1
|
Alberto Alcalá-Orozco E, Grote V, Fiebig T, Klamt S, Reichl U, Rexer T. A Cell-Free Multi-enzyme Cascade Reaction for the Synthesis of CDP-Glycerol. Chembiochem 2023; 24:e202300463. [PMID: 37578628 DOI: 10.1002/cbic.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
CDP-glycerol is a nucleotide-diphosphate-activated version of glycerol. In nature, it is required for the biosynthesis of teichoic acid in Gram-positive bacteria, which is an appealing target epitope for the development of new vaccines. Here, a cell-free multi-enzyme cascade was developed to synthetize nucleotide-activated glycerol from the inexpensive and readily available substrates cytidine and glycerol. The cascade comprises five recombinant enzymes expressed in Escherichia coli that were purified by immobilized metal affinity chromatography. As part of the cascade, ATP is regenerated in situ from polyphosphate to reduce synthesis costs. The enzymatic cascade was characterized at the laboratory scale, and the products were analyzed by high-performance anion-exchange chromatography (HPAEC)-UV and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). After the successful synthesis had been confirmed, a design-of-experiments approach was used to screen for optimal operation conditions (temperature, pH value and MgCl2 concentration). Overall, a substrate conversion of 89 % was achieved with respect to the substrate cytidine.
Collapse
Affiliation(s)
- E Alberto Alcalá-Orozco
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Valerian Grote
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Thomas Rexer
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| |
Collapse
|
2
|
Litschko C, Budde I, Berger M, Bethe A, Schulze J, Alcala Orozco EA, Mahour R, Goettig P, Führing JI, Rexer T, Gerardy-Schahn R, Schubert M, Fiebig T. Mix-and-Match System for the Enzymatic Synthesis of Enantiopure Glycerol-3-Phosphate-Containing Capsule Polymer Backbones from Actinobacillus pleuropneumoniae, Neisseria meningitidis, and Bibersteinia trehalosi. mBio 2021; 12:e0089721. [PMID: 34076489 PMCID: PMC8262930 DOI: 10.1128/mbio.00897-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023] Open
Abstract
Capsule polymers are crucial virulence factors of pathogenic bacteria and are used as antigens in glycoconjugate vaccine formulations. Some Gram-negative pathogens express poly(glycosylglycerol phosphate) capsule polymers that resemble Gram-positive wall teichoic acids and are synthesized by TagF-like capsule polymerases. So far, the biotechnological use of these enzymes for vaccine developmental studies was restricted by the unavailability of enantiopure CDP-glycerol, one of the donor substrates required for polymer assembly. Here, we use CTP:glycerol-phosphate cytidylyltransferases (GCTs) and TagF-like polymerases to synthesize the poly(glycosylglycerol phosphate) capsule polymer backbones of the porcine pathogen Actinobacillus pleuropneumoniae, serotypes 3 and 7 (App3 and App7). GCT activity was confirmed by high-performance liquid chromatography, and polymers were analyzed using comprehensive nuclear magnetic resonance studies. Solid-phase synthesis protocols were established to allow potential scale-up of polymer production. In addition, one-pot reactions exploiting glycerol-kinase allowed us to start the reaction from inexpensive, widely available substrates. Finally, this study highlights that multidomain TagF-like polymerases can be transformed by mutagenesis of active site residues into single-action transferases, which in turn can act in trans to build-up structurally new polymers. Overall, our protocols provide enantiopure, nature-identical capsule polymer backbones from App2, App3, App7, App9, and App11, Neisseria meningitidis serogroup H, and Bibersteinia trehalosi serotypes T3 and T15. IMPORTANCE Economic synthesis platforms for the production of animal vaccines could help reduce the overuse and misuse of antibiotics in animal husbandry, which contributes greatly to the increase of antibiotic resistance. Here, we describe a highly versatile, easy-to-use mix-and-match toolbox for the generation of glycerol-phosphate-containing capsule polymers that can serve as antigens in glycoconjugate vaccines against Actinobacillus pleuropneumoniae and Bibersteinia trehalosi, two pathogens causing considerable economic loss in the swine, sheep, and cattle industries. We have established scalable protocols for the exploitation of a versatile enzymatic cascade with modular architecture, starting with the preparative-scale production of enantiopure CDP-glycerol, a precursor for a multitude of bacterial surface structures. Thereby, our approach not only allows the synthesis of capsule polymers but might also be exploitable for the (chemo)enzymatic synthesis of other glycerol-phosphate-containing structures such as Gram-positive wall teichoic acids or lipoteichoic acids.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - E. Alberto Alcala Orozco
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Reza Mahour
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Peter Goettig
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jana Indra Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Thomas Rexer
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Li FKK, Gale RT, Petrotchenko EV, Borchers CH, Brown ED, Strynadka NCJ. Crystallographic analysis of TarI and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis. J Struct Biol 2021; 213:107733. [PMID: 33819634 DOI: 10.1016/j.jsb.2021.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022]
Abstract
The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products. The TarI structures illustrate the mechanism of CDP-ribitol synthesis from CTP and ribitol-phosphate and reveal structural changes required for substrate binding and catalysis. Insights into the upstream step of ribulose-phosphate reduction to ribitol-phosphate is provided by the structures of TarJ. Furthermore, we propose a general topology of the enzymes in a heterotetrameric form built using restraints from crosslinking mass spectrometry analysis. Together, our data present molecular details of CDP-ribitol production that may aid in the design of inhibitors against WTA biosynthesis.
