1
|
Bansal S, Liu D, Mao Q, Bauer N, Wang B. Carbon Monoxide as a Potential Therapeutic Agent: A Molecular Analysis of Its Safety Profiles. J Med Chem 2024; 67:9789-9815. [PMID: 38864348 PMCID: PMC11215727 DOI: 10.1021/acs.jmedchem.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Carbon monoxide (CO) is endogenously produced in mammals, with blood concentrations in the high micromolar range in the hemoglobin-bound form. Further, CO has shown therapeutic effects in various animal models. Despite its reputation as a poisonous gas at high concentrations, we show that CO should have a wide enough safety margin for therapeutic applications. The analysis considers a large number of factors including levels of endogenous CO, its safety margin in comparison to commonly encountered biomolecules or drugs, anticipated enhanced safety profiles when delivered via a noninhalation mode, and the large amount of safety data from human clinical trials. It should be emphasized that having a wide enough safety margin for therapeutic use does not mean that it is benign or safe to the general public, even at low doses. We defer the latter to public health experts. Importantly, this Perspective is written for drug discovery professionals and not the general public.
Collapse
Affiliation(s)
| | | | | | - Nicola Bauer
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Okamoto W, Hiwatashi Y, Kobayashi T, Morita Y, Onozawa H, Iwazaki M, Kohno M, Tomiyasu H, Tochinai R, Georgieva R, Bäumler H, Komatsu T. Poly(2-ethyl-2-oxazoline)-Conjugated Hemoglobins as a Red Blood Cell Substitute. ACS APPLIED BIO MATERIALS 2023; 6:3330-3340. [PMID: 37504970 DOI: 10.1021/acsabm.3c00392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Hemoglobin wrapped covalently with poly(2-ethyl-2-oxazoline)s (POx-Hb) is characterized physicochemically and physiologically as an artificial O2 carrier for use as a red blood cell (RBC) substitute. The POx-Hb is generated by linkage of porcine Hb surface-lysines to a sulfhydryl terminus of the POx derivative, with the average binding number of the polymers ascertained as 6. The POx-Hb shows moderately higher colloid osmotic activity and O2 affinity than the naked Hb. Human adult HbA conjugated with POx also possesses equivalent features and O2 binding properties. The POx-Hb solution exhibits good hemocompatibility, with no influence on the functions of platelets, granulocytes, and monocytes. Its circulation half-life in rats is 14 times longer than that of naked Hb. Hemorrhagic shock in rats is relieved sufficiently by infusion of the POx-Hb solution, as revealed by improvements of circulatory parameters. Serum biochemistry tests and histopathological observations indicate no acute toxicity or abnormality in the related organs. All results indicate that POx-Hb represents an attractive alternative for RBCs and a useful O2 therapeutic reagent in transfusion medicine.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuuki Hiwatashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tatsuhiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Onozawa
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Masayuki Iwazaki
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
3
|
Numoto N, Onoda S, Kawano Y, Okumura H, Baba S, Fukumori Y, Miki K, Ito N. Structures of oxygen dissociation intermediates of 400 kDa V2 hemoglobin provide coarse snapshots of the protein allostery. Biophys Physicobiol 2022; 19:1-10. [PMID: 35797404 PMCID: PMC9173864 DOI: 10.2142/biophysico.bppb-v19.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
Ever since the historic discovery of the cooperative oxygenation of its multiple subunits, hemoglobin (Hb) has been among the most exhaustively studied allosteric proteins. However, the lack of structural information on the intermediates between oxygenated and deoxygenated forms prevents our detailed understanding of the molecular mechanism of its allostery. It has been difficult to prepare crystals of intact oxy-deoxy intermediates and to individually identify the oxygen saturation for each subunit. However, our recent crystallographic studies have demonstrated that giant Hbs from annelids are suitable for overcoming these problems and can provide abundant information on oxy-deoxy intermediate structures. Here, we report the crystal structures of oxy-deoxy intermediates of a 400 kDa Hb (V2Hb) from the annelid Lamellibrachia satsuma, following up on a series of previous studies of similar giant Hbs. Four intermediate structures had average oxygen saturations of 78%, 69%, 55%, and 26%, as determined by the occupancy refinement of the bound oxygen based on ambient temperature factors. The structures demonstrate that the cooperative oxygen dissociation is weaker, large ternary and quaternary changes are induced at a later stage of the oxygen dissociation process, and the ternary and quaternary changes are smaller with local perturbations. Nonetheless, the overall structural transition seemed to proceed in the manner of the MWC two-state model. Our crystallographic snapshots of the allosteric transition of V2Hb provide important experimental evidence for a more detailed understanding of the allostery of Hbs by extension of the Monod–Wyman–Changeux (MWC) model.
