC3893506 DOI: 10.1186/1472-6882-14-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/31/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. METHODS By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. RESULTS The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. CONCLUSIONS We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST.
Collapse
|
19
|
Identification of two licorice species, Glycyrrhiza uralensis and Glycyrrhiza glabra, based on separation and identification of their bioactive components. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Liu ZQ. Chemical Insights into Ginseng as a Resource for Natural Antioxidants. Chem Rev 2012; 112:3329-55. [DOI: 10.1021/cr100174k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College
of Chemistry, Jilin University, Changchun
130021, China
| |
Collapse
|
21
|
Qiao Q, Du Q. Preparation of the monomers of gingerols and 6-shogaol by flash high speed counter-current chromatography. J Chromatogr A 2011; 1218:6187-90. [PMID: 21195411 DOI: 10.1016/j.chroma.2010.12.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/11/2010] [Accepted: 12/14/2010] [Indexed: 11/26/2022]
Abstract
The flash high speed counter-current chromatographic (FHSCCC) separation of gingerols and 6-shogaol was performed on a HSCCC instrument equipped with a 1200-ml column (5 mm tubing i.d.) at a flow rate of 25 ml/min. The performance met the FHSCCC feature that the flow rate of mobile phase (ml) is equal to or greater than the square of the diameter of the column tubing (mm). The separation employed the upper phase of stationary phase of the n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) as the stationary phase. A stepwise elution was performed by eluting with the lower phase of n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) for first 90 min and the lower phase of the n-hexane-ethyl acetate-methanol-water (3:2:6:5, v/v) for the second 90 min. In each separation 5 g of the ethyl acetate extract of rhizomes of ginger was loaded, yielding 1.96 g of 6-gingerol (98.3%), 0.33 g of 8-gingerol (97.8%), 0.64 g of 6-shogaol (98.8%) and 0.57 g of 10-gingerol (98.2%). The separation can be expected to scale up to industrial separation.
Collapse
Affiliation(s)
- Qingliang Qiao
- Institute of Food and Biological Engineering, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang 310035, China
| | | |
Collapse
|
22
|
Deng G, Kurtz RC, Vickers A, Lau N, Yeung KS, Shia J, Cassileth B. A single arm phase II study of a Far-Eastern traditional herbal formulation (sho-sai-ko-to or xiao-chai-hu-tang) in chronic hepatitis C patients. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:83-87. [PMID: 21527335 DOI: 10.1016/j.jep.2011.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatitis C is a major public health problem internationally. Many patients cannot benefit from the current treatment regimen (interferon/ribavirin combinations) due to its side effects or ineffectiveness. Xiao-Chai-Hu-Tang or Sho-sai-ko-to (SST), a compound of seven botanical extracts used for liver diseases traditionally in East Asia, was shown to reduce transaminases and the incidence of hepatocellular carcinoma in hepatitis B patients. We conducted a phase II trial of SST in hepatitis C patients who were not candidates for interferon-based therapy to determine whether this agent is worthy of further study. MATERIALS AND METHODS Twenty four chronic hepatitis C patients received SST at 2.5 g per os (p.o.) three times daily (t.i.d.) for 12 months. Liver function, hepatitis C virus (HCV) viral load and liver biopsy histology were assessed before and after the intervention. RESULTS Improvement of aspartate aminotransferase (AST) was observed in 16 (67%) of study participants. Improvement of alanine aminotransferase (ALT) was seen in 18 (75%) patients. Viral load response was mixed, with 7 patients showing reductions, 10 increases and 7 indeterminate due to assay limitations. Among the 9 (38%) subjects who showed improvement per Knodell's histology activity index (HAI) scores in paired comparison of pre- and post-treatment liver biopsy (the primary endpoints of the study), 5 (21%) showed an improvement of 2 points or greater, meeting the pre-defined criteria for "response. CONCLUSIONS Sho-sai-ko-to (SST or Xiao Chai Hu Tang) may improve liver pathology in selected hepatitis C patients who are not candidates for interferon based treatment. Larger, controlled studies of this botanical formulation may be warranted.
