1
|
Zhang C, Sun X, Wu D, Wang G, Lan H, Zheng X, Li S. IP 3R1 is required for meiotic progression and embryonic development by regulating mitochondrial calcium and oxidative damage. Theriogenology 2024; 229:147-157. [PMID: 39178616 DOI: 10.1016/j.theriogenology.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Calcium ions (Ca2+) regulate cell proliferation and differentiation and participate in various physiological activities of cells. The calcium transfer protein inositol 1,4,5-triphosphate receptor (IP3R), located between the endoplasmic reticulum (ER) and mitochondria, plays an important role in regulating Ca2+ levels. However, the mechanism by which IP3R1 affects porcine meiotic progression and embryonic development remains unclear. We established a model in porcine oocytes using siRNA-mediated knockdown of IP3R1 to investigate the effects of IP3R1 on porcine oocyte meiotic progression and embryonic development. The results indicated that a decrease in IP3R1 expression significantly enhanced the interaction between the ER and mitochondria. Additionally, the interaction between the ER and the mitochondrial Ca2+ ([Ca2+]m) transport network protein IP3R1-GRP75-VDAC1 was disrupted. The results of the Duolink II in situ proximity ligation assay (PLA) revealed a weakened pairwise interaction between IP3R1-GRP75 and VDAC1 and a significantly increased interaction between GRP75 and VDAC1 after IP3R1 interference, resulting in the accumulation of large amounts of [Ca2+]m. These changes led to mitochondrial oxidative stress, increased the levels of reactive oxygen species (ROS) and reduced ATP production, which hindered the maturation and late development of porcine oocytes and induced apoptosis. Nevertheless, after treat with [Ca2+]m chelating agent ruthenium red (RR) or ROS scavenger N-acetylcysteine (NAC), the oocytes developmental abnormalities, oxidative stress and apoptosis caused by Ca2+ overload were improved. In conclusion, our results indicated IP3R1 is required for meiotic progression and embryonic development by regulating mitochondrial calcium and oxidative damage.
Collapse
Affiliation(s)
- Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Xiaoqing Sun
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China.
| |
Collapse
|
2
|
Akizawa H, Lopes EM, Fissore RA. Zn 2+ is essential for Ca 2+ oscillations in mouse eggs. eLife 2023; 12:RP88082. [PMID: 38099643 PMCID: PMC10723796 DOI: 10.7554/elife.88082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Emily M Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of MassachusettsAmherstUnited States
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
3
|
Akizawa H, Lopes E, Fissore RA. Zn 2+ is Essential for Ca 2+ Oscillations in Mouse Eggs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536745. [PMID: 37131581 PMCID: PMC10153198 DOI: 10.1101/2023.04.13.536745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically- or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Emily Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Rafael A. Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
4
|
Zhang C, Gao L, Wu D, Wang G, Lan H, Li L, Zheng X, Li S. IP 3R1 regulates calcium balance in porcine oocyte maturation and early embryonic development. Theriogenology 2023; 209:151-161. [PMID: 37393745 DOI: 10.1016/j.theriogenology.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
The dynamic balance of Ca2+ in oocytes promotes the recovery of the meiotic arrest phase, consequently promoting oocyte maturation. Hence, the analysis of the maintenance and role of calcium homeostasis in oocytes has important guiding significance for obtaining high-quality eggs and maintaining the development of preimplantation embryos. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are calcium channel proteins that regulate the dynamic balance between the endoplasmic reticulum (ER) and mitochondrial Ca2+. Nevertheless, the expression and role of IP3R in normal pig oocytes have not been reported, and other studies have focused on the role of IP3R in damaged cells. The purpose of this study was to investigate the potential role of IP3R in regulating calcium homeostasis in oocyte maturation and early embryonic development. Our results showed that IP3R1 is stably expressed at different stages of porcine oocyte meiosis, IP3R1 gradually converges to the cortex, and cortical clusters are formed in MII stages. The loss of IP3R1 activity contributeds to the failure of porcine oocyte maturation and cumulus cell expansion, as well as the obstruction of polar body excretion. Further analysis showed that IP3R1 plays an important role in affecting calcium balance by regulating the IP3R1-GRP75-VDAC1 channel between mitochondria and the endoplasmic reticulum (ER) during porcine oocyte maturation. Inhibiting IP3R1 expression-induced ER dysfunction, contributeding to ER calcium concentration ([Ca2+]ER) release outwards into mitochondria and causing mitochondrial free calcium concentration ([Ca2+]m) overload and mitochondrial oxidative stress, which was confirmed by the increase in the level of reactive oxygen species (ROS) and apoptosis. Thereby, IP3R1 plays an important role in affecting calcium balance by regulating the IP3R1-GRP75 -VDAC1 channel between mitochondria and the ER during porcine oocyte maturation, inhibiting IP3R1 expression-induced calcium overload and mitochondrial oxidative stress, and increasing ROS levels and apoptosis.
Collapse
Affiliation(s)
- Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Lepeng Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Liu Li
- The Department of Frensic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China.
| |
Collapse
|
5
|
Hu LL, Chen S, Shen MY, Huang QY, Li HG, Sun SC, Wang JL, Luo XQ. Aflatoxin B1 impairs porcine oocyte quality via disturbing intracellular membrane system and ATP production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115213. [PMID: 37421895 DOI: 10.1016/j.ecoenv.2023.115213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Aflatoxin is the most common type of mycotoxins in contaminated corn, peanuts and rice, which affects the livestock and ultimately endangers human health. Aflatoxin is reported to have carcinogenicity, mutation, growth retardation, immunosuppression and reproductive toxicity. In present study we reported the causes for the declined porcine oocyte quality under aflatoxin exposure. We set up an in vitro exposure model and showed that aflatoxin B1 disturbed cumulus cell expansion and oocyte polar body extrusion. We found that aflatoxin B1 exposure disrupted ER distribution and elevated the expression of GRP78, indicating the occurrence of ER stress, and the increased calcium storage also confirmed this. Besides, the structure of cis-Golgi apparatus, another intracellular membrane system was also affected, showing with decreased GM130 expression. The oocytes under aflatoxin B1 exposure showed aberrant lysosome accumulation and higher LAMP2 expression, a marker for lysosome membrane protection, and this might be due to the aberrant mitochondria function with low ATP production and the increase of apoptosis, since we found that BAX expression increased, and ribosomal protein which is also an apoptosis-related factor RPS3 decreased. Taken together, our study revealed that aflatoxin B1 impairs intracellular membrane system ER, Golgi apparatus, lysosome and mitochondria function to affect porcine oocyte maturation quality.
Collapse
Affiliation(s)
- Lin-Lin Hu
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Ying Shen
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Qiu-Yan Huang
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Hong-Ge Li
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun-Li Wang
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Xiao-Qiong Luo
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
6
|
Jiang Y, He Y, Pan X, Wang P, Yuan X, Ma B. Advances in Oocyte Maturation In Vivo and In Vitro in Mammals. Int J Mol Sci 2023; 24:9059. [PMID: 37240406 PMCID: PMC10219173 DOI: 10.3390/ijms24109059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The quality and maturation of an oocyte not only play decisive roles in fertilization and embryo success, but also have long-term impacts on the later growth and development of the fetus. Female fertility declines with age, reflecting a decline in oocyte quantity. However, the meiosis of oocytes involves a complex and orderly regulatory process whose mechanisms have not yet been fully elucidated. This review therefore mainly focuses on the regulation mechanism of oocyte maturation, including folliculogenesis, oogenesis, and the interactions between granulosa cells and oocytes, plus in vitro technology and nuclear/cytoplasm maturation in oocytes. Additionally, we have reviewed advances made in the single-cell mRNA sequencing technology related to oocyte maturation in order to improve our understanding of the mechanism of oocyte maturation and to provide a theoretical basis for subsequent research into oocyte maturation.
Collapse
Affiliation(s)
- Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
7
|
Miyazaki M, Maeda S. Changes in hamstring flexibility and muscle strength during the menstrual cycle in healthy young females. J Phys Ther Sci 2022; 34:92-98. [PMID: 35221510 PMCID: PMC8860697 DOI: 10.1589/jpts.34.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to elucidate changes in flexibility and muscle strength during the menstrual cycle in detail and to investigate the relationship between flexibility and muscle strength. [Participants and Methods] Sixteen healthy young female and eight male participants were measured during the follicular, ovulation and luteal phases. Range of motion, passive torque at the onset of pain, passive stiffness and muscle strength were measured using an isokinetic dynamometer. Additionally, electromyography was measured during muscle strength measurement. [Results] In the female group, range of motion and passive torque at the onset of pain were significantly increased during the ovulatory and luteal phases compared with the follicular phase. Passive stiffness decreased significantly during the ovulatory phase compared with the follicular phase. Isometric muscle force and electromyographic activity were significantly increased during the luteal phase compared with the ovulation phase. There was no correlation between stiffness and muscle strength. However, there was a positive correlation between electromyographic activity and muscle strength. [Conclusion] Our findings suggest that changes in flexibility during the ovulatory and luteal phases are influenced by fluctuations in sex hormones. However, the changes in muscle strength showed little relation to flexibility, suggesting the involvement of neural mechanisms.
Collapse
Affiliation(s)
- Manabu Miyazaki
- Department of Physical Therapy, Faculty of Medical Science for Health, Teikyo Heisei University: 2-51-4 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-8445, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Seiji Maeda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan.,Faculty of Sport Sciences, Waseda University, Japan
| |
Collapse
|
8
|
Abstract
Oxidative stress causes several diseases and dysfunctions in cells, including oocytes. Clearly, oxidative stress influences oocyte quality during in vitro maturation and fertilization. Here we tested the ability of coenzyme Q10 (CoQ10) to reduce reactive oxygen species (ROS) and improve mouse oocyte quality during in vitro culture. Treatment with 50 μM CoQ10 efficiently reduced ROS levels in oocytes cultured in vitro. The fertilizable form of an oocyte usually contains a cortical granule-free domain (CGFD). CoQ10 enhanced the ratio of CGFD-oocytes from 35% to 45%. However, the hardening of the zona pellucida in oocytes was not affected by CoQ10 treatment. The in vitro maturation capacity of oocytes, which was determined by the first polar body extrusion, was enhanced from 48.9% to 75.7% by the addition of CoQ10 to the culture medium. During the parthenogenesis process, the number of two-cell embryos was increased by CoQ10 from 43.5% to 67.3%. Additionally, treatment with CoQ10 increased the expression of Bcl2 and Sirt1 in cumulus cells. These results suggested that CoQ10 had a positive effect on ROS reduction, maturation rate and two-cell embryo formation in mouse oocyte culture.