Collapse
Affiliation(s)
- Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University (TMDU)
| | - Seiko Onoda
- Graduate School of Natural Science and Technology, Kanazawa University
| | | | - Hideo Okumura
- Structural Biology Division, Japan Synchrotron Radiation Research Institute
| | - Seiki Baba
- Structural Biology Division, Japan Synchrotron Radiation Research Institute
| | | | - Kunio Miki
- Graduate School of Science, Kyoto University
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
4
|
Faggiano S, Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S, Mozzarelli A. From hemoglobin allostery to hemoglobin-based oxygen carriers. Mol Aspects Med 2021; 84:101050. [PMID: 34776270 DOI: 10.1016/j.mam.2021.101050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
Hemoglobin (Hb) plays its vital role through structural and functional properties evolutionarily optimized to work within red blood cells, i.e., the tetrameric assembly, well-defined oxygen affinity, positive cooperativity, and heterotropic allosteric regulation by protons, chloride and 2,3-diphosphoglycerate. Outside red blood cells, the Hb tetramer dissociates into dimers, which exhibit high oxygen affinity and neither cooperativity nor allosteric regulation. They are prone to extravasate, thus scavenging endothelial NO and causing hypertension, and cause nephrotoxicity. In addition, they are more prone to autoxidation, generating radicals. The need to overcome the adverse effects associated with cell-free Hb has always been a major hurdle in the development of substitutes of allogeneic blood transfusions for all clinical situations where blood is unavailable or cannot be used due to, for example, religious objections. This class of therapeutics, indicated as hemoglobin-based oxygen carriers (HBOCs), is formed by genetically and/or chemically modified Hbs. Many efforts were devoted to the exploitation of the wealth of biochemical and biophysical information available on Hb structure, function, and dynamics to design safe HBOCs, overcoming the negative effects of free plasma Hb. Unfortunately, so far, no HBOC has been approved by FDA and EMA, except for compassionate use. However, the unmet clinical needs that triggered intensive investigations more than fifty years ago are still awaiting an answer. Recently, HBOCs "repositioning" has led to their successful application in organ perfusion fluids.
Collapse
Affiliation(s)
- Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| |
Collapse
|
5
|
Shibayama N. Allosteric transitions in hemoglobin revisited. Biochim Biophys Acta Gen Subj 2020; 1864:129335. [DOI: 10.1016/j.bbagen.2019.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
|
6
|
Abstract
This chapter reviews how allosteric (heterotrophic) effectors and natural mutations impact hemoglobin (Hb) primary physiological function of oxygen binding and transport. First, an introduction about the structure of Hb is provided, including the ensemble of tense and relaxed Hb states and the dynamic equilibrium of Hb multistate. This is followed by a brief review of Hb variants with altered Hb structure and oxygen binding properties. Finally, a review of different endogenous and exogenous allosteric effectors of Hb is presented with particular emphasis on the atomic interactions of synthetic ligands with altered allosteric function of Hb that could potentially be harnessed for the treatment of diseases.
Collapse
Affiliation(s)
- Mostafa H Ahmed
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA. .,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA.
| |
Collapse
|
7
|
Storz JF. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J Exp Biol 2016; 219:3190-3203. [PMID: 27802149 PMCID: PMC5091379 DOI: 10.1242/jeb.127134] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
8
|
Balasubramanian M, Sathya Moorthy P, Neelagandan K, Ramadoss R, Kolatkar PR, Ponnuswamy MN. Structure of liganded T-state haemoglobin from cat (Felis silvestris catus), a low oxygen-affinity species, in two different crystal forms. ACTA ACUST UNITED AC 2014; 70:1898-906. [DOI: 10.1107/s139900471400916x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022]
Abstract
Haemoglobin (Hb) is an iron-containing metalloprotein which plays a major role in the transportation of oxygen from the lungs to tissues and of carbon dioxide back to the lungs. Hb is in equilibrium between low-affinity tense (T) and high-affinity relaxed (R) states associated with its unliganded and liganded forms, respectively. Mammalian species can be classified into two groups on the basis of whether they express `high' or `low' oxygen-affinity Hbs. Although Hbs from the former group have been studied extensively, a more limited number of structural studies have been performed for low oxygen-affinity Hbs. Here, the crystal structure of low oxygen-affinity cat methaemoglobin (metHb) has been solved at 2.0 and 2.4 Å resolution in two different crystal forms. Even though both structures are fully liganded, they unusually adopt a T-state-like quaternary conformation but with several localized R-like tertiary-structural and quaternary-structural features. The study provides atomic-level insights into the ligand-binding properties of this Hb, including its low cooperativity, blunt response to allosteric effectors and low affinity for oxygen, as well as further contributing to the mechanism underlying Hb allostery.