Collapse
Affiliation(s)
- Gary Deng
- Integrative Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, United States.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
A new Molecularly Imprinted Solid Phase Extraction (MISPE) protocol was developed for the selective extraction and purification of glycyrrhizic acid (GL) from liquorice roots. Non-covalent MIP were synthesized using methacrylic acid (MAA), 2-(dimethylamino)ethyl methacrilate (DMAEM) or 2-hydroxyethylmetacrylate (HEMA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. After the evaluation of the selectivity of the GL imprinted polymers, the performance of these materials as Solid Phase Extraction (SPE) sorbents was investigated. MIP having HEMA as functional monomer were found to be able to selectively extract almost 80% of GL content in liquorice roots. The proposed MISPE-HPLC procedure has good precision, thus it can be successfully used for the purification of GL from natural sources.
Collapse
|
24
|
Nishimura N, Uemura T, Iwamoto K, Naora K. Change in tolbutamide permeability in rat jejunum and Caco-2 cells by Sho-saiko-to (Xiao Chai Hu Tang), a Chinese traditional medicine. J Pharm Pharmacol 2010; 62:651-7. [DOI: 10.1211/jpp.62.05.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Eom HY, Park SY, Kim MK, Suh JH, Yeom H, Min JW, Kim U, Lee J, Youm JR, Han SB. Comparison between evaporative light scattering detection and charged aerosol detection for the analysis of saikosaponins. J Chromatogr A 2010; 1217:4347-54. [PMID: 20452602 DOI: 10.1016/j.chroma.2010.04.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 11/17/2022]
Abstract
Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores. Therefore, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) method has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we compared CAD and ELSD methods in the simultaneous analysis of 10 saikosaponins, including saikosaponins-A, -B(1), -B(2), -B(3), -B(4), -C, -D, -G, -H and -I. A mixture of the 10 saikosaponins was injected into the Ascentis Express C18 column (100 mm x 4.6 mm, 2.7 microm) with gradient elution and detection with CAD and ELSD by splitting. We examined various factors that could affect the sensitivity of the detectors including various concentrations of additives, pH and flow rate of the mobile phase, purity of nitrogen gas and the CAD range. The sensitivity was determined based on the signal-to-noise ratio. The best sensitivity for CAD was achieved with 0.1 mM ammonium acetate at pH 4.0 in the mobile phase with a flow rate of 1.0 mL/min, and the CAD range at 100 pA, whereas that for ELSD was achieved with 0.01% acetic acid in the mobile phase with a flow rate at 0.8 mL/min. The purity of the nitrogen gas had only minor effects on the sensitivities of both detectors. Finally, the sensitivity for CAD was two to six times better than that of ELSD. Taken together, these results suggest that CAD provides a more sensitive analysis of the 10 saikosaponins than does ELSD.
Collapse
Affiliation(s)
- Han Young Eom
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zeng Z, Chau FT, Chan HY, Cheung CY, Lau TY, Wei S, Mok DKW, Chan CO, Liang Y. Recent advances in the compound-oriented and pattern-oriented approaches to the quality control of herbal medicines. Chin Med 2008; 3:9. [PMID: 18680568 PMCID: PMC2531114 DOI: 10.1186/1749-8546-3-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 08/04/2008] [Indexed: 11/20/2022] Open
Abstract
The current approaches to the quality control of herbal medicines are either compound-oriented or pattern-oriented, the former targeting specific components with some known chemical properties and the latter targeting all detectable components. The marker approach uses specific chemical compounds with known molecular structures, while the multi-compound approach uses both chemical compounds with known structures and those with partial chemical information e.g. retention times, mass spectra and ultraviolet spectra. Apart from chromatographic techniques, new techniques such as oscillating and electrochemistry fingerprints have been developed for quality control. Chemometric resolution methods are widely used for component deconvolution and data comparison. Pattern recognition techniques are used for authentication of herbal medicines.