Collapse
|
9
|
Cornet-Bartolomé D, Barragán M, Zambelli F, Ferrer-Vaquer A, Tiscornia G, Balcells S, Rodriguez A, Grinberg D, Vassena R. Human oocyte meiotic maturation is associated with a specific profile of alternatively spliced transcript isoforms. Mol Reprod Dev 2021; 88:605-617. [PMID: 34374462 DOI: 10.1002/mrd.23526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 07/31/2021] [Indexed: 12/12/2022]
Abstract
The transition from a transcriptionally active state (GV) to a transcriptionally inactive state (mature MII oocytes) is required for the acquisition of oocyte developmental competence. We hypothesize that the expression of specific genes at the in vivo matured (MII) stage could be modulated by posttranscriptional mechanisms, particularly regulation of alternative splicing (AS). In this study, we examined the transcriptional activity of GV oocytes after ovarian stimulation followed by oocyte pick-up and the landscape of alternatively spliced isoforms in human MII oocytes. Individual oocytes were processed and analyzed for transcriptional activity (GV), gene expression (GV and MII), and AS signatures (GV and MII) on HTA 2.0 microarrays. Samples were grouped according to maturation stage, and then subgrouped according to women's age and antral follicular count (AFC); array results were validated by quantitative polymerase chain reaction. Differentially expressed genes between GV and MII oocytes clustered mainly in biological processes related to mitochondrial metabolism. Interestingly, 16 genes that were related to the regulation of transcription and mitochondrial translation showed differences in alternatively spliced isoform profiles despite not being differentially expressed between groups. Altogether, our results contribute to our understanding of the role of AS in oocyte developmental competence acquisition.
Collapse
Affiliation(s)
- David Cornet-Bartolomé
- EUGIN, Barcelona, Spain.,Department of Genetics, Microbiology and Statistic, Universitat de Barcelona. CIBERER, IBUB, IRSJD, Barcelona, Spain
| | | | | | | | - Gustavo Tiscornia
- EUGIN, Barcelona, Spain.,Centro Ciencias del Mar, University of Algarve, Portugal
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistic, Universitat de Barcelona. CIBERER, IBUB, IRSJD, Barcelona, Spain
| | | | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistic, Universitat de Barcelona. CIBERER, IBUB, IRSJD, Barcelona, Spain
| | | |
Collapse
|
10
|
Lodde V, Morandini P, Costa A, Murgia I, Ezquer I. cROStalk for Life: Uncovering ROS Signaling in Plants and Animal Systems, from Gametogenesis to Early Embryonic Development. Genes (Basel) 2021; 12:525. [PMID: 33916807 PMCID: PMC8067062 DOI: 10.3390/genes12040525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.
Collapse
Affiliation(s)
- Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, 20133 Milan, Italy;
| | - Piero Morandini
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Alex Costa
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Irene Murgia
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.C.); (I.M.)
| |
Collapse
|
11
|
Pioltine EM, Costa CB, Barbosa Latorraca L, Franchi FF, dos Santos PH, Mingoti GZ, de Paula-Lopes FF, Nogueira MFG. Treatment of in vitro-Matured Bovine Oocytes With Tauroursodeoxycholic Acid Modulates the Oxidative Stress Signaling Pathway. Front Cell Dev Biol 2021; 9:623852. [PMID: 33681203 PMCID: PMC7933469 DOI: 10.3389/fcell.2021.623852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
In several species, oocyte and embryo competence are improved by the addition of endoplasmic reticulum (ER) stress inhibitors to in vitro maturation (IVM) medium and/or in vitro culture (IVC) medium. This study aimed to evaluate the effects of three concentrations of tauroursodeoxycholic acid (TUDCA; 50, 200, and 1,000 μM), a chemical chaperone for relieving ER stress, during IVM of bovine cumulus-oocyte complexes (COCs) for 24 h. Treated oocytes were analyzed for nuclear maturation, reactive oxygen species (ROS) production, mitochondrial activity, and abundance of target transcripts. In addition, the number of pronuclei in oocytes was evaluated after 18-20 h of insemination, and the rates of blastocyst and hatched blastocyst formation were evaluated after 7 and 8/9 days of culture, respectively. We further evaluated the transcript abundance of embryonic quality markers. Our findings showed that supplementation of IVM medium with 200 μM of TUDCA decreased ROS production and increased abundance of transcripts related to antioxidant activity in oocytes (CAT, GPX1, and HMOX1) and embryos (GPX1 and PRDX3). Interestingly, high concentration of TUDCA (1,000 μM) was toxic to oocytes, reducing the nuclear maturation rate, decreasing mitochondrial activity, and increasing the abundance of ER stress (HSPA5) and cellular apoptosis (CASP3 and CD40) related transcripts. The results of this study suggest that treatment with 200 μM of TUDCA is associated with a greater resistance to oxidative stress and indirectly with ER stress relief in bovine oocytes.
Collapse
Affiliation(s)
- Elisa Mariano Pioltine
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Camila Bortoliero Costa
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | | | - Fernanda Fagali Franchi
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Priscila Helena dos Santos
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Department of Production and Animal Health, São Paulo State University, Araçatuba, Brazil
| | | | - Marcelo Fábio Gouveia Nogueira
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
- Laboratory of Embryonic Micromanipulation, School of Sciences and Languages, Department of Biological Sciences, São Paulo State University, Assis, Brazil
| |
Collapse
|
12
|
Eum JH, Park M, Yoon JA, Yoon SY. Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization. Dev Reprod 2021; 24:297-306. [PMID: 33537516 PMCID: PMC7837419 DOI: 10.12717/dr.2020.24.4.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Repetitive changes in the intracellular calcium concentration
([Ca2+]i) triggers egg activation, including cortical
granule exocytosis, resumption of second meiosis, block to polyspermy, and
initiating embryonic development. [Ca2+]i oscillations that
continue for several hours, are required for the early events of egg activation
and possibly connected to further development to the blastocyst stage. The
sources of Ca2+ ion elevation during [Ca2+]i
oscillations are Ca2+ release from endoplasmic reticulum
through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion
influx through Ca2+ channel on the plasma membrane.
Ca2+ channels have been characterized into
voltage-dependent Ca2+ channels (VDCCs), ligand-gated
Ca2+ channel, and leak-channel. VDCCs expressed on muscle
cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their
activation threshold or their sensitivity to peptide toxins isolated from cone
snails and spiders. The present study was aimed to investigate the localization
pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and
the role in fertilization. [Ca2+]i oscillation was observed in
a Ca2+ contained medium with sperm factor or adenophostin A
injection but disappeared in Ca2+ free medium.
Ca2+ influx was decreased by Lat A. N-VDCC specific
inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i
oscillation profiles in SrCl2 treatment. N or P/Q type VDC were
distributed on the plasma membrane in cortical cluster form, not in the
cytoplasm. Ca2+ influx is essential for
[Ca2+]i oscillation during mammalian fertilization. This
Ca2+ influx might be controlled through the N or P/Q type
VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization
failure or low fertilization eggs in subfertility women.
Collapse
Affiliation(s)
- Jin Hee Eum
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| |
Collapse
|
13
|
Czajkowska K, Walewska A, Ishikawa T, Szczepańska K, Ajduk A. Age-related alterations in fertilization-induced Ca2+ oscillations depend on the genetic background of mouse oocytes†. Biol Reprod 2020; 103:986-999. [PMID: 32761132 PMCID: PMC7609943 DOI: 10.1093/biolre/ioaa139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/05/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022] Open
Abstract
Maternal aging affects various aspects of oocytes' physiology, including the functionality of their nuclear apparatus and mitochondria. In the present paper, we wished to investigate whether advanced reproductive age impacts oocytes' ability to generate proper Ca2+ oscillations in response to monospermic fertilization. We examined three different mouse strains/crosses: inbred C57BL/6Tar, outbred Tar:SWISS, and hybrid F1 (C57BL/6Tar × CBA/Tar). The females were either 2-4 months old (young) or 13-16 months old (aged). We observed that the Ca2+ oscillatory pattern is altered in a strain-dependent manner and changes were more profound in aged C57BL/6Tar and F1 than in aged Tar:SWISS oocytes. We also showed that maternal aging differently affects the size of Ca2+ store and expression of Itpr1, Atp2a2, Erp44, and Pdia3 genes involved in Ca2+ homeostasis in oocytes of C57BL/6Tar, Tar:SWISS, and F1 genetic background, which may explain partially the differences in the extent of age-dependent changes in the Ca2+ oscillations in those oocytes. Maternal aging did not have any visible impact on the distribution of the ER cisterns in oocytes of all three genetic types. Finally, we showed that maternal aging alters the timing of the first embryonic interphase onset and that this timing correlates in C57BL/6Tar and Tar:SWISS oocytes with the frequency of fertilization-induced Ca2+ oscillations. Our results indicate that extreme caution is required when conclusions about oocyte/embryo physiological response to aging are made and complement an increasing amount of evidence that mammalian (including human) susceptibility to aging differs greatly depending on the genetic background of the individual.