Collapse
|
9
|
Okonjo KO, Olatunde AM, Fodeke AA, Babalola JO. Bohr effect of human hemoglobin A: Magnitude of negative contributions determined by the equilibrium between two tertiary structures. Biophys Chem 2014; 190-191:41-9. [DOI: 10.1016/j.bpc.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
10
|
Abstract
The pathophysiology of sickle cell disease involves the polymerization of sickle hemoglobin in its T state, which develops under low oxygen saturation. One therapeutic strategy is to develop pharmacologic agents to stabilize the R state of hemoglobin, which has higher oxygen affinity and is expected to have slower kinetics of polymerization, potentially delaying the sickling of red cells during circulation. This strategy has stimulated the investigation of aromatic aldehydes, aspirin derivatives, thiols, and isothiocyanates that can stabilize the R state of hemoglobin in vitro. One representative aromatic aldehyde agent, 5-hydoxymethyl-2-furfural, protects sickle cell mice from the effects of hypoxia.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, P.O. Box 980540, Richmond, VA 23219-1540, USA
| | - Gregory J Kato
- Division of Hematology-Oncology, Department of Medicine, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 200 Lothrop Street, BST E1240, Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
Safo MK, Ko TP, Abdulmalik O, He Z, Wang AHJ, Schreiter ER, Russell JE. Structure of fully liganded Hb ζ2β2s trapped in a tense conformation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2061-71. [PMID: 24100324 PMCID: PMC3792644 DOI: 10.1107/s0907444913019197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/10/2013] [Indexed: 11/10/2022]
Abstract
A variant Hb ζ2β2(s) that is formed from sickle hemoglobin (Hb S; α2β2(s)) by exchanging adult α-globin with embryonic ζ-globin subunits shows promise as a therapeutic agent for sickle-cell disease (SCD). Hb ζ2β2(s) inhibits the polymerization of deoxygenated Hb S in vitro and reverses characteristic features of SCD in vivo in mouse models of the disorder. When compared with either Hb S or with normal human adult Hb A (α2β2), Hb ζ2β2(s) exhibits atypical properties that include a high oxygen affinity, reduced cooperativity, a weak Bohr effect and blunted 2,3-diphosphoglycerate allostery. Here, the 1.95 Å resolution crystal structure of human Hb ζ2β2(s) that was expressed in complex transgenic knockout mice and purified from their erythrocytes is presented. When fully liganded with carbon monoxide, Hb ζ2β2(s) displays a central water cavity, a ζ1-β(s)2 (or ζ2-β(s)1) interface, intersubunit salt-bridge/hydrogen-bond interactions, C-terminal βHis146 salt-bridge interactions, and a β-cleft, that are highly unusual for a relaxed hemoglobin structure and are more typical of a tense conformation. These quaternary tense-like features contrast with the tertiary relaxed-like conformations of the ζ1β(s)1 dimer and the CD and FG corners, as well as the overall structures of the heme cavities. This crystallographic study provides insights into the altered oxygen-transport properties of Hb ζ2β2(s) and, moreover, decouples tertiary- and quaternary-structural events that are critical to Hb ligand binding and allosteric function.