Collapse
Affiliation(s)
- Franco K K Li
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert T Gale
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3ZS, Canada
| | - Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3ZS, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
4
|
Guo Y, Pfahler NM, Völpel SL, Stehle T. Cell wall glycosylation in Staphylococcus aureus: targeting the tar glycosyltransferases. Curr Opin Struct Biol 2021; 68:166-174. [PMID: 33540375 DOI: 10.1016/j.sbi.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Peptidoglycan (PG) is the major structural polymer of the bacterial cell wall. The PG layer of gram-positive bacterial pathogens such as Staphylococcus aureus (S. aureus) is permeated with anionic glycopolymers known as wall teichoic acids (WTAs) and lipoteichoic acids (LTAs). In S. aureus, the WTA backbone typically consists of repeating ribitol-5-phosphate units, which are modified by enzymes that introduce glycosylation as well as amino acids at different locations. These modifications are key determinants of phage adhesion, bacterial biofilm formation and virulence of S. aureus. In this review, we examine differences in WTA structures in gram-positive bacteria, focusing in particular on three enzymes, TarM, TarS, and TarP that glycosylate the WTA of S. aureus at different locations. Infections with S. aureus pose an increasing threat to human health, particularly through the emergence of multidrug-resistant strains. Recently obtained structural information on TarM, TarS and TarP has helped to better understand the strategies used by S. aureus to establish resistance and to evade host defense mechanisms. Moreover, structures of complexes with poly-RboP and its analogs can serve as a platform for the development of new inhibitors that could form a basis for the development of antibiotic agents.
Collapse
Affiliation(s)
- Yinglan Guo
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Nina M Pfahler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Simon L Völpel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, USA.
| |
Collapse
|
5
|
Wu X, Han J, Gong G, Koffas MAG, Zha J. Wall teichoic acids: physiology and applications. FEMS Microbiol Rev 2020; 45:6019871. [DOI: 10.1093/femsre/fuaa064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Wall teichoic acids (WTAs) are charged glycopolymers containing phosphodiester-linked polyol units and represent one of the major components of Gram-positive cell envelope. WTAs have important physiological functions in cell division, gene transfer, surface adhesion, drug resistance and biofilm formation, and are critical virulence factors and vital determinants in mediating cell interaction with and tolerance to environmental factors. Here, we first briefly introduce WTA structure, biosynthesis and its regulation, and then summarize in detail four major physiological roles played by WTAs, i.e. WTA-mediated resistance to antimicrobials, virulence to mammalian cells, interaction with bacteriolytic enzymes and regulation of cell metabolism. We also review the applications of WTAs in these fields that are closely related to the human society, including antibacterial drug discovery targeting WTA biosynthesis, development of vaccines and antibodies regarding WTA-mediated pathogenicity, specific and sensitive detection of pathogens in food using WTAs as a surface epitope and regulation of WTA-related pathways for efficient microbial production of useful compounds. We also point out major problems remaining in these fields, and discuss some possible directions in the future exploration of WTA physiology and applications.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
6
|
Gale RT, Li FKK, Sun T, Strynadka NCJ, Brown ED. B. subtilis LytR-CpsA-Psr Enzymes Transfer Wall Teichoic Acids from Authentic Lipid-Linked Substrates to Mature Peptidoglycan In Vitro. Cell Chem Biol 2017; 24:1537-1546.e4. [PMID: 29107701 DOI: 10.1016/j.chembiol.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/01/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Gram-positive bacteria endow their peptidoglycan with glycopolymers that are crucial for viability and pathogenesis. However, the cellular machinery that executes this function is not well understood. While decades of genetic and phenotypic work have highlighted the LytR-CpsA-Psr (LCP) family of enzymes as cell-wall glycopolymer transferases, their in vitro characterization has been elusive, largely due to a paucity of tools for functional assays. In this report, we synthesized authentic undecaprenyl diphosphate-linked wall teichoic acid (WTA) intermediates and built an assay system capable of monitoring LCP-mediated glycopolymer transfer. We report that all Bacillus subtilis LCP enzymes anchor WTAs to peptidoglycan in vitro. Furthermore, we probed the catalytic requirements and substrate preferences for these LCP enzymes and elaborated in vitro conditions for facile tests of enzyme function. This work sheds light on the molecular features of glycopolymer transfer and aims to aid drug discovery and development programs exploiting this promising antibacterial target.