Collapse
Affiliation(s)
- Katarzyna Czajkowska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Walewska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Ferrer-Vaquer A, Barragán M, Rodríguez A, Vassena R. Altered cytoplasmic maturation in rescued in vitro matured oocytes. Hum Reprod 2020; 34:1095-1105. [PMID: 31119269 DOI: 10.1093/humrep/dez052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do culture conditions affect cytoplasmic maturation in denuded immature non-GV oocytes? SUMMARY ANSWER The maturation rate of denuded non-GV oocytes is not affected by culture media, but in vitro maturation seems to alter the mitochondrial membrane potential, endoplasmic reticulum (ER) and actin cytoskeleton compared with in vivo maturation. WHAT IS KNOWN ALREADY In vitro maturation of denuded immature non-GV oocytes benefits cycles with poor in vivo MII oocyte collection, but maturation levels of non-GV oocytes are only scored by polar body extrusion. Since oocyte maturation involves nuclear as well as cytoplasmic maturation for full meiotic competence, further knowledge is needed about cytoplasmic maturation in in vitro culture. STUDY DESIGN, SIZE, DURATION This basic research study was carried out between January 2017 and September 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 339 denuded immature non-GV oocytes were cultured in SAGE 1-Step (177) or G-2 PLUS (162) for 6-8 h after retrieval, and 72 in vivo matured MII oocytes were used as controls. Cultured immature non-GV oocytes were scored for polar body extrusion and analysed for mitochondrial membrane potential (ΔΨm), ER clusters, cortical granules number and distribution, spindle morphology and actin cytoskeleton organization. The obtained parameter values were compared to in vivo matured MII oocyte parameter values. MAIN RESULTS AND THE ROLE OF CHANCE The maturation rates of oocytes cultured in G-2 PLUS and SAGE 1-Step were similar (65% vs 64.2%; P = 0.91). The differences observed in cortical granule density were not statistically significant. Also spindle morphometric parameters were mostly similar between in vitro and in vivo matured MII oocytes. However, the number of ER clusters, the ΔΨm and the cortical actin thickness showed significant differences between in vivo MII oocytes and denuded immature non-GV oocytes cultured in vitro until meiosis completion. LIMITATIONS, REASONS FOR CAUTION Frozen-thawed oocytes together with fresh oocytes were used as controls. Due to technical limitations (fixation method and fluorochrome overlap), only one or two parameters could be studied per oocyte. Thus, a global view of the maturation status for each individual oocyte could not be obtained. WIDER IMPLICATIONS OF THE FINDINGS Characterization of in vitro matured oocytes at the cellular level will help us to understand the differences observed in the clinical outcomes reported with rescue IVM compared to in vivo MII oocytes and to improve the culture methods applied. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by intramural funding of Clinica Eugin and by the Torres Quevedo Program to A.F.-V. from the Spanish Ministry of Economy and Competitiveness. No competing interests are declared.
Collapse
|
15
|
Feitosa WB, Lopes E, Visintin JA, Assumpção MEOD. Endoplasmic reticulum distribution during bovine oocyte activation is regulated by protein kinase C via actin filaments. J Cell Physiol 2020; 235:5823-5834. [PMID: 31960444 DOI: 10.1002/jcp.29516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/08/2020] [Indexed: 02/02/2023]
Abstract
Fertilization-induced [Ca2+ ]i oscillations generally depend on the release of calcium ions from the endoplasmic reticulum (ER). Since ER is the main store of calcium ions, it plays an important role in oocyte fertilization. However, the mechanism of ER organization at oocyte activation is unknown. Here, we show that protein kinase C (PKC) is involved in ER distribution during bovine oocyte activation, but not involved in cell cycle resumption and spindle organization. Actin filaments were affected by PKC pharmacological inhibition. In addition, similar to PKC results, the actin-depolymerizing drug cytochalasin B affected the ER distribution during oocyte activation. Specifically, we have demonstrated that ER organization during bovine oocyte activation is regulated by PKC possibly through its action on actin filaments regulation. Taken together, the results presented here provide further information on the pathway involved in the regulation of ER organization during oocyte activation and new insight into the functional role of PKC and actin filaments during this process.
Collapse
Affiliation(s)
- Weber Beringui Feitosa
- Department of Animal Reproduction, College of Veterinary Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Everton Lopes
- Department of Animal Reproduction, College of Veterinary Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Jose Antonio Visintin
- Department of Animal Reproduction, College of Veterinary Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
16
|
Wakai T, Mehregan A, Fissore RA. Ca 2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb Perspect Biol 2019; 11:a035162. [PMID: 31427376 PMCID: PMC6886447 DOI: 10.1101/cshperspect.a035162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
17
|
Mortimer D. The functional anatomy of the human spermatozoon: relating ultrastructure and function. Mol Hum Reprod 2019; 24:567-592. [PMID: 30215807 DOI: 10.1093/molehr/gay040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
The Internet, magazine articles, and even biomedical journal articles, are full of cartoons of spermatozoa that bear minimal resemblance to real spermatozoa, especially human spermatozoa, and this had led to many misconceptions about what spermatozoa look like and how they are constituted. This review summarizes the historical and current state of knowledge of mammalian sperm ultrastructure, with particular emphasis on and relevance to human spermatozoa, combining information obtained from a variety of electron microscopic (EM) techniques. Available information on the composition and configuration of the various ultrastructural components of the spermatozoon has been related to their mechanistic purpose and roles in the primary aspects of sperm function and fertilization: motility, hyperactivation, capacitation, the acrosome reaction and sperm-oocyte fusion.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada
| |
Collapse
|
18
|
Yoon SY. Role of Type 1 Inositol 1,4,5-triphosphate Receptors in Mammalian Oocytes. Dev Reprod 2019; 23:1-9. [PMID: 31049467 PMCID: PMC6487317 DOI: 10.12717/dr.2019.23.1.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022]
Abstract
The ability of oocytes to undergo normal fertilization and embryo development is
acquired during oocyte maturation which is transition from the germinal vesicle
stage (GV), germinal vesicle breakdown (GVBD) to metaphase of meiosis II (MII).
Part of this process includes redistribution of inositol 1,4, 5-triphosphate
receptor (IP3R), a predominant Ca2+ channel on the endoplasmic
reticulum membrane. Type 1 IP3R (IP3R1) is expressed in mouse oocytes
dominantly. At GV stage, IP3R1 are arranged as a network throughout the
cytoplasm with minute accumulation around the nucleus. At MII stage, IP3R1
diffuses to the entire cytoplasm in a more reticular manner, and obvious
clusters of IP3R1 are observed at the cortex of the egg. This structural
reorganization provides acquisition of [Ca2+]i oscillatory
activity during fertilization. In this review, general properties of IP3R1 in
somatic cells and mammalian oocyte are introduced.
Collapse
Affiliation(s)
- Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
| |
Collapse
|
19
|
Akbari Sene A, Tabatabaie A, Nikniaz H, Alizadeh A, Sheibani K, Mortezapour Alisaraie M, Tabatabaie M, Ashrafi M, Amjadi F. The myo-inositol effect on the oocyte quality and fertilization rate among women with polycystic ovary syndrome undergoing assisted reproductive technology cycles: a randomized clinical trial. Arch Gynecol Obstet 2019; 299:1701-1707. [PMID: 30919036 DOI: 10.1007/s00404-019-05111-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of the present study was to evaluate the effect of myo-Inositol administration on oocyte quality, fertilization rate and embryo quality in patients with PCOS during assisted reproductive technology (ART) cycles. METHODS Fifty infertile PCOS patients were randomly designated in two groups. In the study group, patients received daily doses of 4 g myo-Inositol combined with 400 mg folic acid and in the control group patients received only 400 mg folic acid from 1 month before starting the antagonist cycle until the day of ovum pick up. Oocyte and embryo qualities were assessed according to European Society of Human Reproduction and Embryology (ESHRE) guidelines. The gene expression of PGK1, RGS2 and CDC42 as a factor of oocyte quality in granulosa cells was analyzed using real-time RT-PCR. Levels of total antioxidant capacity (TAC) and reactive oxygen species (ROS) were evaluated by chemiluminescence assay in follicular fluid. RESULTS The percentage of metaphase II oocyte, fertilization rate and embryo quality significantly improved in the study group (p < 0.05), but the number of retrieved oocytes and follicle count were not statistically different between groups. Furthermore, the gene expression of PGK1, RGS2 and CDC42 was significantly higher in the study group (p < 0.05) but no differences were found between two groups in terms of TAC and ROS levels. CONCLUSIONS The present study findings suggest that myo-Inositol alters the gene expression in granulosa cells and improves oocyte and embryo quality among PCOS patients undergoing ART.
Collapse
Affiliation(s)
- Azadeh Akbari Sene
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, PO Box: 15875-1454, 1168743514, Tehran, Iran
| | - Azam Tabatabaie
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, PO Box: 15875-1454, 1168743514, Tehran, Iran
| | - Hossein Nikniaz
- Department of Anatomy, School of Medicine Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ahad Alizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mona Mortezapour Alisaraie
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, PO Box: 15875-1454, 1168743514, Tehran, Iran
| | - Maryam Tabatabaie
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, PO Box: 15875-1454, 1168743514, Tehran, Iran
| | - Mahnaz Ashrafi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, PO Box: 15875-1454, 1168743514, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fatemehsadat Amjadi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, PO Box: 15875-1454, 1168743514, Tehran, Iran. .,Department of Anatomy, School of Medicine Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation. Int J Mol Sci 2019; 20:ijms20061365. [PMID: 30889926 PMCID: PMC6472277 DOI: 10.3390/ijms20061365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
SIRT2, a member of the sirtuin family, has been recently shown to exert important effects on mitosis and/or metabolism. However, its roles in oocyte maturation have not been fully clarified. In this study, SIRT2, located in the cytoplasm and nucleus, was found in abundance in the meiotic stage, and its expression gradually decreased until the blastocyst stage. Treatment with SIRT2 inhibitors resulted in the prevention of oocyte maturation and the formation of poor-quality oocytes. By performing confocal scanning and quantitative analysis, the results showed that SIRT2 inhibition induced prominent defects in spindle/chromosome morphology, and led to the hyperacetylation of α-tubulin and H4K16. In particular, SIRT2 inhibition impeded cytoplasmic maturation by disturbing the normal distribution of cortical granules, endoplasmic reticulum, and mitochondria during oocyte meiosis. Meanwhile, exposure to SirReal2 led to elevated intracellular reactive oxygen species (ROS) accumulation, low ATP production, and reduced mitochondrial membrane potential in oocytes. Further analysis revealed that SIRT2 inhibition modulated mitochondrial biogenesis and dynamics via the downregulation of TFAM and Mfn2, and the upregulation of DRP1. Mechanistically, SIRT2 inhibition blocked the nuclear translocation of FoxO3a by increasing FoxO3a acetylation, thereby downregulating the expression of FoxO3a-dependent antioxidant genes SOD2 and Cat. These results provide insights into the potential mechanisms by which SIRT2-dependent deacetylation activity exerts its effects on oocyte quality.