Collapse
Affiliation(s)
- Martin K. Safo
- Institute for Structural Biology and Drug Discovery, and the Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhenning He
- Division of Hematology–Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Eric R. Schreiter
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA
| | - J. Eric Russell
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Hematology–Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Sun H, Hunter CA, Navarro C, Turega S. Relationship between chemical structure and supramolecular effective molarity for formation of intramolecular H-bonds. J Am Chem Soc 2013; 135:13129-41. [PMID: 23964567 DOI: 10.1021/ja406235d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective molarity (EM) is a key parameter that determines the efficiency of a range of supramolecular phenomena from the folding of macromolecules to multivalent ligand binding. Coordination complexes formed between zinc porphyrins equipped H-bond donor sites and pyridine ligands equipped with H-bond acceptor sites have allowed systematic quantification of EM values for the formation of intramolecular H-bonds in 240 different systems. The results provide insights into the relationship of EM to supramolecular architecture, H-bond strength, and solvent. Previous studies on ligands equipped with phosphonate diester and ether H-bond acceptors were inconclusive, but the experiments described here on ligands equipped with phosphine oxide, amide, and ester H-bond acceptors resolve these ambiguities. Chemical double-mutant cycles were used to dissect the thermodynamic contributions of individual H-bond interactions to the overall stabilities of the complexes and hence determine the values of EM, which fall in the range 1-1000 mM. Solvent has little effect on EM, and the values measured in toluene and 1,1,2,2-tetrachloroethane are similar. For H-bond acceptors that have similar geometries but different H-bond strengths (amide and ester), the values of EM are very similar. For H-bond acceptors that have different geometries but similar H-bond strengths (amide and phosphonate diester), there is little correlation between the values of EM. These results imply that supramolecular EMs are independent of solvent and intrinsic H-bond strength but depend on supramolecular architecture and geometric complementarity.
Collapse
Affiliation(s)
- Hongmei Sun
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | | | | |
Collapse
|
13
|
Noguchi H, Campbell KL, Ho C, Unzai S, Park SY, Tame JRH. Structures of haemoglobin from woolly mammoth in liganded and unliganded states. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1441-9. [PMID: 23090393 DOI: 10.1107/s0907444912029459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/28/2012] [Indexed: 11/11/2022]
Abstract
The haemoglobin (Hb) of the extinct woolly mammoth has been recreated using recombinant genes expressed in Escherichia coli. The globin gene sequences were previously determined using DNA recovered from frozen cadavers. Although highly similar to the Hb of existing elephants, the woolly mammoth protein shows rather different responses to chloride ions and temperature. In particular, the heat of oxygenation is found to be much lower in mammoth Hb, which appears to be an adaptation to the harsh high-latitude climates of the Pleistocene Ice Ages and has been linked to heightened sensitivity of the mammoth protein to protons, chloride ions and organic phosphates relative to that of Asian elephants. To elucidate the structural basis for the altered homotropic and heterotropic effects, the crystal structures of mammoth Hb have been determined in the deoxy, carbonmonoxy and aquo-met forms. These models, which are the first structures of Hb from an extinct species, show many features reminiscent of human Hb, but underline how the delicate control of oxygen affinity relies on much more than simple overall quaternary-structure changes.
Collapse
Affiliation(s)
- Hiroki Noguchi
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Kanaori K, Tajiri Y, Tsuneshige A, Ishigami I, Ogura T, Tajima K, Neya S, Yonetani T. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1253-61. [PMID: 21703224 DOI: 10.1016/j.bbabio.2011.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 11/30/2022]
Abstract
The cooperative O(2)-binding of hemoglobin (Hb) have been assumed to correlate to change in the quaternary structures of Hb: T(deoxy)- and R(oxy)-quaternary structures, having low and high O(2)-affinities, respectively. Heterotropic allosteric effectors have been shown to interact not only with deoxy- but also oxy-Hbs causing significant reduction in their O(2)-affinities and the modulation of cooperativity. In the presence of two potent effectors, L35 and inositol hexaphosphate (IHP) at pH 6.6, Hb exhibits extremely low O(2)-affinities (K(T)=0.0085mmHg(-1) and K(R)=0.011mmHg(-1)) and thus a very low cooperativity (K(R)/K(T)=1.3 and L(0)=2.4). (1)H-NMR spectra of human adult Hb with these two effectors were examined in order to determine the quaternary state of Hb in solution and to clarify the correlation between the O(2)-affinities and the structural change of Hb caused by the heterotropic effectors. At pH 6.9, (1)H-NMR spectrum of deoxy-Hb in the presence of L35 and IHP showed a marker of the T-quaternary structure (the T-marker) at 14ppm, originated from inter- dimeric α(1)β(2)- (or α(2)β(1)-) hydrogen-bonds, and hyperfine-shifted (hfs) signals around 15-25ppm, caused by high-spin heme-Fe(II)s. Upon addition of O(2), the hfs signals disappeared, reflecting that the heme-Fe(II)s are ligated with O(2), but the T-marker signals still remained, although slightly shifted and broadened, under the partial pressure of O(2) (P(O2)) of 760mmHg. These NMR results accompanying with visible absorption spectroscopy and visible resonance Raman spectroscopy reveal that oxy-Hb in the presence of L35 and IHP below pH 7 takes the ligated T-quaternary structure under the P(O2) of 760mmHg. The L35-concentration dependence of the T-marker in the