Collapse
Affiliation(s)
- Robert T Gale
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franco K K Li
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tianjun Sun
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
7
|
Schaefer K, Matano LM, Qiao Y, Kahne D, Walker S. In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. Nat Chem Biol 2017; 13:396-401. [PMID: 28166208 DOI: 10.1038/nchembio.2302] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/01/2016] [Indexed: 02/02/2023]
Abstract
Sacculus is a peptidoglycan (PG) matrix that protects bacteria from osmotic lysis. In Gram-positive organisms, the sacculus is densely functionalized with glycopolymers important for survival, but the way in which assembly occurs is not known. In Staphylococcus aureus, three LCP (LytR-CpsA-Psr) family members have been implicated in attaching the major glycopolymer wall teichoic acid (WTA) to PG, but ligase activity has not been demonstrated for these or any other LCP proteins. Using WTA and PG substrates produced chemoenzymatically, we show that all three proteins can transfer WTA precursors to nascent PGs, establishing that LCP proteins are PG-glycopolymer ligases. Although all S. aureus LCP proteins have the capacity to attach WTA to PG, we show that their cellular functions are not redundant. Strains lacking lcpA have phenotypes similar to those of WTA-null strains, indicating that this is the most important WTA ligase. This work provides a foundation for studying how LCP enzymes participate in cell wall assembly.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh M Matano
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuan Qiao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Rodrigues MV, Borges N, Santos H. Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea. Appl Environ Microbiol 2017; 83:e02462-16. [PMID: 27795311 PMCID: PMC5165115 DOI: 10.1128/aem.02462-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
Glycerophosphoinositol (GPI) is a compatible solute present in a few hyperthermophiles. Interestingly, different GPI stereoisomers accumulate in Bacteria and Archaea, and the basis for this domain-dependent specificity was investigated herein. The archaeon Archaeoglobus fulgidus and the bacterium Aquifex aeolicus were used as model organisms. The synthesis of GPI involves glycerol phosphate cytidylyltransferase (GCT), which catalyzes the production of CDP-glycerol from CTP and glycerol phosphate, and di-myo-inositol phosphate-phosphate synthase (DIPPS), catalyzing the formation of phosphorylated GPI from CDP-glycerol and l-myo-inositol 1-phosphate. DIPPS of A. fulgidus recognized the two CDP-glycerol stereoisomers similarly. This feature and the ability of 31P nuclear magnetic resonance (NMR) to distinguish the GPI diastereomers provided a means to study the stereospecificity of GCTs. The AF1418 gene and genes aq_185 and aq_1368 are annotated as putative GCT genes in the genomes of A. fulgidus and Aq. aeolicus, respectively. The functions of these genes were determined by assaying the activity of the respective recombinant proteins: AQ1368 and AQ185 are GCTs, while AF1418 has flavin adenine dinucleotide (FAD) synthetase activity. AQ185 is absolutely specific for sn-glycerol 3-phosphate, while AQ1368 recognizes the two enantiomers but has a 2:1 preference for sn-glycerol 3-phosphate. In contrast, the partially purified A. fulgidus GCT uses sn-glycerol 1-phosphate preferentially (4:1). Significantly, the predominant GPI stereoforms found in the bacterium and the archaeon reflect the distinct stereospecificities of the respective GCTs: i.e., A. fulgidus accumulates predominantly sn-glycero-1-phospho-3-l-myo-inositol, while Aq. aeolicus accumulates sn-glycero-3-phospho-3-l-myo-inositol. IMPORTANCE Compatible solutes of hyperthermophiles show high efficacy in thermal protection of proteins in comparison with solutes typical of mesophiles; therefore, they are potentially useful in several biotechnological applications. Glycerophosphoinositol (GPI) is synthesized from CDP-glycerol and l-myo-inositol 1-phosphate in a few hyperthermophiles. In this study, the molecular configuration of the GPI stereoisomers accumulated by members of the Bacteria and Archaea was established. The stereospecificity of glycerol phosphate cytidylyltransferase (GCT), the enzyme catalyzing the synthesis of CDP-glycerol, is crucial to the stereochemistry of GPI. However, the stereospecific properties of GCTs have not been investigated thus far. We devised a method to characterize GCT stereospecificity which does not require sn-glycerol 1-phosphate, a commercially unavailable substrate. This led us to understand the biochemical basis for the distinct GPI stereoisomer composition observed in archaea and bacteria.
Collapse
Affiliation(s)
- Marta V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nuno Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
9
|
Myers CL, Ireland RG, Garrett TA, Brown ED. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs. J Biol Chem 2015; 290:19133-45. [PMID: 26085106 DOI: 10.1074/jbc.m115.662866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities.
Collapse
Affiliation(s)
- Cullen L Myers
- From the Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada and
| | - Ronald G Ireland
- From the Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada and
| | - Teresa A Garrett
- the Department of Chemistry, Vassar College, Poughkeepsie, New York 12604
| | - Eric D Brown
- From the Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada and
| |
Collapse
|
10
|
Weidenmaier C, Lee JC. Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Curr Top Microbiol Immunol 2015; 409:57-93. [PMID: 26728067 DOI: 10.1007/82_2015_5018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major surface polysaccharides of Staphylococcus aureus include the capsular polysaccharide (CP), cell wall teichoic acid (WTA), and polysaccharide intercellular adhesin/poly-β(1-6)-N-acetylglucosamine (PIA/PNAG). These glycopolymers are important components of the staphylococcal cell envelope, but none of them is essential to S. aureus viability and growth in vitro. The overall biosynthetic pathways of CP, WTA, and PIA/PNAG have been elucidated, and the functions of most of the biosynthetic enzymes have been demonstrated. Because S. aureus CP and WTA (but not PIA/PNAG) utilize a common cell membrane lipid carrier (undecaprenyl-phosphate) that is shared by the peptidoglycan biosynthesis pathway, there is evidence that these processes are highly integrated and temporally regulated. Regulatory elements that control glycopolymer biosynthesis have been described, but the cross talk that orchestrates the biosynthetic pathways of these three polysaccharides remains largely elusive. CP, WTA, and PIA/PNAG each play distinct roles in S. aureus colonization and the pathogenesis of staphylococcal infection. However, they each promote bacterial evasion of the host immune defences, and WTA is being explored as a target for antimicrobial therapeutics. All the three glycopolymers are viable targets for immunotherapy, and each (conjugated to a carrier protein) is under evaluation for inclusion in a multivalent S. aureus vaccine. Future research findings that increase our understanding of these surface polysaccharides, how the bacterial cell regulates their expression, and their biological functions will likely reveal new approaches to controlling this important bacterial pathogen.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen and German Center for Infection Research, Tübingen, Germany