Collapse
|
21
|
Fluks M, Szczepanska K, Ishikawa T, Ajduk A. Transcriptional status of mouse oocytes corresponds with their ability to generate Ca2+ release. Reproduction 2019; 157:465-474. [PMID: 30817322 DOI: 10.1530/rep-18-0625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
In fully grown ovarian follicles both transcriptionally active (NSN) and inactive (SN) oocytes are present. NSN oocytes have been shown to display lower developmental potential. It is possible that oocytes that have not completed transcription before meiosis resumption accumulate less RNA and proteins required for their further development, including those responsible for regulation of Ca2+ homeostasis. Oscillations of the cytoplasmic concentration of free Ca2+ ions ([Ca2+]i) are triggered in oocytes by a fertilizing spermatozoon and are crucial for inducing and regulating further embryonic development. We showed that NSN-derived oocytes express less inositol 1,4,5-triphosphate receptor type 1 (IP3R1), store less Ca2+ ions and generate weaker spontaneous [Ca2+]i oscillations during maturation than SN oocytes. Consequently, NSN oocytes display aberrant [Ca2+]i oscillations at fertilization. We speculate that this defective regulation of Ca2+ homeostasis might be one of the factors responsible for the lower developmental potential of NSN oocytes.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Zhou J, Peng X, Mei S. Autophagy in Ovarian Follicular Development and Atresia. Int J Biol Sci 2019; 15:726-737. [PMID: 30906205 PMCID: PMC6429023 DOI: 10.7150/ijbs.30369] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism that exists in all eukaryotes under a variety of physiological and pathological conditions. In the mammalian ovaries, less than 1% of follicles ovulate, whereas the remaining 99% undergo follicular atresia. Autophagy and apoptosis have been previously found to be involved in the regulation of both primordial follicular development as well as atresia. The relationship between autophagy, follicular development, and atresia have been summarized in this review with the aim to obtain a more comprehensive understanding of the role played by autophagy in follicular development and atresia.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| |
Collapse
|
23
|
Ferrer-Buitrago M, Dhaenens L, Lu Y, Bonte D, Vanden Meerschaut F, De Sutter P, Leybaert L, Heindryckx B. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI. Hum Reprod 2019; 33:416-425. [PMID: 29329390 DOI: 10.1093/humrep/dex376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can human oocyte calcium analysis predict fertilization success after assisted oocyte activation (AOA) in patients experiencing fertilization failure after ICSI? SUMMARY ANSWER ICSI-AOA restores the fertilization rate only in patients displaying abnormal Ca2+ oscillations during human oocyte activation. WHAT IS KNOWN ALREADY Patients capable of activating mouse oocytes and who showed abnormal Ca2+ profiles after mouse oocyte Ca2+ analysis (M-OCA), have variable responses to ICSI-AOA. It remains unsettled whether human oocyte Ca2+ analysis (H-OCA) would yield an improved accuracy to predict fertilization success after ICSI-AOA. STUDY DESIGN, SIZE, DURATION Sperm activation potential was first evaluated by MOAT. Subsequently, Ca2+ oscillatory patterns were determined with sperm from patients showing moderate to normal activation potential based on the capacity of human sperm to generate Ca2+ responses upon microinjection in mouse and human oocytes. Altogether, this study includes a total of 255 mouse and 122 human oocytes. M-OCA was performed with 16 different sperm samples before undergoing ICSI-AOA treatment. H-OCA was performed for 11 patients who finally underwent ICSI-AOA treatment. The diagnostic accuracy to predict fertilization success was calculated based on the response to ICSI-AOA. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients experiencing low or total failed fertilization after conventional ICSI were included in the study. All participants showed moderate to high rates of activation after MOAT. Metaphase II (MII) oocytes from B6D2F1 mice were used for M-OCA. Control fertile sperm samples were used to obtain a reference Ca2+ oscillation profile elicited in human oocytes. Donated human oocytes, non-suitable for IVF treatments, were collected and vitrified at MII stage for further analysis by H-OCA. MAIN RESULTS AND THE ROLE OF CHANCE M-OCA and H-OCA predicted the response to ICSI-AOA in 8 out of 11 (73%) patients. Compared to M-OCA, H-OCA detected the presence of sperm activation deficiencies with greater sensitivity (75 vs 100%, respectively). ICSI-AOA never showed benefit to overcome fertilization failure in patients showing normal capacity to generate Ca2+ oscillations in H-OCA and was likely to be beneficial in cases displaying abnormal H-OCA Ca2+ oscillations patterns. LIMITATIONS, REASONS FOR CAUTION The scarce availability of human oocytes donated for research purposes is a limiting factor to perform H-OCA. Ca2+ imaging requires specific equipment to monitor fluorescence changes over time. WIDER IMPLICATIONS OF THE FINDINGS H-OCA is a sensitive test to diagnose gamete-linked fertilization failure. H-OCA allows treatment counseling for couples experiencing ICSI failures to either undergo ICSI-AOA or to participate in gamete donation programs. The present data provide an important template of the Ca2+ signature observed during human fertilization in cases with normal, low and failed fertilization after conventional ICSI. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Flemish fund for scientific research (FWO-Vlaanderen, G060615N). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- M Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Y Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - F Vanden Meerschaut
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Finley J. Transposable elements, placental development, and oocyte activation: Cellular stress and AMPK links jumping genes with the creation of human life. Med Hypotheses 2018; 118:44-54. [PMID: 30037614 DOI: 10.1016/j.mehy.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs), also known as "jumping genes", are DNA sequences first described by Nobel laureate Barbara McClintock that comprise nearly half of the human genome and are able to transpose or move from one genomic location to another. As McClintock also noted that a genome "shock" or stress may induce TE activation and transposition, accumulating evidence suggests that cellular stress (e.g. mediated by increases in intracellular reactive oxygen species [ROS] and calcium [Ca2+], etc.) induces TE mobilization in several model organisms and L1s (a member of the retrotransposon class of TEs) are active and capable of retrotransposition in human oocytes, human sperm, and in human neural progenitor cells. Cellular stress also plays a critical role in human placental development, with cytotrophoblast (CTB) differentiation leading to the formation of the syncytiotrophoblast (STB), a cellular layer that facilitates nutrient and gas exchange between the mother and the fetus. Syncytin-1, a protein that promotes fusion of CTB cells and is necessary for STB formation, and its receptor is found in human sperm and human oocytes, respectively, and increases in ROS and Ca2+ promote trophoblast differentiation and syncytin-1 expression. Cellular stress is also essential in promoting human oocyte maturation and activation which, similar to TE mobilization, can be induced by compounds that increase intracellular Ca2+ and ROS levels. AMPK is a master metabolic regulator activated by increases in ROS, Ca2+, and/or an AMP(ADP)/ATP ratio increase, etc. as well as compounds that induce L1 mobilization in human cells. AMPK knockdown inhibits trophoblast differentiation and AMPK-activating compounds that promote L1 mobility also enhance trophoblast differentiation. Cellular stressors that induce TE mobilization (e.g. heat shock) also promote oocyte maturation in an AMPK-dependent manner and the antibiotic ionomycin activates AMPK, promotes TE activation, and induces human oocyte activation, producing normal, healthy children. Metformin promotes AMPK-dependent telomerase activation (critical for telomere maintenance) and induces activation of the endonuclease RAG1 (promotes DNA cleavage and transposition) via AMPK. Both RAG1 and telomerase are derived from TEs. It is our hypothesis that cellular stress and AMPK links TE activation and transposition with placental development and oocyte activation, facilitating both human genome evolution and the creation of all human life. We also propose the novel observation that various cellular stress-inducing compounds (e.g. metformin, resveratrol, etc.) may facilitate beneficial TE activation and transposition and enhance fertilization and embryological development through a common mechanism of AMPK activation.
Collapse
|
25
|
Zhao XM, Wang N, Hao HS, Li CY, Zhao YH, Yan CL, Wang HY, Du WH, Wang D, Liu Y, Pang YW, Zhu HB. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J Pineal Res 2018; 64. [PMID: 28833478 DOI: 10.1111/jpi.12445] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/18/2017] [Indexed: 01/21/2023]
Abstract
Melatonin is a well-characterized antioxidant that has been successfully used to protect oocytes from reactive oxygen species during in vitro maturation (IVM), resulting in improved fertilization capacity and development ability. However, the mechanism via which melatonin improves oocyte fertilization capacity and development ability remains to be determined. Here, we studied the effects of melatonin on cytoplasmic maturation of bovine oocytes. In the present study, bovine oocytes were cultured in IVM medium supplemented with 0, 10-7 , 10-9 , and 10-11 mol/L melatonin, and the cytoplasmic maturation parameters of MII oocytes after IVM were investigated, including redistribution of organelles (mitochondria, cortical granules [CGs], and endoplasmic reticulum [ER]), intracellular glutathione (GSH) and ATP levels, expression of endogenous antioxidant genes (Cat, Sod1, and GPx), and fertilization-related events (IP3R1 distribution and expression of CD9 and Juno). Our results showed that melatonin significantly improved the cytoplasmic maturation of bovine oocytes by improving the normal distribution of organelles, increasing intracellular GSH and ATP levels, enhancing antioxidant gene expression levels, and modulating fertilization-related events, all of which resulted in increased fertilization capacity and developmental ability. Meanwhile, melatonin also increased the mRNA and protein expression levels of the Tet1 gene and decreased the Dnmt1 gene mRNA and protein levels in bovine oocytes, indicating that melatonin regulates the expression of the detected genes via demethylation. These findings shed insights into the potential mechanisms by which melatonin improves oocyte quality during IVM.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Na Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chong-Yang Li
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ya-Han Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chang-Liang Yan
- Livestock and Poultry Import & Export Department, China Animal Husbandry Group (CAHG), Beijing, China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dong Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yan Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
26
|
Ferrer-Buitrago M, Bonte D, De Sutter P, Leybaert L, Heindryckx B. Single Ca 2+ transients vs oscillatory Ca 2+ signaling for assisted oocyte activation: limitations and benefits. Reproduction 2017; 155:R105-R119. [PMID: 29122969 DOI: 10.1530/rep-17-0098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/08/2022]
Abstract
Oocyte activation is a calcium (Ca2+)-dependent process that has been investigated in depth, in particular, regarding its impact on assisted reproduction technology (ART). Following a standard model of signal transduction, Ca2+ drives the meiotic progression upon fertilization in all species studied to date. However, Ca2+ changes during oocyte activation are species specific, and they can be classified in two modalities based on the pattern defined by the Ca2+ signature: a single Ca2+ transient (e.g. amphibians) or repetitive Ca2+ transients called Ca2+ oscillations (e.g. mammals). Interestingly, assisted oocyte activation (AOA) methods have highlighted the ability of mammalian oocytes to respond to single Ca2+ transients with normal embryonic development. In this regard, there is evidence supporting that cellular events during the process of oocyte activation are initiated by different number of Ca2+ oscillations. Moreover, it was proposed that oocyte activation and subsequent embryonic development are dependent on the total summation of the Ca2+ peaks, rather than to a specific frequency pattern of Ca2+ oscillations. The present review aims to demonstrate the complexity of mammalian oocyte activation by describing the series of Ca2+-linked physiological events involved in mediating the egg-to-embryo transition. Furthermore, mechanisms of AOA and the limitations and benefits associated with the application of different activation agents are discussed.