Collapse
Affiliation(s)
- Zhongda Zeng
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Park EJ, Zhao YZ, Kim YC, Sohn DH. PF2401-SF, standardized fraction of Salvia miltiorrhiza and its constituents, tanshinone I, tanshinone IIA, and cryptotanshinone, protect primary cultured rat hepatocytes from bile acid-induced apoptosis by inhibiting JNK phosphorylation. Food Chem Toxicol 2007; 45:1891-8. [PMID: 17560000 DOI: 10.1016/j.fct.2007.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/29/2007] [Accepted: 04/11/2007] [Indexed: 01/08/2023]
Abstract
Bile acid-induced hepatocyte apoptosis plays an important role in cholestatic liver disease, and the role of apoptosis may be of therapeutic interest in preventing liver disease. The dried root of Salvia miltiorrhiza Bunge (Labiatae) has been used traditionally to treat liver diseases. We investigated the antiapoptotic effects of a standardized fraction of S. miltiorrhiza (PF2401-SF) and its components, tanshinone I, tanshinone IIA, and cryptotanshinone, in primary cultured rat hepatocytes. PF2401-SF was enriched with tanshinone I (11.5%), tanshinone IIA (41.0%), and cryptotanshinone (19.1%). Glycochenodeoxycholic acid (GCDC)-induced apoptosis, as shown by DNA fragmentation, poly(ADP-ribose) polymerase cleavage, and activation of caspases-8, -9, and -3. PF2401-SF and its components, tanshinone I, tanshinone IIA, and cryptotanshinone showed antiapoptotic activity. Treatment with PF2401-SF or with its components significantly inhibited the generation of intracellular reactive oxygen species. Hydrophobic bile acids activate c-Jun-NH(2)-terminal kinase (JNK), p38 mitogen-activated protein kinases (MAPK), and extracellular signal-regulated kinase 1/2, and PF2401-SF inhibited the phosphorylation of JNK and p38. All three components of PF2401-SF inhibited JNK phosphorylation. Addition of inhibitors of MAPK showed that inhibition of JNK decreased apoptosis. These data indicate that PF2401-SF and its components protect hepatocytes from GCDC-induced apoptosis in vitro by inhibiting JNK.
Collapse
Affiliation(s)
- Eun-Jeon Park
- Department of Pharmacy, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | | | | | | |
Collapse
|
28
|
Wang R, Kong J, Wang D, Lien LLM, Lien EJC. A survey of Chinese herbal ingredients with liver protection activities. Chin Med 2007; 2:5. [PMID: 17490493 PMCID: PMC1876451 DOI: 10.1186/1749-8546-2-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 05/10/2007] [Indexed: 11/10/2022] Open
Abstract
A literature survey was conducted on herbs, their preparations and ingredients with reported liver protection activities, in which a total of 274 different species and hundreds of active ingredients have been examined. These ingredients can be roughly classified into two categories according to their activities: (1) the main ingredients, such as silybin, osthole, coumarin, glycyrrhizin, saikosaponin A, schisandrin A, flavonoids; and (2) supporting substances, such as sugars, amino acids, resins, tannins and volatile oil. Among them, some active ingredients have hepatoprotective activities (e.g. anti-inflammatory, anticancer, antioxidant, immunomodulating and liver cirrhosis-regulating effects). Calculation of physicochemical parameters indicates that the main ingredients with negative and positive Elumo values possibly display their hepatoprotective effects through different mechanisms, such as antioxidative, anti-inflammatory and immunomodulating effects. As the combination of herbs may achieve some treatment effects synergistically and/or additively, it is common in Chinese medicine to use mixtures of various medicinal herbs with pharmacologically active compounds to have synergistic and/or additive effects, or to reduce harmful effects of some pharmacologically active compounds. In particular, the active compounds with Clog P around 2 are suitable for passive transport across membranes and accessible to the target sites. Thus, Elumo and Clog P values are good indicators among the calculated parameters. Seven different physicochemical parameters (MW, Clog P, CMR, μ, Ehomo, Elumo and Hf) and four major biological activities (antioxidant, anti-inflammatory, antiviral/antitumor and immunomodulating) are discussed in this review. It is hoped that the discussion may provide some leads in the development of new hepatoprotective drugs.