| | - Jean C Lee
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Gale RT, Sewell EW, Garrett TA, Brown ED. Reconstituting poly(glycerol phosphate) wall teichoic acid biosynthesis in vitro using authentic substrates. Chem Sci 2014. [DOI: 10.1039/c4sc00802b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Mericl AN, Friesen JA. Comparative kinetic analysis of glycerol 3-phosphate cytidylyltransferase from Enterococcus faecalis and Listeria monocytogenes. Med Sci Monit 2013; 18:BR427-34. [PMID: 23111733 PMCID: PMC3560613 DOI: 10.12659/msm.883535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Glycerol 3-phosphate cytidylyltransferase (GCT) is an enzyme central to the synthesis of teichoic acids, components of the cell wall in gram positive bacteria. Catalysis by GCT from Enterococcus faecalis and Listeria monocytogenes has been investigated and catalytic properties compared. MATERIAL/METHODS The genes encoding GCT were cloned from genomic DNA and recombinant proteins expressed in E. coli and purified. Enzyme assays were used to determine kinetic constants kcat and Km. Chemical crosslinking provided a means to assess quaternary structure of each GCT. RESULTS Recombinant Enterococcus faecalis GCT had an apparent kcat value of 1.51 s⁻¹ and apparent Km values of 2.42 mM and 4.03 mM with respect to substrates cytidine 5'-triphosphate (CTP) and glycerol phosphate. Listeria monocytogenes GCT had an apparent kcat value of 4.15 s⁻¹ and apparent Km values of 1.52 mM and 6.56 mM with respect to CTP and glycerol phosphate. This resulted in kcat/Km values of 0.62 s⁻¹mM⁻¹ and 0.37 s⁻¹mM⁻¹ for E. faecalis GCT and 2.73 s⁻¹mM⁻¹ and 0.63 s⁻¹mM⁻¹ for L. monocytogenes GCT with respect to CTP and glycerol phosphate, respectively. CONCLUSIONS The genome of both Enterococcus faecalis and Listeria monocytogenes contain a gene that encodes a functional GCT. The genes are 67% identical at the nucleotide level and the encoded proteins exhibit a 63% amino acid identity. The purified, recombinant enzymes each appear to be dimeric and display similar kinetic characteristics. Studying the catalytic characteristics of GCT isoforms from pathogenic bacteria provides information important for the future development of potential antibacterial agents.
Collapse
Affiliation(s)
- Ashley N Mericl
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | | |
Collapse
|
13
|
Abstract
The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers known as wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections.
Collapse
Affiliation(s)
- Stephanie Brown
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
14
|
YAGO JM, SOLO CGARRIDODEL, GARCIA-MORENO M, VARON R, GARCIA-SEVILLA F, ARRIBAS E. A COMPARISON BETWEEN THE INITIAL RATE EXPRESSIONS OBTAINED UNDER STRICT CONDITIONS AND THE RAPID EQUILIBRIUM ASSUMPTION USING, AS EXAMPLE, A FOUR SUBSTRATE ENZYME REACTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633611006712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The software WinStes, developed by our group, is used to derive the strict steady-state initial rate equation of the reaction mechanism of CTP:sn-glycerol-3-phosphate cytidylyltransferase [EC 2.7.7.39] from Bacillus subtilis. This enzyme catalyzes a reaction with two substrates and operates by a random ordered binding mechanism with two molecules of each substrate. The accuracy of the steady-state rate equation derived is checked by comparing the rate values it provides with those obtained from the simulated progress curves. To analyze the kinetics of this enzyme using the strict steady-state initial rate equation, several curves for different substrate concentrations and different rate constants are generated. A comparison of these curves with the curves obtained from the rapid equilibrium initial rate equation, with different substrate concentration values, serves to analyze how the strict steady-state rate equation values are closer to those of rapid equilibrium rate equations when rapid equilibrium conditions are fulfilled.
Collapse
Affiliation(s)
- J. M. YAGO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - C. GARRIDO-DEL SOLO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - M. GARCIA-MORENO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - R. VARON
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - F. GARCIA-SEVILLA
- Departamento de Ingenieria Electronica, Electrica Automatica y Comunicaciones, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - E. ARRIBAS
- Departamento de Física Aplicada, Escuela Superior de Ingeniería, Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
15
|
Allison SE, D'Elia MA, Arar S, Monteiro MA, Brown ED. Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. J Biol Chem 2011; 286:23708-16. [PMID: 21558268 DOI: 10.1074/jbc.m111.241265] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthetic enzymes involved in wall teichoic acid biogenesis in gram-positive bacteria have been the subject of renewed investigation in recent years with the benefit of modern tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model gram-positive bacterium, Bacillus subtilis 168, using phage-resistant mutants implicated tagE (also called gtaA and rodD) as the gene coding for the wall teichoic acid glycosyltransferase. This study and others have provided only indirect evidence to support a role for TagE in wall teichoic acid glycosylation. In this work, we showed that deletion of tagE resulted in the loss of α-glucose at the C-2 position of glycerol in the poly(glycerol phosphate) polymer backbone. We also reported the first kinetic characterization of pure, recombinant wall teichoic acid glycosyltransferase using clean synthetic substrates. We investigated the substrate specificity of TagE using a wide variety of acceptor substrates and found that the enzyme had a strong kinetic preference for the transfer of glucose from UDP-glucose to glycerol phosphate in polymeric form. Further, we showed that the enzyme recognized its polymeric (and repetitive) substrate with a sequential kinetic mechanism. This work provides direct evidence that TagE is the wall teichoic acid glycosyltransferase in B. subtilis 168 and provides a strong basis for further studies of the mechanism of wall teichoic acid glycosylation, a largely uncharted aspect of wall teichoic acid biogenesis.