Collapse
Affiliation(s)
- Minerva Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Davina Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Luc Leybaert
- Physiology GroupDepartment of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
27
|
He GF, Yang LL, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S, Sun QY. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 2017; 102:67-74. [PMID: 28750296 DOI: 10.1016/j.theriogenology.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Abstract
Calcium ion fluctuation is closely related to the transformation of cell cycle. However, little is known about the function of L-type calcium channel in mammalian oocyte and embryo development. We thus studied the roles of L-type calcium channel in mouse oocyte meiotic maturation, parthenogenetic activation and early embryonic development. We used the antagonist Amlodipine to block L-type calcium channel. Oocytes or zygotes were cultured to different time points with 0 μM, 10 μM, 30 μM and 50 μM Amlodipine. Then we checked the rate of first polar body extrusion, spindle formation, asymmetric division parthenogenetic activation and early embryo cleavage. The results showed that Amlodipine treatment did not affect germinal vesicle breakdown, but caused disruption of cytoskeleton organization, symmetric division, formation of mature oocytes with a large polar body, or reduced the first polar body extrusion, depending on its concentrations. Amlodipine treatment also resulted in decreased parthenogenetic activation and arrested early embryonic development. Overall, these data suggest that proper function of L-type calcium channel is critical for oocyte maturation, activation, and early embryonic development.
Collapse
Affiliation(s)
- Gui-Fang He
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; College of Life Science, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Ariel I, Goldman-Wohl D, Yagel S, Gazit E, Loewenthal R. Triple paternal contribution to a normal/complete molar chimeric singleton placenta. Hum Reprod 2017; 32:993-998. [PMID: 28333325 DOI: 10.1093/humrep/dex053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
A comprehensive study of unusual cases of placental pathology may provide insight into mechanisms of normal human fertilization and early embryonic development by examining the exception to the rule. A gravida three para two 39-year-old woman was monitored by ultrasound from 16 weeks of gestation for cystic placenta. A female newborn was born at 36 weeks gestation. Pathologic examination of the partially cystic placenta revealed a singleton placenta comprised of 2/3 normal placenta and 1/3 complete hydatidiform mole, largely degenerated. Immunostaining for p57 was negative in stromal cells of the molar villi. Chromogenic in-situ hybridization revealed diploidy in both normal and molar parts. A total of 16 microsatellites were studied by short tandem repeat analysis, 11 of which were informative. The analysis revealed bipaternal molar tissue of dispermic origin. The paternal monospermic contribution to the normal part was different from that in the molar part, thus resulting in tripaternal contribution to the conceptus. A chimera is a single organism composed of two or more different populations of genetically distinct cells that originated from different zygotes (tetragametic) whereas mosaic is a mixture of two cell lines in one organism originating from one zygote. The possible mechanisms leading to the formation of chimeric/mosaic placenta in our case (one of the components being complete hydatidiform mole), including twinning, fusion at an early embryonic stage and diploidization of triploids, are discussed.
Collapse
Affiliation(s)
- I Ariel
- The Perinatal Pathology Unit, Department of Pathology, Hadassah-Hebrew University Medical Center, Mount Scopus, PO Box 24035, Jerusalem il-91240, Israel
| | - D Goldman-Wohl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - S Yagel
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - E Gazit
- The Laboratory for Tissue typing, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - R Loewenthal
- The Laboratory for Tissue typing, Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
29
|
Yoon J, Juhn KM, Yoon SH, Ko Y, Lim JH. Effects of sperm insemination on the final meiotic maturation of mouse oocytes arrested at metaphase I after in vitro maturation. Clin Exp Reprod Med 2017; 44:15-21. [PMID: 28428939 PMCID: PMC5395547 DOI: 10.5653/cerm.2017.44.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 11/07/2022] Open
Abstract
Objective The aims of this study were to investigate whether fertilization could induce the resumption of meiosis in mouse oocytes arrested at metaphase I (MI) after in vitro maturation (IVM), and to investigate the effect of Ca2+ chelator treatment at the time of fertilization on the transition from MI to metaphase II (MII). Methods MII-stage and arrested MI-stage mouse oocytes after IVM were fertilized, and then embryonic development was monitored. Blastocysts from each group were transferred into 2.5 days post-coitum pseudo-pregnant ICR mice. MI oocytes after IVM were treated with a Ca2+ chelator to investigate the effect of Ca2+ oscillations on their maturation. Results As insemination time increased, the number of oocytes in the MI group that reached the MII stage also increased. The blastocyst rates and total cell numbers in the MII group were significantly higher than in the MI group. No pregnancy occurred in the MI group, but 10 pregnancies were achieved (10 of 12) in the MII group. The proportion of MI oocytes that matured to MII oocytes after fertilization was significantly higher in the non-treated group than in the Ca2+ chelator-treated group. Conclusion The findings that a higher proportion of MI-arrested oocytes progressed to MII after fertilization and that the MI-to-MII transition was blocked by Ca2+ chelator treatments before fertilization indicate that the maturation of MI oocytes to MII oocytes is associated with intracellular Ca2+ oscillations driven by fertilization.
Collapse
Affiliation(s)
- Jeong Yoon
- Maria Research Center, Seoul, Korea.,Division of Biotechnology, Korea University, Seoul, Korea
| | | | | | - Yong Ko
- Division of Biotechnology, Korea University, Seoul, Korea
| | | |
Collapse
|
30
|
Gasotransmitters in Gametogenesis and Early Development: Holy Trinity for Assisted Reproductive Technology-A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1730750. [PMID: 27579148 PMCID: PMC4992752 DOI: 10.1155/2016/1730750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/03/2016] [Indexed: 11/23/2022]
Abstract
Creation of both gametes, sperm and oocyte, and their fusion during fertilization are essential step for beginning of life. Although molecular mechanisms regulating gametogenesis, fertilization, and early embryonic development are still subjected to intensive study, a lot of phenomena remain unclear. Based on our best knowledge and own results, we consider gasotransmitters to be essential for various signalisation in oocytes and embryos. In accordance with nitric oxide (NO) and hydrogen sulfide (H2S) physiological necessity, their involvement during oocyte maturation and regulative role in fertilization followed by embryonic development have been described. During these processes, NO- and H2S-derived posttranslational modifications represent the main mode of their regulative effect. While NO represent the most understood gasotransmitter and H2S is still intensively studied gasotransmitter, appreciation of carbon monoxide (CO) role in reproduction is still missing. Overall understanding of gasotransmitters including their interaction is promising for reproductive medicine and assisted reproductive technologies (ART), because these approaches contend with failure of in vitro assisted reproduction.
Collapse
|
31
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
32
|
Finley J. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1. Med Hypotheses 2016; 93:34-47. [PMID: 27372854 DOI: 10.1016/j.mehy.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 01/22/2023]
Abstract
In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular stress (e.g. increase in Ca(2+) concentration, reactive oxygen species generation, increase in AMP/ATP ratio) is essential for oocyte maturation, T cell activation, and mitochondrial function. In addition to the AMPK kinase LKB1, CaMKK2, a Ca(2+)/calmodulin-dependent kinase that also activates AMPK, is present in and activated on T cell activation and is also present in mouse oocytes and persists until the zygote and two-cell stages. It is our hypothesis that AMPK activation represents a central node linking T cell activation-induced latent HIV-1 reactivation and both physiological and artificial oocyte activation. We further propose the novel observation that various compounds that have been shown to reactivate latent HIV-1 (e.g. PMA, ionomycin, metformin, bryostatin, resveratrol, etc.) or activate oocytes (PMA, ionomycin, ethanol, puromycin, etc.) either alone or in combination likely do so via stress-induced activation of AMPK.
Collapse
|
33
|
Molina I, Gómez J, Balasch S, Pellicer N, Novella-Maestre E. Osmotic-shock produced by vitrification solutions improves immature human oocytes in vitro maturation. Reprod Biol Endocrinol 2016; 14:27. [PMID: 27170005 PMCID: PMC4866294 DOI: 10.1186/s12958-016-0161-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND During cytoplasmic oocyte maturation, Ca(2+) currents are vital for regulating a broad range of physiological processes. Recent studies have demonstrated that DMSO and EG cause large transient increases in intracellular Ca(2+) in mouse oocytes. The CP used in vitrifying protocols also increases the intracellular calcium transient. The aim of this study is to evaluate the effects of vitrifying time (before and after IVM) and exposure to the vitrification solutions and ionomycin on oocyte quality and embryonic development. METHODS 221 GV-oocytes unsuitable for IVF-ICSI cycles were randomly distributed into one of the following three groups. G1 (control group): 41 GV-oocytes IVM until MII; G2: 43 oocytes vitrified at GV stage and IVM until MII stage; and G3: 53 GV-oocytes IVM until MII and then vitrified. In order to clarify the effect of vitrification solutions (VS) on human oocyte IVM through the intracellular Ca(2+) oscillation, the following two groups were also included. G4: 43 GV-oocytes exposed to VS and IVM until MII; and G5: 41 GV-oocytes exposed to ionomycin and IVM until MII. All GV-oocytes that reached MII-stage were parthenogenetically activated to assess oocyte viability. IVM was performed in IVF-medium (24-48 h). Chemical treatment (ionomycin) and osmotic treatment (vitrification solutions) were performed without liquid-N2 immersion. The following rates were evaluated: survival (SR), in-vitro maturation (IVMR), activation (AR), development to 2-cell (DRC), development to morula (DRCM) and development to blastocyst (DRB). Ratios between the different treatment groups were compared using contingency tables analysis (chi-square test). RESULTS A high survival rate was obtained in G2 (95.5 %) and G4 (96.6 %). In-vitro maturation rate was significantly higher for G4 (86 %) and G2 (83.7 %) compared to G1 (63.4 %), G3 (56.6 %) and G5 (48.8 %). DRCM was significantly higher for G1 and G2 compared to G3 (G1: 15.8 %, G2: 20.7 % and G3: 0 %). DRB was only obtained for the oocytes vitrified before IVM (G2: 3.4 %). AR was also significantly higher for G2 and G4 compared to G5 (G2: 80.5 %, G4: 86.5 % and G5: 55 %). DRCM and DRB were only obtained in G2 and G4. DRCM was significantly higher for oocytes vitrified at GV stage (G2) and for oocytes exposed to the VS in G4 compared to the oocytes exposed to the ionomycin in G5 (G2: 20.7 %; G4: 37.5 % and G5: 0 %). CONCLUSIONS Vitrifying GV-oocytes improves their IVM. Further investigation could look to increase the oocyte pool and improve fertility preservation options.