presence of IHP indicates that there are more than one kind of L35-binding sites in the ligated T-quaternary structure. The stronger binding sites are probably intra-dimeric binding sites between α(1)G- and β(1)G-helices, and the other weaker binding site causes the R→T transition without release of O(2). The fluctuation of the tertiary structure of Hb seems to be caused by both the structural perturbation of α(1)β(1) (or α(2)β(2)) intra-dimeric interface, where the stronger L35-binding sites exist, and by the IHP-binding to the α(1)α(2)- (or β(1)β(2)-) cavity. The tertiary structural fluctuation induced by the allosteric effectors may contribute to the significant reduction of the O(2)-affinity of oxy-Hb, which little depends on the quaternary structures. Therefore, the widely held assumptions of the structure-function correlation of Hb - [the deoxy-state]=[the T-quaternary structure]=[the low O(2)-affinity state] and [the oxy-state]=[the R-quaternary structure]=[the high O(2)-affinity state] and the O(2)-affiny of Hb being regulated by the T/R-quaternary structural transition - are no longer sustainable. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
Affiliation(s)
- Kenji Kanaori
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Safo MK, Ahmed MH, Ghatge MS, Boyiri T. Hemoglobin-ligand binding: understanding Hb function and allostery on atomic level. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:797-809. [PMID: 21396487 DOI: 10.1016/j.bbapap.2011.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
The major physiological function of hemoglobin (Hb) is to bind oxygen in the lungs and deliver it to the tissues. This function is regulated and/or made efficient by endogenous heterotropic effectors. A number of synthetic molecules also bind to Hb to alter its allosteric activity. Our purpose is to review the current state of Hb structure and function that involves ensemble of tense and relaxed hemoglobin states and the dynamic equilibrium of the multistate due to the binding of endogenous heterotropic or synthetic allosteric effectors. The review also discusses the atomic interactions of synthetic ligands with the function or altered allosteric function of Hb that could be potentially harnessed for the treatment of diseases. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | | | | | | |
Collapse
|
16
|
Juška A. Minimal models of multi-site ligand-binding kinetics. J Theor Biol 2008; 255:396-403. [DOI: 10.1016/j.jtbi.2008.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/25/2008] [Accepted: 08/25/2008] [Indexed: 11/29/2022]
|
17
|
Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S. Ligand reactivity and allosteric regulation of hemoglobin-based oxygen carriers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1365-77. [DOI: 10.1016/j.bbapap.2008.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/21/2008] [Accepted: 04/24/2008] [Indexed: 01/05/2023]
|
18
|
Vitagliano L, Vergara A, Bonomi G, Merlino A, Verde C, Prisco GD, Howes BD, Smulevich G, Mazzarella L. Spectroscopic and Crystallographic Characterization of a Tetrameric Hemoglobin Oxidation Reveals Structural Features of the Functional Intermediate Relaxed/Tense State. J Am Chem Soc 2008; 130:10527-35. [DOI: 10.1021/ja803363p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Vergara
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Giovanna Bonomi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Antonello Merlino
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Cinzia Verde
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Guido di Prisco
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Barry D. Howes
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Giulietta Smulevich
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lelio Mazzarella
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Department of Chemistry, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
19
|
Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: effector-linked perturbation of tertiary conformations and HbA concerted dynamics. Biophys J 2007; 94:2737-51. [PMID: 18096633 DOI: 10.1529/biophysj.107.114942] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent functional studies reported on human adult hemoglobin (HbA) show that heterotropic effector-linked tertiary structural changes are primarily responsible for modulating the oxygen affinity of hemoglobin. We present the results of 6-ns molecular dynamics simulations performed to gain insights into the dynamical and structural details of these effector-linked tertiary changes. All-atom simulations were carried out on a series of models generated for T- and R-state HbA, and for 2,3-diphosphoglycerate-bound models. Cross-correlation analyses identify both intra- and intersubunit correlated motions that are perturbed by the presence of the effector. Principal components analysis was used to decompose the covariance matrix extracted from the simulations and reconstruct the trajectories along the principal coordinates representative of functionally important collective motions. It is found that HbA in both quaternary states exists as ensembles of tertiary conformations that introduce dynamic heterogeneity in the protein. 2,3-Diphosphoglycerate induces significant perturbations in the fluctuations of both HbA states that translate into the protein visiting different tertiary conformations within each quaternary state. The analysis reveals that the presence of the effector affects the most important components of HbA motions and that heterotropic effectors modify the overall dynamics of the quaternary equilibrium via tertiary changes occurring in regions where conserved functionally significant residues are located, namely in the loop regions between helices C and E, E and F, and F and G, and in concerted helix motions. The changes are not apparent when comparing the available x-ray crystal structures in the presence and absence of effector, but are striking when comparing the respective dynamic tertiary conformations of the R and T tetramers.