Collapse
Affiliation(s)
- Sarah E Allison
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
16
|
Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. ACTA ACUST UNITED AC 2011; 17:1101-10. [PMID: 21035733 DOI: 10.1016/j.chembiol.2010.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/17/2010] [Accepted: 07/16/2010] [Indexed: 12/22/2022]
Abstract
Wall teichoic acids (WTAs) are anionic polymers that play key roles in bacterial cell shape, cell division, envelope integrity, biofilm formation, and pathogenesis. B. subtilis W23 and S. aureus both make polyribitol-phosphate (RboP) WTAs and contain similar sets of biosynthetic genes. We use in vitro reconstitution combined with genetics to show that the pathways for WTA biosynthesis in B. subtilis W23 and S. aureus are different. S. aureus requires a glycerol-phosphate primase called TarF in order to make RboP-WTAs; B. subtilis W23 contains a TarF homolog, but this enzyme makes glycerol-phosphate polymers and is not involved in RboP-WTA synthesis. Instead, B. subtilis TarK functions in place of TarF to prime the WTA intermediate for chain extension by TarL. This work highlights the enzymatic diversity of the poorly characterized family of phosphotransferases involved in WTA biosynthesis in Gram-positive organisms.
Collapse
|
17
|
Lovering AL, Lin LYC, Sewell EW, Spreter T, Brown ED, Strynadka NCJ. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Nat Struct Mol Biol 2010; 17:582-9. [PMID: 20400947 DOI: 10.1038/nsmb.1819] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/02/2010] [Indexed: 12/23/2022]
Abstract
Teichoic acid polymers are composed of polyol-phosphate units and form a major component of Gram-positive bacterial cell walls. These anionic compounds perform a multitude of important roles in bacteria and are synthesized by monotopic membrane proteins of the TagF polymerase family. We have determined the structure of Staphylococcus epidermidis TagF to 2.7-A resolution from a construct that includes both the membrane-targeting region and the glycerol-phosphate polymerase domains. TagF possesses a helical region for interaction with the lipid bilayer, placing the active site at a suitable distance for access to the membrane-bound substrate. Characterization of active-site residue variants and analysis of a CDP-glycerol substrate complex suggest a mechanism for polymer synthesis. With the importance of teichoic acid in Gram-positive physiology, this elucidation of the molecular details of TagF function provides a critical new target in the development of novel anti-infectives.
Collapse
|
18
|
Xia G, Kohler T, Peschel A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 2009; 300:148-54. [PMID: 19896895 DOI: 10.1016/j.ijmm.2009.10.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococci and most other Gram-positive bacteria incorporate complex teichoic acid (TA) polymers into their cell envelopes. Several crucial roles in Staphylococcus aureus fitness and cell wall maintenance have been assigned to these polymers, which are either covalently linked to peptidoglycan (wall teichoic acid, WTA) or to the cytoplasmic membrane (lipoteichoic acid, LTA). However, the exact TA structures, functions, and biosynthetic pathways are only superficially understood. Recently, most of the enzymes mediating TA biosynthesis have been identified and mutants lacking or with defined changes in WTA or LTA have become available. Their characterization has revealed crucial roles of TAs in protection against harmful molecules and environmental stresses; in control of enzymes directing cell division or morphogenesis and of cation homeostasis; and in interaction with host or bacteriophage receptors and biomaterials. Accordingly, several in vivo studies have demonstrated the importance of WTA and LTA in S. aureus colonization, infection, and immune evasion. TAs and enzymes required for TA biosynthesis represent attractive candidates for novel vaccines and antibiotics and are targeted by recently developed antibacterial therapeutics.
Collapse
Affiliation(s)
- Guoqing Xia
- Division of Cellular and Molecular Microbiology, Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
19
|
Sewell EWC, Pereira MP, Brown ED. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. J Biol Chem 2009; 284:21132-8. [PMID: 19520862 DOI: 10.1074/jbc.m109.010215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wall teichoic acids are a chemically diverse group of anionic polymers that constitute up to 50% of the Gram-positive cell wall. These polymers play a pivotal role in virulence and have been implicated in a diverse range of physiological functions. The TagF-like family of enzymes has been shown to be responsible for wall teichoic acid priming and polymerization events. Although many such enzymes are well validated therapeutic targets, a mechanistic understanding of this enzyme family has remained elusive. TagF is the prototypical teichoic acid polymerase and uses CDP-glycerol to catalyze synthesis of the linear (1,3)-linked poly(glycerol phosphate) teichoic acid in Bacillus subtilis 168. Here we used a synthetic soluble analog of the natural substrate of the enzyme, Lipid , to conduct the first detailed mechanistic investigation of teichoic acid polymerization. Through the use of a new high pressure liquid chromatography-based assay to monitor single glycerol phosphate incorporations into the Lipid analog, we conducted a detailed analysis of reaction product formation patterns and unequivocally showed TagF to be non-processive in vitro. Furthermore by monitoring the kinetics of polymerization, we showed that Lipid analog species varying in size have the same K(m) value of 2.6 microm and validated use of Bi Bi velocity expressions to model the TagF enzyme system. Initial rate analysis showed that TagF catalyzes a sequential Bi Bi mechanism where both substrates are added to the enzyme prior to product release consistent with a single displacement chemical mechanism.