Collapse
Affiliation(s)
- Inmaculada Molina
- Unidad de Reproducción Humana, Área de Salud de la Mujer, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Judith Gómez
- Unidad de Reproducción Humana, Área de Salud de la Mujer, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sebastián Balasch
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Valencia, Spain
| | - Nuria Pellicer
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain
| | - Edurne Novella-Maestre
- Unidad de Genética, Torre A planta 4º, Hospital Universitario y Politécnico La Fe, Avenida de Fernando Abril Martorell, nº 106, 46026, Valencia, Spain.
- Grupo de investigación de Medicina Reproductiva, Instituto de Investigación Sanitario La Fe, Valencia, Spain.
| |
Collapse
|
34
|
Jiao GZ, Cui W, Yang R, Lin J, Gong S, Lian HY, Sun MJ, Tan JH. Optimized Protocols for In Vitro Maturation of Rat Oocytes Dramatically Improve Their Developmental Competence to a Level Similar to That of Ovulated Oocytes. Cell Reprogram 2015; 18:17-29. [PMID: 26679437 DOI: 10.1089/cell.2015.0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The developmental capacity of in vitro-matured (IVM) oocytes is markedly lower than that of their in vivo-matured (IVO) counterparts, suggesting the need for optimization of IVM protocols in different species. There are few studies on IVM of rat oocytes, and there are even fewer attempts to improve ooplasmic maturation compared to those reported in other species. Furthermore, rat oocytes are well known to undergo spontaneous activation (SA) after leaving the oviduct; however, whether IVM rat oocytes have lower SA rates than IVO oocytes and can potentially be used for nuclear transfer is unknown. In this study, we investigated the effects of maturation protocols on cytoplasmic maturation of IVM rat oocytes and observed the possibility to reduce SA by using IVM rat oocytes. Ooplasmic maturation was assessed using multiple markers, including pre- and postimplantation development, meiotic progression, CG redistribution, redox state, and the expression of developmental potential- and apoptosis-related genes. The results showed that the best protocol consisting of modified Tissue Culture Medium-199 (TCM-199) supplemented with cysteamine/cystine and the cumulus cell monolayer dramatically improved the developmental competence of rat oocytes and supported both pre- and postimplantation development and other ooplasmic maturation makers to levels similar to that observed in ovulated oocytes. Rates of SA were significantly lower in IVM oocytes than in IVO oocytes when observed at the same intervals after nuclear maturation. In conclusion, we have optimized protocols for IVM of rat oocytes that sustain ooplasmic maturation to a level similar to ovulated oocytes. The results suggest that IVM rat oocytes might be used to reduce SA for rat cloning.
Collapse
Affiliation(s)
- Guang-Zhong Jiao
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018.,2 These authors contributed equally to this work.,3 Present address: Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University , Yuhuangding Hospital of Yantai, Yantai, Shandong, China . Post code: 264000
| | - Wei Cui
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018.,2 These authors contributed equally to this work
| | - Rui Yang
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Juan Lin
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Shuai Gong
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Hua-Yu Lian
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Ming-Ju Sun
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| | - Jing-He Tan
- 1 College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai-an City, P. R. China . Post code: 271018
| |
Collapse
|
35
|
Dadarwal D, Adams GP, Hyttel P, Brogliatti GM, Caldwell S, Singh J. Organelle reorganization in bovine oocytes during dominant follicle growth and regression. Reprod Biol Endocrinol 2015; 13:124. [PMID: 26577904 PMCID: PMC4650271 DOI: 10.1186/s12958-015-0122-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We tested the hypothesis that organelles in bovine oocytes undergo changes in number and spatial distribution in a manner specific for phase of follicle development. METHODS Cumulus-oocyte-complexes were collected from Hereford heifers by ultrasound-guided follicle aspiration from dominant follicles in the growing phase (n = 5; Day 0 = ovulation), static phase (n = 5), regressing phase (n = 7) of Wave 1 and from preovulatory follicles (n = 5). Oocytes were processed and transmission electron micrographs of ooplasm representing peripheral, perinuclear and central regions were evaluated using standard stereological methods. RESULTS The number of mitochondria and volume occupied by lipid droplets was higher (P < 0.03) in oocytes from regressing follicles (193.0 ± 10.4/1000 μm(3) and 3.5 ± 0.7 %) than growing and preovulatory stages (118.7 ± 14.4/1000 μm(3) and 1.1 ± 0.3 %; 150.5 ± 28.7/1000 μm(3) and 1.6 ± 0.2 %, respectively). Oocytes from growing, static and preovulatory follicles had >70 % mitochondria in the peripheral regions whereas oocytes from regressing follicles had an even distribution. Oocytes from growing follicles had more lipid droplets in peripheral region than in central region (86.9 vs. 13.1 %). Percent surface area of mitochondria in contact with lipid droplets increased from growing (2.3 %) to static, regressing or preovulatory follicle stage (8.9, 6.1 and 6.2 %). The amount, size and distribution of other organelles did not differ among phases (P > 0.11). CONCLUSIONS Our hypothesis was supported in that mitochondrial number increased and translocation occurred from a peripheral to an even distribution as follicles entered the regressing phase. In addition, lipid droplets underwent spatial reorganization from a peripheral to an even distribution during the growing phase and mitochondria-lipid contact area increased with follicle maturation.
Collapse
Affiliation(s)
- D Dadarwal
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| | - G P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| | - P Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 7, DK-1870, Frederiksberg C, Denmark.
| | - G M Brogliatti
- Universidad Católica de Córdoba, Reproduccion animal, Cordoba, X5000IYG, Argentina.
| | - S Caldwell
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
36
|
Case reports to suggest an algorithm for management of total fertilisation failure prior to use of donor gametes. J Assist Reprod Genet 2015; 32:1679-84. [PMID: 26347343 DOI: 10.1007/s10815-015-0564-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Total fertilisation failure (TFF), even with intracytoplasmic sperm injection (ICSI), occurs in approximately 3 % of cycles, can be recurrent and the exact cause is difficult to elucidate. Differentiation between oocyte and sperm-related cause of TFF is possible using mouse oocyte-activation techniques, but is not an option within most clinical settings. Therefore, the management of these couples is clinically driven, and the endpoint, if recurrent, is often the use of donor gametes. However, with the invariable lack of a definitive cause of TFF, any decision between the use of donor sperm or oocytes remains an emotive one. We present two case reports demonstrating the importance of appropriate investigation, activation techniques (mechanical and chemical) and clinical management options to develop a clinical algorithm prior to the use of donor gametes. METHODS This study is composed of two case reports of assisted reproduction investigation and treatment within an assisted conception unit for couples with recurrent total fertilisation failure. RESULTS Using appropriate investigation (endocrine, urological and embryological) and treatments (ICSI, IMSI, oocyte-activation techniques), a fertilisation rate of 48 % was achieved in two cycles in couples following a total of nine previous cycles (and 200 previously collected eggs) with TFF. CONCLUSIONS Oocyte activation requires the triggering of intracellular calcium oscillations by the release of a sperm-specific factor (phospholipase C zeta (PLCζ)) into the oocyte cytoplasm. Although, PLCζ deficiencies have been demonstrated as putative causes of failed activation, impaired oocyte responsiveness may also be a factor. The use of donor gametes is often recommended and is often the required endpoint of treatment. However, these reports outline a clinical algorithm that potentially offers success without donation, and also offers a systematic approach to help decide whether donor oocytes or sperm should be recommended.
Collapse
|
37
|
Alves BG, Alves KA, Martins MC, Braga LS, Silva TH, Alves BG, Santos RM, Silva TV, Viu MAO, Beletti ME, Jacomini JO, Gambarini ML. Metabolic profile of serum and follicular fluid from postpartum dairy cows during summer and winter. Reprod Fertil Dev 2015; 26:866-74. [PMID: 23815864 DOI: 10.1071/rd13102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/04/2013] [Indexed: 11/23/2022] Open
Abstract
This study was designed to monitor the biochemical profiles of serum and follicular fluid (FF) of postpartum dairy cows during the summer (n=30) and winter (n=30). Blood and FF (follicles ≥ 9 mm) were obtained from Girolando cows at 30, 45, 60, 75 and 90 days postpartum. The samples were collected and analysed to determine glucose, total cholesterol (TC), triglyceride (TG), urea, sodium (Na), potassium (K) and calcium (Ca) levels. Throughout the study, the following clinical variables were measured: rectal temperature (RT), respiratory rate (RR) and body condition score (BCS). In addition, the temperature humidity index (THI) was calculated for each season. During the summer season, THI was higher, BCS decreased, there was an increase in RT, and glucose, urea, Na and K serum levels were decreased (P<0.05). The levels of TC, TG, urea, K and Ca in follicular fluid increased (P<0.05). Positive correlations (P<0.05) were observed between the serum and FF levels for glucose (r=0.29), TC (r=0.24) and Ca (r=0.30). Therefore, the biochemical profile of serum and FF of dairy cows under summer heat-stress conditions demonstrates marked changes that may impair fertility during lactation.