Collapse
Affiliation(s)
- Rubin Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
- Amylin Pharmaceuticals, Inc, 9360 Towne Centre Drive, San Diego, CA 92121, USA
| | - John Kong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | - Dali Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | - Linda Lin-min Lien
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | - Eric Jung-chi Lien
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| |
Collapse
|
29
|
Cong J, Lin B. Separation of Liquiritin by simulated moving bed chromatography. J Chromatogr A 2007; 1145:190-4. [PMID: 17289063 DOI: 10.1016/j.chroma.2007.01.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 11/22/2022]
Abstract
Liquiritin was extracted from the natural product Licorice, and then purified using a three-zone simulated moving bed set up in our laboratory, with a C(18)-bonded silica as the stationary phase and an aqueous solution of ethanol as the mobile phase. The isotherm parameters of Liquiritin and of the only closely eluting impurity were obtained using the inverse method, fitting the experimental elution profiles to calculated elution profiles, assuming a binary Langmuir isotherm model as an approximation. The operating parameters of the simulated moving bed were selected according to the Equilibrium Theory. This allowed the preparation of 85% pure Liquiritin. Finally, 99% pure Liquiritin was obtained through a last step of recrystallization.
Collapse
Affiliation(s)
- Jingxiang Cong
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | | |
Collapse
|
30
|
Shen S, Chang Z, Liu J, Sun X, Hu X, Liu H. Simultaneous Determination of Glycyrrhizic Acid and Liquiritin in Glycyrrhiza uralensis Extract by HPLC with ELSD Detection. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070600864858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shufeng Shen
- a Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Beijing, P.R. China
- b Graduate School of the Chinese Academy of Sciences , Beijing, P.R. China
| | - Zhidong Chang
- a Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Beijing, P.R. China
- b Graduate School of the Chinese Academy of Sciences , Beijing, P.R. China
| | - Ji Liu
- a Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Beijing, P.R. China
- b Graduate School of the Chinese Academy of Sciences , Beijing, P.R. China
| | - Xinghua Sun
- a Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Beijing, P.R. China
- b Graduate School of the Chinese Academy of Sciences , Beijing, P.R. China
| | - Xin Hu
- a Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Beijing, P.R. China
- b Graduate School of the Chinese Academy of Sciences , Beijing, P.R. China
| | - Huizhou Liu
- a Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering , Institute of Process Engineering , Beijing, P.R. China
- b Graduate School of the Chinese Academy of Sciences , Beijing, P.R. China
| |
Collapse
|
31
|
Morinaga O, Zhu S, Tanaka H, Shoyama Y. Visual detection of saikosaponins by on-membrane immunoassay and estimation of traditional Chinese medicines containing Bupleuri radix. Biochem Biophys Res Commun 2006; 346:687-92. [PMID: 16780795 DOI: 10.1016/j.bbrc.2006.05.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/22/2006] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to describe the simple, rapid, and environmental-cost effective determination method for saikosaponins in complicated samples like Bupleuri radix and traditional Chinese medicines (TCM). Saikosaponin standards, extracts of Bupleuri radix and TCM, were applied to a polyethersulphone (PES) membrane and developed by acetonitrile-water (1:4, by volume). Saikosaponin a (SSa), SSc, and SSd were visually detected by an immunostaining method (called Eastern blotting technique) using a monoclonal antibody (MAb) against SSa. At least 62.5 ng of SSa, SSc, and SSd were clearly detectable individually. These coloring spot areas of saikosaponins on PES membrane were calculated by using the NIH Imaging software and three saikosaponins can be analyzed quantitatively between 62.5 ng and 1.0 microg. Saikosaponins in Bupleuri radix and TCM were determined and these results of SSa and total saikosaponin concentrations were in good agreement with those from the ELISA analysis.