Collapse
Affiliation(s)
- Edward W C Sewell
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
20
|
Sershon VC, Santarsiero BD, Mesecar AD. Kinetic and X-ray structural evidence for negative cooperativity in substrate binding to nicotinate mononucleotide adenylyltransferase (NMAT) from Bacillus anthracis. J Mol Biol 2008; 385:867-88. [PMID: 18977360 DOI: 10.1016/j.jmb.2008.10.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/06/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022]
Abstract
Biosynthesis of NAD(P) in bacteria occurs either de novo or through one of the salvage pathways that converge at the point where the reaction of nicotinate mononucleotide (NaMN) with ATP is coupled to the formation of nicotinate adenine dinucleotide (NaAD) and inorganic pyrophosphate. This reaction is catalyzed by nicotinate mononucleotide adenylyltransferase (NMAT), which is essential for bacterial growth, making it an attractive drug target for the development of new antibiotics. Steady-state kinetic and direct binding studies on NMAT from Bacillus anthracis suggest a random sequential Bi-Bi kinetic mechanism. Interestingly, the interactions of NaMN and ATP with NMAT were observed to exhibit negative cooperativity, i.e. Hill coefficients <1.0. Negative cooperativity in binding is supported by the results of X-ray crystallographic studies. X-ray structures of the B. anthracis NMAT apoenzyme, and the NaMN- and NaAD-bound complexes were determined to resolutions of 2.50 A, 2.60 A and 1.75 A, respectively. The X-ray structure of the NMAT-NaMN complex revealed only one NaMN molecule bound in the biological dimer, supporting negative cooperativity in substrate binding. The kinetic, direct-binding, and X-ray structural studies support a model in which the binding affinity of substrates to the first monomer of NMAT is stronger than that to the second, and analysis of the three X-ray structures reveals significant conformational changes of NMAT along the enzymatic reaction coordinate. The negative cooperativity observed in B. anthracis NMAT substrate binding is a unique property that has not been observed in other prokaryotic NMAT enzymes. We propose that regulation of the NAD(P) biosynthetic pathway may occur, in part, at the reaction catalyzed by NMAT.
Collapse
Affiliation(s)
- Valerie C Sershon
- Department of Medicinal Chemistry and Pharmacognosy & the Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
21
|
Use of CDP-glycerol as an alternate acceptor for the teichoic acid polymerase reveals that membrane association regulates polymer length. J Bacteriol 2008; 190:6940-7. [PMID: 18723614 DOI: 10.1128/jb.00851-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of bacterial extracellular polysaccharide biosynthesis is hampered by the fact that these molecules are synthesized on membrane-resident carrier lipids. To get around this problem, a practical solution has been to synthesize soluble lipid analogs and study the biosynthetic enzymes using a soluble system. This has been done for the Bacillus subtilis teichoic acid polymerase, TagF, although several aspects of catalysis were inconsistent with the results obtained with reconstituted membrane systems or physiological observations. In this work we explored the acceptor substrate promiscuity and polymer length disregulation that appear to be characteristic of TagF activity away from biological membranes. Using isotope labeling, steady-state kinetics, and chemical lability studies, we demonstrated that the enzyme can synthesize poly(glycerol phosphate) teichoic acid using the elongation substrate CDP-glycerol as an acceptor. This suggests that substrate specificity is relaxed in the region distal to the glycerol phosphate moiety in the acceptor molecule under these conditions. Polymer synthesis proceeded at a rate (27 min(-1)) comparable to that in the reconstituted membrane system after a distinct lag period which likely represented slower initiation on the unnatural CDP-glycerol acceptor. We confirmed that polymer length became disregulated in the soluble system as the polymers synthesized on CDP-glycerol acceptors were much larger than the polymers synthesized on the membrane or previously found attached to bacterial cell walls. Finally, polymer synthesis on protease-treated membranes suggested that proper length regulation is retained in the absence of accessory proteins and provided evidence that such regulation is conferred through proper association of the polymerase with the membrane.
Collapse
|
22
|
Brown S, Zhang YH, Walker S. A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. ACTA ACUST UNITED AC 2008; 15:12-21. [PMID: 18215769 DOI: 10.1016/j.chembiol.2007.11.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 11/15/2022]
Abstract
Resistance to every family of clinically used antibiotics has emerged, and there is a pressing need to explore unique antibacterial targets. Wall teichoic acids (WTAs) are anionic polymers that coat the cell walls of many Gram-positive bacteria. Because WTAs play an essential role in Staphylococcus aureus colonization and infection, the enzymes involved in WTA biosynthesis are proposed to be targets for antibiotic development. To facilitate the discovery of WTA inhibitors, we have reconstituted the intracellular steps of S. aureus WTA biosynthesis. We show that two intracellular steps in the biosynthetic pathway are different from what was proposed. The work reported here lays the foundation for the discovery and characterization of inhibitors of WTA biosynthetic enzymes to assess their potential for treating bacterial infections.