Collapse
Affiliation(s)
- Benner G Alves
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| | - Kele A Alves
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| | - Muller C Martins
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Lucas S Braga
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Thiago H Silva
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Bruna G Alves
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Ricarda M Santos
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Thiago V Silva
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| | - Marco A O Viu
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| | - Marcello E Beletti
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - José O Jacomini
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Maria L Gambarini
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| |
Collapse
|
38
|
Kalo D, Roth Z. Effects of mono(2-ethylhexyl)phthalate on cytoplasmic maturation of oocytes--The bovine model. Reprod Toxicol 2015; 53:141-51. [PMID: 25900598 DOI: 10.1016/j.reprotox.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/09/2015] [Accepted: 04/03/2015] [Indexed: 02/08/2023]
Abstract
Phthalates are known reproductive toxicants, but their intracellular disruptive effects on oocyte maturation competence are less known. We studied the potential risk associated with acute exposure of oocytes to mono(2-ethylhexyl)phthalate (MEHP). First, bovine oocytes were matured in vitro with or without 50 μM MEHP and examined for mitochondrial features associated with DNA fragmentation. MEHP increased reactive oxygen species levels and reduced the proportion of highly polarized mitochondria along with alterations in genes associated with mitochondrial oxidative phosphorylation (CYC1, MT-CO1 and ATP5B). In a second set of experiments, we associated the effects of MEHP on meiotic progression with those on cytoplasmic maturation. MEHP impaired reorganization of cytoplasmic organelles in matured oocytes reflected by reductions in category I mitochondria, type III cortical granules and class I endoplasmic reticulum. These alterations are associated with the previously reported reduced developmental competence of MEHP-treated bovine oocytes, and reveal the risk associated with acute exposure.
Collapse
Affiliation(s)
- D Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, and Center of Excellence in Agriculture and Environmental Health, the Hebrew University, Rehovot 76100, Israel
| | - Z Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, and Center of Excellence in Agriculture and Environmental Health, the Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
39
|
Sato KI. Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 2014; 16:114-34. [PMID: 25546390 PMCID: PMC4307238 DOI: 10.3390/ijms16010114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
40
|
Zhang CX, Cui W, Zhang M, Zhang J, Wang TY, Zhu J, Jiao GZ, Tan JH. Role of Na+/Ca2+ exchanger (NCX) in modulating postovulatory aging of mouse and rat oocytes. PLoS One 2014; 9:e93446. [PMID: 24695407 PMCID: PMC3973580 DOI: 10.1371/journal.pone.0093446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
We studied the role of the Na+/Ca2+ exchanger (NCX) in modulating oocyte postovulatory aging by observing changes in NCX contents and activities in aging mouse and rat oocytes. Whereas the NCX activity was measured by observing oocyte activation following culture with NCX inhibitor or activator, the NCX contents were determined by immunohistochemical quantification. Although NCX was active in freshly-ovulated rat oocytes recovered 13 h post hCG injection and in aged oocytes recovered 19 h post hCG in both species, it was not active in freshly-ovulated mouse oocytes. However, NCX became active when the freshly-ovulated mouse oocytes were activated with ethanol before culture. Measurement of cytoplasmic Ca2+ revealed Ca2+ increases always before NCX activation. Whereas levels of the reactive oxygen species (ROS) and the activation susceptibility increased, the density of NCX member 1 (NCX1) decreased significantly with oocyte aging in both species. While culture with H2O2 decreased the density of NCX1 significantly, culture with NaCl supplementation sustained the NCX1 density in mouse oocytes. It was concluded that (a) the NCX activity was involved in the modulation of oocyte aging and spontaneous activation; (b) ROS and Na+ regulated the NCX activity in aging oocytes by altering its density as well as functioning; and (c) cytoplasmic Ca2+ elevation was essential for NCX activation in the oocyte.
Collapse
Affiliation(s)
- Chuan-Xin Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Wei Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jiang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
- * E-mail:
| |
Collapse
|
41
|
Matthews LM, Evans JP. α-endosulfine (ENSA) regulates exit from prophase I arrest in mouse oocytes. Cell Cycle 2014; 13:1639-49. [PMID: 24675883 DOI: 10.4161/cc.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian oocytes in ovarian follicles are arrested in meiosis at prophase I. This arrest is maintained until ovulation, upon which the oocyte exits from this arrest, progresses through meiosis I and to metaphase of meiosis II. The progression from prophase I to metaphase II, known as meiotic maturation, is mediated by signals that coordinate these transitions in the life of the oocyte. ENSA (α-endosulfine) and ARPP19 (cAMP-regulated phosphoprotein-19) have emerged as regulators of M-phase, with function in inhibition of protein phosphatase 2A (PP2A) activity. Inhibition of PP2A maintains the phosphorylated state of CDK1 substrates, thus allowing progression into and/or maintenance of an M-phase state. We show here ENSA in mouse oocytes plays a key role in the progression from prophase I arrest into M-phase of meiosis I. The majority of ENSA-deficient oocytes fail to exit from prophase I arrest. This function of ENSA in oocytes is dependent on PP2A, and specifically on the regulatory subunit PPP2R2D (also known as B55δ). Treatment of ENSA-deficient oocytes with Okadaic acid to inhibit PP2A rescues the defect in meiotic progression, with Okadaic acid-treated, ENSA-deficient oocytes being able to exit from prophase I arrest. Similarly, oocytes deficient in both ENSA and PPP2R2D are able to exit from prophase I arrest to an extent similar to wild-type oocytes. These data are evidence of a role for ENSA in regulating meiotic maturation in mammalian oocytes, and also have potential relevance to human oocyte biology, as mouse and human have genes encoding both Arpp19 and Ensa.
Collapse
Affiliation(s)
- Lauren M Matthews
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| |
Collapse
|
42
|
Kawashima I, Umehara T, Noma N, Kawai T, Shitanaka M, Richards JS, Shimada M. Targeted disruption of Nrg1 in granulosa cells alters the temporal progression of oocyte maturation. Mol Endocrinol 2014; 28:706-21. [PMID: 24650175 DOI: 10.1210/me.2013-1316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuregulin 1 (NRG1) is induced in granulosa cells by LH and acts on granulosa and cumulus cells during ovulation. In this study, we sought to determine the role of NRG1 in oocyte maturation by generating a granulosa cell-specific Nrg1 knockout mouse (Nrg1(flox/flox);Cyp19a1Cre mice [gcNrg1KO]). In the gcNrg1KO mice, meiosis was induced 2 hours earlier than in control mice. More than 60% of the oocytes in the mutant mice spontaneously re-resumed meiosis beyond the MII stage. The percentage of successful fertilization was comparable in oocytes of both genotypes collected at 14 or 16 hours after human chorionic gonadotropin injection but was significantly lower in oocytes of the gcNrg1KO mice at 18 or 20 hours. The number of pups per litter was significantly decreased in gcNrg1KO mice. To determine the molecular events associated with the abnormal progression of meiosis in the gcNrg1KO mouse oocytes, the defects of cumulus/granulosa cell functions were analyzed. The expression of genes involved in luteinization and cumulus expansion was significantly higher at 2 hours after human chorionic gonadotropin injection in the gcNrg1KO mice; this was related to abnormal activation of protein kinase C (PKC) and phosphorylation of connexin-43 in cumulus cells. Changes in connexin-43 by PKC might lead to early meiotic resumption of oocytes in gcNrg1KO mice. We conclude that NRG1 is induced by LH in mural granulosa cells and exerts an important regulatory role in oocyte meiotic maturation and competence by reducing PKC activation in cumulus cells and preventing premature progression to the MII stage that leads to abnormal fertilization and fertility.
Collapse
Affiliation(s)
- Ikko Kawashima
- Laboratory of Reproductive Endocrinology (I.K., T.U., N.N., T.K., M.S., M.S.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima,739-8528, Japan; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
43
|
PANDAY SUNIL, PARDASANI KAMALRAJ. FINITE ELEMENT MODEL TO STUDY THE MECHANICS OF CALCIUM REGULATION IN OOCYTE. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
At various stages of fertilization specific spatial and temporal patterns of Ca 2+ are required for oocyte maturation. It is crucial to understand the mechanics of Ca 2+ regulation in cytosol of oocytes, in order to have better understanding of fertilization process. In this paper, a finite element model of cytosolic calcium regulation in oocyte has been developed for a two-dimensional unsteady state case. The model incorporates the important biophysical processes like diffusion, reaction, leak from endoplasmic recticulum (ER), efflux from cytosol to ER via sarco-ER calcium adenosine triphosphate (SERCA) pumps, buffers and sodium calcium exchanger. Appropriate boundary conditions have been framed. The effect of source, buffer, sodium calcium exchanger, etc. on spatial and temporal patterns of calcium in oocyte have been studied with the help of numerical results.
Collapse
Affiliation(s)
- SUNIL PANDAY
- Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051, India
| | - KAMAL RAJ PARDASANI
- Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051, India
| |
Collapse
|
44
|
Vanden Meerschaut F, Nikiforaki D, Heindryckx B, De Sutter P. Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online 2014; 28:560-71. [PMID: 24656559 DOI: 10.1016/j.rbmo.2014.01.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
The capacity of intracytoplasmic sperm injection (ICSI) to permit almost any type of spermatozoa to fertilize oocytes has made it the most successful treatment for male factor infertility. Despite its high success rates, fertilization failure following ICSI still occurs in 1-3% of couples. Assisted oocyte activation (AOA) is being increasingly applied in human assisted reproduction to restore fertilization and pregnancy rates in couples with a history of ICSI fertilization failure. However, controversy still exists mainly because the artificial activating agents do not mimic precisely the initial physiological processes of mammalian oocyte activation, which has led to safety concerns. This review addresses the mechanism of human oocyte activation and the relatively rare phenomenon of fertilization failure after ICSI. Next, it describes the current diagnostic approaches and focuses on the application, efficiency and safety of AOA in human assisted reproduction.