Collapse
|
20
|
Hayouka Z, Rosenbluh J, Levin A, Loya S, Lebendiker M, Veprintsev D, Kotler M, Hizi A, Loyter A, Friedler A. Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc Natl Acad Sci U S A 2007; 104:8316-21. [PMID: 17488811 PMCID: PMC1895947 DOI: 10.1073/pnas.0700781104] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Indexed: 11/18/2022] Open
Abstract
Proteins are involved in various equilibria that play a major role in their activity or regulation. The design of molecules that shift such equilibria is of great therapeutic potential. This fact was demonstrated in the cases of allosteric inhibitors, which shift the equilibrium between active and inactive (R and T) states, and chemical chaperones, which shift folding equilibrium of proteins. Here, we expand these concepts and propose the shifting of oligomerization equilibrium of proteins as a general methodology for drug design. We present a strategy for inhibiting proteins by "shiftides": ligands that specifically bind to an inactive oligomeric state of a disease-related protein and modulate its activity by shifting the oligomerization equilibrium of the protein toward it. We demonstrate the feasibility of our approach for the inhibition of the HIV-1 integrase (IN) protein by using peptides derived from its cellular-binding protein, LEDGF/p75, which specifically inhibit IN activity by a noncompetitive mechanism. The peptides inhibit the DNA-binding of IN by shifting the IN oligomerization equilibrium from the active dimer toward the inactive tetramer, which is unable to catalyze the first integration step of 3' end processing. The LEDGF/p75-derived peptides inhibit the enzymatic activity of IN in vitro and consequently block HIV-1 replication in cells because of the lack of integration. These peptides are promising anti-HIV lead compounds that modulate oligomerization of IN via a previously uncharacterized mechanism, which bears advantages over the conventional interface dimerization inhibitors.
Collapse
Affiliation(s)
| | | | - Aviad Levin
- Department of Biological Chemistry
- Department of Pathology, Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel
| | - Shoshana Loya
- Department of Cell and Developmental Biology, The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; and
| | - Mario Lebendiker
- Protein Purification Unit, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Dmitry Veprintsev
- Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Moshe Kotler
- Department of Pathology, Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; and
| | | | | |
Collapse
|
21
|
Park SY, Yokoyama T, Shibayama N, Shiro Y, Tame JRH. 1.25 Å Resolution Crystal Structures of Human Haemoglobin in the Oxy, Deoxy and Carbonmonoxy Forms. J Mol Biol 2006; 360:690-701. [PMID: 16765986 DOI: 10.1016/j.jmb.2006.05.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/29/2022]
Abstract
The most recent refinement of the crystallographic structure of oxyhaemoglobin (oxyHb) was completed in 1983, and differences between this real-space refined model and later R state models have been interpreted as evidence of crystallisation artefacts, or numerous sub-states. We have refined models of deoxy, oxy and carbonmonoxy Hb to 1.25 A resolution each, and compare them with other Hb structures. It is shown that the older structures reflect the software used in refinement, and many differences with newer structures are unlikely to be physiologically relevant. The improved accuracy of our models clarifies the disagreement between NMR and X-ray studies of oxyHb, the NMR experiments suggesting a hydrogen bond to exist between the distal histidine and oxygen ligand of both the alpha and beta-subunits. The high-resolution crystal structure also reveals a hydrogen bond in both subunit types, but with subtly different geometry which may explain the very different behaviour when this residue is mutated to glycine in alpha or beta globin. We also propose a new set of relatively fixed residues to act as a frame of reference; this set contains a similar number of atoms to the well-known "BGH" frame yet shows a much smaller rmsd value between R and T state models of HbA.