Collapse
Affiliation(s)
- Osamu Morinaga
- Innovation Plaza Fukuoka, Japan Science and Technology Agency, 3-8-34 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
| | | | | | | |
Collapse
|
32
|
Cheng PW, Ng LT, Lin CC. Xiao chai hu tang inhibits CVB1 virus infection of CCFS-1 cells through the induction of Type I interferon expression. Int Immunopharmacol 2006; 6:1003-12. [PMID: 16644487 DOI: 10.1016/j.intimp.2006.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/04/2005] [Accepted: 01/20/2006] [Indexed: 10/25/2022]
Abstract
Coxsackie B virus type 1 (CVB1) infection is known to cause high morbidity and mortality in children, however, there is no effective drug for treating this disease. The present study aimed to examine the antiviral activity of xiao chai hu tang (XCHT), a popular herbal drug for treating viral and bacterial infections, against CVB1 infection and its mechanisms of action. Our data showed that XCHT neutralized the CVB1-induced cytopathic effect in human neonatal foreskin fibroblast cell line (CCFS-1/KMC), with IC50 (virus-induced cytopathic effect by 50%) and EC50 (concentration of 50% effectiveness) values around 12.39 and 50.93 microg/ml, respectively. Its CC50 (concentration of 50% cellular cytotoxicity) and SI (selective index) values were 945.75 microg/ml and 18.92, respectively. These results suggest that XCHT possessed anti-CVB1 activity, and showed no effect on CCFS-1 cell viability and growth at concentration 250 microg/ml. The time-of-addition studies showed that XCHT (50, 100 and 200 microg/ml) added at various time of preinfection (-1 to -3 h), coinfection (0 h) and postinfection (1 approximately 3 h) could inhibit CVB1 infection. Interestingly, XCHT also showed an inhibition on viral replication through the induction of IFN-alpha/beta expression. In conclusion, XCHT possessed antiviral activity against CVB1 infection. It interfered the early stage of viral replication (prophylactic effect) and viral replication after infection (therapeutic effect) through the induction of Type I interferon expression.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | |
Collapse
|
33
|
Asres K, Seyoum A, Veeresham C, Bucar F, Gibbons S. Naturally derived anti-HIV agents. Phytother Res 2005; 19:557-81. [PMID: 16161055 DOI: 10.1002/ptr.1629] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The urgent need for new anti-HIV/AIDS drugs is a global concern. In addition to obvious economical and commercial hurdles, HIV/AIDS patients are faced with multifarious difficulties associated with the currently approved anti-HIV drugs. Adverse effects, the emergence of drug resistance and the narrow spectrum of activity have limited the therapeutic usefulness of the various reverse transcriptase and protease inhibitors that are currently available on the market. This has driven many scientists to look for new anti-retrovirals with better efficacy, safety and affordability. As has always been the case in the search for cures, natural sources offer great promise. Several natural products, mostly of plant origin have been shown to possess promising activities that could assist in the prevention and/or amelioration of the disease. Many of these anti-HIV agents have other medicinal values as well, which afford them further prospective as novel leads for the development of new drugs that can deal with both the virus and the various disorders that characterize HIV/AIDS. The aim of this review is to report new discoveries and updates pertaining to anti-HIV natural products. In the review anti-HIV agents have been classified according to their chemical classes rather than their target in the HIV replicative cycle, which is the most frequently encountered approach. Perusal of the literature revealed that most of these promising naturally derived anti-HIV compounds are flavonoids, coumarins, terpenoids, alkaloids, polyphenols, polysaccharides or proteins. It is our strong conviction that the results and experiences with many of the anti-HIV natural products will inspire and motivate even more researchers to look for new leads from plants and other natural sources.