Collapse
Affiliation(s)
- Frauke Vanden Meerschaut
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| | - Dimitra Nikiforaki
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium.
| | - Petra De Sutter
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Mortimer D, Barratt CLR, Björndahl L, de Jager C, Jequier AM, Muller CH. What should it take to describe a substance or product as 'sperm-safe'. Hum Reprod Update 2013; 19 Suppl 1:i1-45. [PMID: 23552271 DOI: 10.1093/humupd/dmt008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Male reproductive potential continues to be adversely affected by many environmental, industrial and pharmaceutical toxins. Pre-emptive testing for reproductive toxicological (side-)effects remains limited, or even non-existent. Many products that come into direct contact with spermatozoa lack adequate testing for the absence of adverse effects, and numerous products that are intended for exposure to spermatozoa have only a general assumption of safety based on the absence of evidence of actual harm. Such assumptions can have unfortunate adverse impacts on at-risk individuals (e.g. couples who are trying to conceive), illustrating a clear need for appropriate up-front testing to establish actual 'sperm safety'. METHODS After compiling a list of general areas within the review's scope, relevant literature and other information was obtained from the authors' personal professional libraries and archives, and supplemented as necessary using PubMed and Google searches. Review by co-authors identified and eliminated errors of omission or bias. RESULTS This review provides an overview of the broad range of substances, materials and products that can affect male fertility, especially through sperm fertilizing ability, along with a discussion of practical methods and bioassays for their evaluation. It is concluded that products can only be claimed to be 'sperm-safe' after performing objective, properly designed experimental studies; extrapolation from supposed predicate products or other assumptions cannot be trusted. CONCLUSIONS We call for adopting the precautionary principle, especially when exposure to a product might affect not only a couple's fertility potential but also the health of resulting offspring and perhaps future generations.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Kryzak CA, Moraine MM, Kyle DD, Lee HJ, Cubeñas-Potts C, Robinson DN, Evans JP. Prophase I mouse oocytes are deficient in the ability to respond to fertilization by decreasing membrane receptivity to sperm and establishing a membrane block to polyspermy. Biol Reprod 2013; 89:44. [PMID: 23863404 DOI: 10.1095/biolreprod.113.110221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Changes occurring as the prophase I oocyte matures to metaphase II are critical for the acquisition of competence for normal egg activation and early embryogenesis. A prophase I oocyte cannot respond to a fertilizing sperm as a metaphase II egg does, including the ability to prevent polyspermic fertilization. Studies here demonstrate that the competence for the membrane block to polyspermy is deficient in prophase I mouse oocytes. In vitro fertilization experiments using identical insemination conditions result in monospermy in 87% of zona pellucida (ZP)-free metaphase II eggs, while 92% of ZP-free prophase I oocytes have four or more fused sperm. The membrane block is associated with a postfertilization reduction in the capacity to support sperm binding, but this reduction in sperm-binding capacity is both less robust and slower to develop in fertilized prophase I oocytes. Fertilization of oocytes is dependent on the tetraspanin CD9, but little to no release of CD9 from the oocyte membrane is detected, suggesting that release of CD9-containing vesicles is not essential for fertilization. The deficiency in membrane block establishment in prophase I oocytes correlates with abnormalities in two postfertilization cytoskeletal changes: sperm-induced cortical remodeling that results in fertilization cone formation and a postfertilization increase in effective cortical tension. These data indicate that cortical maturation is a component of cytoplasmic maturation during the oocyte-to-egg transition and that the egg cortex has to be appropriately primed and tuned to be responsive to a fertilizing sperm.
Collapse
Affiliation(s)
- Cassie A Kryzak
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Jiao GZ, Cao XY, Cui W, Lian HY, Miao YL, Wu XF, Han D, Tan JH. Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. PLoS One 2013; 8:e58018. [PMID: 23469259 PMCID: PMC3585726 DOI: 10.1371/journal.pone.0058018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022] Open
Abstract
Although oocytes from prepubertal animals are found less competent than oocytes from adults, the underlying mechanisms are poorly understood. Using the mouse oocyte model, this paper has tested the hypothesis that the developmental potential of prepubertal oocytes is compromised due mainly to their impaired potential for glutathione synthesis. Oocytes from prepubertal and adult mice, primed with or without eCG, were matured in vitro and assessed for glutathione synthesis potential, oxidative stress, Ca2+ reserves, fertilization and in vitro development potential. In unprimed mice, abilities for glutathione synthesis, activation, male pronuclear formation, blastocyst formation, cortical granule migration and polyspermic block were all compromised significantly in prepubertal compared to adult oocytes. Cysteamine and cystine supplementation to maturation medium significantly promoted oocyte glutathione synthesis and blastocyst development but difference due to maternal age remained. Whereas reactive oxygen species (ROS) levels increased, Ca2+ storage decreased significantly in prepubertal oocytes. Levels of both catalytic and modifier subunits of the γ-glutamylcysteine ligase were significantly lower in prepubertal than in adult oocytes. Maternal eCG priming improved all the parameters and eliminated the age difference. Together, the results have confirmed our hypothesis by showing that prepubertal oocytes have a decreased ability to synthesize glutathione leading to an impaired potential to reduce ROS and to form male pronuclei and blastocysts. The resulting oxidative stress decreases the intracellular Ca2+ store resulting in impaired activation at fertilization, and damages the microfilament network, which affects cortical granule redistribution leading to polyspermy.
Collapse
Affiliation(s)
- Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Xin-Yan Cao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Wei Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Hua-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Yi-Long Miao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Xiu-Fen Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Dong Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
- * E-mail:
| |
Collapse
|
48
|
Vanden Meerschaut F, Leybaert L, Nikiforaki D, Qian C, Heindryckx B, De Sutter P. Diagnostic and prognostic value of calcium oscillatory pattern analysis for patients with ICSI fertilization failure. Hum Reprod 2012; 28:87-98. [DOI: 10.1093/humrep/des368] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Liu XY, Miao YL, Zhang J, Qiu JH, Cui XZ, Gao WQ, Luo MJ, Tan JH. Effects of activation on functional aster formation, microtubule assembly, and blastocyst development of goat oocytes injected with round spermatids. Cell Reprogram 2012; 14:436-47. [PMID: 22908906 DOI: 10.1089/cell.2012.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A systematic study was conducted on round spermatids (ROS) injection (ROSI) using the goat model. After ROSI, the oocytes were treated or not with ionomycin (ROSI+I and ROSI-I, respectively) and compared with intracytoplasmic sperm injection (ICSI). After ROSI-I, most oocytes were arrested with premature chromatin condensation and few oocytes formed pronuclei. In contrast, most oocytes formed pronuclei after ROSI+I. Some ROS were observed to form asters that organized a dense microtubule network after ROSI+I, but after ROSI-I, no ROS asters were observed. Whereas most of the oocytes showed Ca(2+) rises and a significant decline in maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities after ROSI+I, no such changes were observed after ROSI-I. Due to the lack of Ca(2+) oscillations after ROSI-I, oocytes were injected with more ROS. Interestingly, different from the results observed in a single ROS injection, injection with four ROS effectively activated oocytes by inducing typical Ca(2+) oscillations. Whereas ROSI+I oocytes and ICSI oocytes both showed extensive microtubule networks, no such a network was observed in parthenogenetic oocytes. Together, the results suggest that goat ROS is not able to trigger intracellular Ca(2+) rises and thus to inhibit MPF and MAPK activities, but artificial activation improved fertilization and development of ROSI goat oocytes. Goat ROS can organize functional microtubular asters in activated oocytes. A ROS-derived factor(s) may be essential for organization of a functional microtubule network to unite pronuclei. Goat centrosome is of paternal origin because both ROS and sperm asters organized an extensive microtubule network after intra-oocyte injection.
Collapse
Affiliation(s)
- Xin-Yong Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Participation of IP3R, RyR and L-type Ca2+ channel in the nuclear maturation of Rhinella arenarum oocytes. ZYGOTE 2012; 22:110-23. [DOI: 10.1017/s0967199412000287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryDuring meiosis resumption, oocytes undergo a series of nuclear and cytosolic changes that prepare them for fertilization and that are referred to as oocyte maturation. These events are characterized by germinal vesicle breakdown (GVBD), chromatin condensation and spindle formation and, among cytosolic changes, organelle redistribution and maturation of Ca2+-release mechanisms. The progression of the meiotic cell cycle is regulated by M phase/maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Changes in the levels of intracellular free Ca2+ ion have also been implicated strongly in the triggering of the initiation of the M phase. Ca2+ signals can be generated by Ca2+ release from intracellular Ca2+ stores (endoplasmic reticulum; ER) or by Ca2+ influx from the extracellular space. In this sense, the L-type Ca2+ channel plays an important role in the incorporation of Ca2+ from the extracellular space. Two types of intracellular Ca2+ receptor/channels are known to mediate the intracellular Ca2+ release from the ER lumen. The most abundant, the inositol 1,4,5-trisphosphate receptor (IP3R), and the other Ca2+ channel, the ryanodine receptor (RyR), have also been reported to mediate Ca2+ release in several oocytes. In amphibians, MPF and MAPK play a central role during oocyte maturation, controlling several events. However, no definitive relationships have been identified between Ca2+ and MPF or MAPK. We investigated the participation of Ca2+ in the spontaneous and progesterone-induced nuclear maturation in Rhinella arenarum oocytes and the effect of different pharmacological agents known to produce modifications in the Ca2+ channels. We demonstrated that loading competent and incompetent oocytes with the intracellular calcium chelator BAPTA/AM produced suppression of spontaneous and progesterone-induced GVBD. In our results, the capacity of progesterone to trigger meiosis reinitiation in Rhinella in the presence of L-type Ca2+ channel blockers (nifedipine and lanthane) indicated that spontaneous and progesterone-induced maturation would be independent of extracellular calcium influx, but would be sensitive to intracellular Ca2+ deprivation. As demonstrated by the effect of thimerosal and heparin in Rhinella arenarum, the intracellular increase in Ca2+ during maturation is also mediated mainly by IP3R. In addition, our results using caffeine, an agonist of the RyR, could suggest that Ca2+ release from ryanodine-sensitive stores is not essential for oocyte maturation in Rhinella. The decrease in MPF activity with NaVO3 negatively affected the percentage of thimerosal-induced GVBD. This finding suggests that Ca2+ release through the IP3R could be involved in the signalling pathway that induces MPF activation. However, the inhibition of MAP/ERK kinase (MEK) by PD98128 or P90 by geldanamycin produced a significant decrease in the percentages of GVBD induced by thimerosal. This finding suggests that Ca2+ release per se cannot bypass the inhibition of the MAPK activity.
Collapse
|