Collapse
Affiliation(s)
- Stephanie Brown
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
23
|
Allali-Hassani A, Pereira MP, Navani NK, Brown ED, Li Y. Isolation of DNA aptamers for CDP-ribitol synthase, and characterization of their inhibitory and structural properties. Chembiochem 2008; 8:2052-7. [PMID: 17929340 DOI: 10.1002/cbic.200700257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdellah Allali-Hassani
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
24
|
Bharat A, Jiang M, Sullivan SM, Maddock JR, Brown ED. Cooperative and critical roles for both G domains in the GTPase activity and cellular function of ribosome-associated Escherichia coli EngA. J Bacteriol 2006; 188:7992-6. [PMID: 16963571 PMCID: PMC1636305 DOI: 10.1128/jb.00959-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To probe the cellular phenotype and biochemical function associated with the G domains of Escherichia coli EngA (YfgK, Der), mutations were created in the phosphate binding loop of each. Neither an S16A nor an S217A variant of G domain 1 or 2, respectively, was able to support growth of an engA conditional null. Polysome profiles of EngA-depleted cells were significantly altered, and His(6)-EngA was found to cofractionate with the 50S ribosomal subunit. The variants were unable to complement the abnormal polysome profile and were furthermore significantly impacted with respect to in vitro GTPase activity. Together, these observations suggest that the G domains have a cooperative function in ribosome stability and/or biogenesis.
Collapse
Affiliation(s)
- Amrita Bharat
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
25
|
Qian Z, Yin Y, Zhang Y, Lu L, Li Y, Jiang Y. Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication. BMC Genomics 2006; 7:74. [PMID: 16595020 PMCID: PMC1458327 DOI: 10.1186/1471-2164-7-74] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 04/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus or MRSA (Methicillin Resistant S. aureus), is an acquired pathogen and the primary cause of nosocomial infections worldwide. In S. aureus, teichoic acid is an essential component of the cell wall, and its biosynthesis is not yet well characterized. Studies in Bacillus subtilis have discovered two different pathways of teichoic acid biosynthesis, in two strains W23 and 168 respectively, namely teichoic acid ribitol (tar) and teichoic acid glycerol (tag). The genes involved in these two pathways are also characterized, tarA, tarB, tarD, tarI, tarJ, tarK, tarL for the tar pathway, and tagA, tagB, tagD, tagE, tagF for the tag pathway. With the genome sequences of several MRSA strains: Mu50, MW2, N315, MRSA252, COL as well as methicillin susceptible strain MSSA476 available, a comparative genomic analysis was performed to characterize teichoic acid biosynthesis in these S. aureus strains. RESULTS We identified all S. aureus tar and tag gene orthologs in the selected S. aureus strains which would contribute to teichoic acids sythesis. Based on our identification of genes orthologous to tarI, tarJ, tarL, which are specific to tar pathway in B. subtilis W23, we also concluded that tar is the major teichoic acid biogenesis pathway in S. aureus. Further analyses indicated that the S. aureus tar genes, different from the divergon organization in B. subtilis, are organized into several clusters in cis. Most interesting, compared with genes in B. subtilis tar pathway, the S. aureus tar specific genes (tarI,J,L) are duplicated in all six S. aureus genomes. CONCLUSION In the S. aureus strains we analyzed, tar (teichoic acid ribitol) is the main teichoic acid biogenesis pathway. The tar genes are organized into several genomic groups in cis and the genes specific to tar (relative to tag): tarI, tarJ, tarL are duplicated. The genomic organization of the S. aureus tar pathway suggests their regulations are different when compared to B. subtilis tar or tag pathway, which are grouped in two operons in a divergon structure.
Collapse
Affiliation(s)
- Ziliang Qian
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yanbin Yin
- College of Life Sciences, National Laboratory of Genetic Engineering and Protein Engineering, Center of Bioinformatics, Peking University, Beijing 100871, China
| | - Yong Zhang
- College of Life Sciences, National Laboratory of Genetic Engineering and Protein Engineering, Center of Bioinformatics, Peking University, Beijing 100871, China
| | - Lingyi Lu
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yixue Li
- Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Jiang
- Molecular and Investigative Toxicology, Merck Research Laboratories, WP45-330, West Point, PA 19486, USA
| |
Collapse
|
26
|
Fong DH, Yim VCN, D'Elia MA, Brown ED, Berghuis AM. Crystal structure of CTP:glycerol-3-phosphate cytidylyltransferase from Staphylococcus aureus: examination of structural basis for kinetic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:63-9. [PMID: 16344011 DOI: 10.1016/j.bbapap.2005.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 10/04/2005] [Accepted: 10/07/2005] [Indexed: 12/16/2022]
Abstract
Integrity of the cell wall is essential for bacterial survival, and as a consequence components involved in its biosynthesis can potentially be exploited as targets for antibiotics. One such potential target is CTP:glycerol-3-phosphate cytidylyltransferase. This enzyme (TarD(Sa) in Staphylococcus aureus and TagD(Bs) in Bacillus subtilis) catalyzes the formation of CDP-glycerol, which is used for the assembly of linkages between peptidoglycan and teichoic acid polymer in Gram-positive bacteria. Intriguingly, despite the high sequence identity between TarD(Sa) and TagD(Bs) (69% identity), kinetic studies show that these two enzymes differ markedly in their kinetic mechanism and activity. To examine the basis for the disparate enzymological properties, we have determined the crystal structure of TarD(Sa) in the apo state to 3 A resolution, and performed equilibrium sedimentation analysis. Comparison of the structure with that of CTP- and CDP-glycerol-bound TagD(Bs) crystal structures reveals that the overall structure of TarD(Sa) is essentially the same as that of TagD(Bs), except in the C-terminus, where it forms a helix in TagD(Bs) but is disordered in the apo TarD(Sa) structure. In addition, TarD(Sa) can exist both as a tetramer and as a dimer, unlike TagD(Bs), which is a dimer. These observations shed light on the structural basis for the differing kinetic characteristics between TarD(Sa) and TagD(Bs).