Collapse
Affiliation(s)
- Kaleab Asres
- Department of Pharmacognosy, School of Pharmacy, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | | | | | | | | |
Collapse
|
34
|
Moussaieff A, Fride E, Amar Z, Lev E, Steinberg D, Gallily R, Mechoulam R. The Jerusalem Balsam: from the Franciscan Monastery in the old city of Jerusalem to Martindale 33. JOURNAL OF ETHNOPHARMACOLOGY 2005; 101:16-26. [PMID: 15963667 DOI: 10.1016/j.jep.2005.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/03/2005] [Accepted: 03/05/2005] [Indexed: 05/03/2023]
Abstract
The Jerusalem Balsam, a remedy based on an ethanolic extract of a herbal mixture, was formulated in 1719 in the pharmacy of the Saint Savior monastery in the old city of Jerusalem. Having gained fame, the Jerusalem Balsam was replicated and prepared in Europe. One can still find variations of the formula in current pharmacopoeias (B.P., 1998. The Stationary Office, London, p. 1510; Sweetman, S.C., Blake, P.S., McGlashan, J.M., Parsons, A.V., 2002. Martindale: The Extra Pharmacopeia, 33rd ed. Pharmaceutical Press, London, p. 1101). We report here, five different formulas, all referred to as "The Jerusalem Balsam". Three of those formulas were translated and two of these translations are presented in the text. A third one is available as Supplementary data online. As the formulas originate from different historical periods, the Jerusalem Balsam may be a good case study of the development of pharmaceutical formulations over a 250 years period. One of the formulas, found in a manuscript form in the archive of the monastery, contains four plants: olibanum (Boswellia spp.), myrrh (Commiphora spp.), aloe (Aloe sp.) and mastic (Pistacia lentiscus L.). We conducted pharmacological assays on this four-plant formula. It showed anti-inflammatory, as well as anti-oxidative, and anti-septic properties.
Collapse
Affiliation(s)
- A Moussaieff
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang QX, Cheng J, Guo J, Li WF, Wei HS. Glycyrrhizin down-regulates expression of tissue inhibitor of metalloproteinases-1. Shijie Huaren Xiaohua Zazhi 2005; 13:2183-2187. [DOI: 10.11569/wcjd.v13.i18.2183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the regulatory effect of glycyrrhizin on the tissue inhibitor of metalloproteinases-1(TIMP-1) expression and to explore its anti-fibrosis mechanism.
METHODS: The TIMP-1 promoter was amplified by polymerase chain reaction(PCR), and the product was named TIMP-1P. The TIMP-1P was cloned into pGEM-Teasy vector to obtain pGEM-Teasy-TIMP-1P, and then the product and pCAT3-basic vector were digested by NheI and XhoI to construct pCAT3-TIMP-1P. Then pCAT3-TIMP-1P was transfected into HepG2 cells and the cells were treated with 0.1 mmol glycyrrhizin for 48 h. The HepG2 cells transfected with pCAT3-basic were used as negative controls. The expression level of chloramphenicol acetyltransferase(CAT) in HepG2 cells was detected by enzyme-linked immunoassay (ELISA).
RESULTS: The expressive vector pCAT3-TIMP-1P was constructed and confirmed by restriction enzyme digestion and sequencing. The optical density(OD) of the cells transfected with pCAT3-TIMP-1P was significantly higher than that with pCAT3-basic(2.329±0.685 vs 0.004±0.002, F =26.075, P < 0.05). After treatment with glycyrrhizin, the expression of CAT in the HepG2 cells transfected with pCAT3-TIMP-1P was notably decreased as compared with that in the same cells without glycyrrhizin treatment(OD: 0.268±0.009 vs 0.490±0.153, F =35.775, P < 0.05).
CONCLUSION: Glycyrrhizin can down-regulate the activity of TIMP-1 gene promoter as well as inhibit the expression of TIMP-1.
Collapse
|