Collapse
Affiliation(s)
- Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | | | |
Collapse
|
22
|
Yokoyama T, Neya S, Tsuneshige A, Yonetani T, Park SY, Tame JRH. R-state haemoglobin with low oxygen affinity: crystal structures of deoxy human and carbonmonoxy horse haemoglobin bound to the effector molecule L35. J Mol Biol 2005; 356:790-801. [PMID: 16403522 DOI: 10.1016/j.jmb.2005.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/05/2005] [Accepted: 12/06/2005] [Indexed: 11/30/2022]
Abstract
Although detailed crystal structures of haemoglobin (Hb) provide a clear understanding of the basic allosteric mechanism of the protein, and how this in turn controls oxygen affinity, recent experiments with artificial effector molecules have shown a far greater control of oxygen binding than with natural heterotropic effectors. Contrary to the established text-book view, these non-physiological compounds are able to reduce oxygen affinity very strongly without switching the protein to the T (tense) state. In an earlier paper we showed that bezafibrate (BZF) binds to a surface pocket on the alpha subunits of R state Hb, strongly reducing the oxygen affinity of this protein conformation. Here we report the crystallisation of Hb with L35, a related compound, and show that this binds to the central cavity of both R and T state Hb. The mechanism by which L35 reduces oxygen affinity is discussed, in relation to spectroscopic studies of effector binding.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Protein Design Laboratory, Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Tsuneshige A, Kanaori K, Samuni U, Danstker D, Friedman JM, Neya S, Giangiacomo L, Yonetani T. Semihemoglobins, high oxygen affinity dimeric forms of human hemoglobin respond efficiently to allosteric effectors without forming tetramers. J Biol Chem 2004; 279:48959-67. [PMID: 15361521 DOI: 10.1074/jbc.m405909200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Significant reduction in oxygen affinity resulting from interactions between heterotropic allosteric effectors and hemoglobin in not only the unligated derivative but also the fully ligated form has been reported (Tsuneshige, A., Park, S. I., and Yonetani, T. (2002) Biophys. Chem. 98, 49-63; Yonetani, T., Park, S. I., Tsuneshige, A., Imai, K., and Kanaori, K. (2002) J. Biol. Chem. 277, 34508-34520). To further investigate this effect in more detail, alpha- and beta-semihemoglobins, namely, alpha(heme)beta(apo) and alpha(apo)beta(heme), respectively, were prepared and characterized with respect to the impact of allosteric effectors on both conformation and ligand binding properties. Semihemoglobins are dimers characterized by a high affinity for oxygen and lack of cooperativity. We found that, compared with stripped conditions, semihemoglobins responded to effectors (inositol hexaphosphate and L35) by decreasing the affinity for oxygen by 60- and 130-fold for alpha- and beta-semihemoglobins, respectively. 1H NMR and sedimentation velocity experiments carried out with their ligated and unligated forms in the absence and presence of effectors revealed that semihemoglobins always remain as single-heme-carrying dimers. Recombination kinetics of their photolyzed CO derivatives showed that effectors did indeed interact with their ligated forms. Measurements of the Fe-His stretching mode show that the semihemoglobins undergo a large ligand binding-induced conformational shift and that both ligand-free and ligand derivatives respond to the presence of effectors. Contradictions to the Monod-Wyman-Changeaux/Perutz allosteric model arise since 1) the modulation of ligand affinity is not achieved in semihemoglobins by the formation of a low affinity T conformation (quaternary effect) but by direct interaction with effectors, 2) effectors do interact significantly with ligated forms of high affinity semihemoglobins, and 3) modulation of the ligand affinity and the cooperativity are not necessarily linked but instead can be separated into two distinct phenomena that can be isolated.
Collapse
Affiliation(s)
- Antonio Tsuneshige
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine and the Johnson Research Foundation, Philadelphia, Pennsylvania 19104-6059, USA.
| | | | | | | | | | | | | | | |
Collapse
|