Collapse
Affiliation(s)
- Desiree H Fong
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
27
|
Bhavsar AP, Truant R, Brown ED. The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro. J Biol Chem 2005; 280:36691-700. [PMID: 16150696 DOI: 10.1074/jbc.m507154200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes involved in the synthesis of poly(glycerol phosphate) wall teichoic acid have been identified in the tag locus of the model Gram-positive organism Bacillus subtilis 168. The functions of most of these gene products are predictable from sequence similarity to characterized proteins and have provided limited insight into the intracellular synthesis and translocation of wall teichoic acid. Nevertheless, critical steps of poly(glycerol phosphate) teichoic acid polymerization continue to be a puzzle. TagB and TagF, encoded in the tag locus, do not show sequence similarity to characterized proteins. We recently showed that recombinant TagF could catalyze glycerol phosphate polymerization in vitro. Based largely on homology to TagF, the TagB protein has been proposed to catalyze either an intracellular glycerophosphotransfer reaction or the extracellular teichoic acid/peptidoglycan ligation reaction. Here we have taken steps to characterize TagB, particularly through in vivo localization studies and in vitro biochemical assay, in order to make a case for either role in teichoic acid biogenesis. We have shown that TagB associates peripherally with the intracellular face of the cell membrane in vivo. We have also produced recombinant TagB and used it to demonstrate the enzymatic incorporation of labeled glycerol phosphate onto a membrane-bound acceptor. The data collected from this and the accompanying study are strongly supportive of a role for TagB in B. subtilis 168 teichoic acid biogenesis as the CDP-glycerol:N-acetyl-beta-d-mannosaminyl-1,4-N-acetyl-d-glucosaminyldiphosphoundecaprenyl glycerophosphotransferase. Here we use the trivial name "Tag primase."
Collapse
Affiliation(s)
- Amit P Bhavsar
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
28
|
Schertzer JW, Bhavsar AP, Brown ED. Two conserved histidine residues are critical to the function of the TagF-like family of enzymes. J Biol Chem 2005; 280:36683-90. [PMID: 16141206 DOI: 10.1074/jbc.m507153200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TagF protein from Bacillus subtilis 168 is the poly(glycerol phosphate) polymerase responsible for the synthesis of wall teichoic acid and is the prototype member of a poorly understood family of similar teichoic acid synthetic enzymes. Here we describe in vitro and in vivo characterization of TagF, which localizes the active site to the carboxyl terminus of the protein and identifies residues that are critical for catalysis. We also establish the first mechanistic link among TagF and similar proteins by demonstrating that the identified residues are also critical in the function of TagB, a homologous enzyme implicated as the glycerophosphotransferase responsible for priming poly(glycerol phosphate) synthesis. We investigated the dependence of TagF activity on pH and showed that deprotonation of a residue with a pK(a) near neutral is critical for proper function. Alteration of histidine residues 474 and 612 by site-directed mutagenesis abolished TagF activity in vitro (5000-fold reduction in k(cat)/K(m)) while variants in four other conserved acidic residues showed minimal loss of activity. Complementation using H474A and H612A mutant alleles failed to suppress a lethal temperature-sensitive tagF defect in vivo despite confirmation of robust expression by Western blot. When corresponding mutations were made to the homologous tagB gene, these alleles were unable to suppress a tagB temperature-sensitive lethal phenotype. These results extend the mechanistic observations for TagF across a wider family of enzymes and provide the first biochemical evidence for the relatedness of these two enzymes.
Collapse
Affiliation(s)
- Jeffrey W Schertzer
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
29
|
Brown ED, Wright GD. New Targets and Screening Approaches in Antimicrobial Drug Discovery. Chem Rev 2005; 105:759-74. [PMID: 15700964 DOI: 10.1021/cr030116o] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
30
|
Schertzer JW, Brown ED. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. J Biol Chem 2003; 278:18002-7. [PMID: 12637499 DOI: 10.1074/jbc.m300706200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the first characterization of a recombinant protein involved in the polymerization of wall teichoic acid. Previously, a study of the teichoic acid polymerase activity associated with membranes from Bacillus subtilis 168 strains bearing thermosensitive mutations in tagB, tagD, and tagF implicated TagF as the poly(glycerol phosphate) polymerase (Pooley, H. M., Abellan, F. X., and Karamata, D. (1992) J. Bacteriol. 174, 646-649). In the work reported here, we have demonstrated an unequivocal role for tagF in the thermosensitivity of one such mutant (tagF1) by conditional complementation at the restrictive temperature with tagF under control of the xylose promoter at the amyE locus. We have overexpressed and purified recombinant B. subtilis TagF protein, and we provide direct biochemical evidence that this enzyme is responsible for polymerization of poly(glycerol phosphate) teichoic acid in B. subtilis 168. Recombinant hexahistidine-tagged TagF protein was purified from Escherichia coli and was used to develop a novel membrane pelleting assay to monitor poly(glycerol phosphate) polymerase activity. Purified TagF was shown to incorporate radioactivity from its substrate CDP-[(14)C]glycerol into a membrane fraction in vitro. This activity showed a saturable dependence on the concentration of CDP-glycerol (K(m) of 340 microm) and the membrane acceptor (half-maximal activity at 650 microg of protein/ml of purified B. subtilis membranes). High pressure liquid chromatography analysis confirmed the polymeric nature of the reaction product, approximately 35 glycerol phosphate units in length.
Collapse
Affiliation(s)
- Jeffrey W Schertzer
- Antimicrobial Research Centre, the Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|