1
|
Kumari R, Kumar M, Dadheech PK, Vivekanand V, Pareek N. Response surface optimization, purification, characterization and short-chain chitooligosaccharides production from an acidic, thermostable chitinase from Thermomyces dupontii. Int J Biol Macromol 2024; 267:131362. [PMID: 38583843 DOI: 10.1016/j.ijbiomac.2024.131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/10/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Chitin, recovered in huge amounts from coastal waste, may biocatalytically valorized for utilization in food and biotech sectors. Conventional chemical-based conversion makes use of significant volumes of hazardous acid and alkali. Alternatively, enzymes offer better process control and generation of homogeneous products. Process variables were derived to achieve augmented levels of chitinase (3.8809 Ul-1 h-1) productivity from a novel thermophilic fungal strain Thermomyces dupontii, ITCC 9104 following incubation (96 h, 45 °C). An acidic thermostable chitinase TdChiT having molecular mass of 60 kDa has been purified. Optimal TdChiT activity has been demonstrated at 70 °C and pH 5. Notably decreased activity over a broad range of temperature and pH was observed following deglycosylation. Half-life, activation energy, Gibbs free energy, enthalpy and entropy for denaturation of TdChiT at its optimum temperature were 197.40 min, 105.48 kJ mol-1, 100.59 kJ mol-1, 102.64 kJ mol-1 and 5.95 J mol-1 K-1. TdChiT has specificity towards colloidal chitin and (GlcNAc)2-4. Metal ions viz. Mn2+, Ca2+ and Co2+ and nonionic surfactants notably enhanced chitinase activity. Thin layer chromatography analysis has revealed effective hydrolysis of colloidal chitin and (GlcNAc)2-4. TdChiT may potentially be employed for design of better, eco-friendly and less resource-intensive industrial procedures for upcycling of crustacean waste into value-added organonitrogens.
Collapse
Affiliation(s)
- Rajni Kumari
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Pawan K Dadheech
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India.
| |
Collapse
|
2
|
Dwyer K, Bentley IS, Fitzpatrick DA, Saleh AA, Tighe E, McGleenan E, Gaffney D, Walsh G. Recombinant production, characterization and industrial application testing of a novel acidic exo/endo-chitinase from Rasamsonia emersonii. Extremophiles 2023; 27:10. [PMID: 37071215 DOI: 10.1007/s00792-023-01293-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023]
Abstract
An acid-active exo/endo-chitinase; comprising a GH18 catalytic domain and substrate insertion domain; originating from the thermophilic filamentous fungus Rasamsonia emersonii, was expressed in Pichia pastoris. In silico analysis including phylogenetic analysis, and recombinant production, purification, biochemical characterisation, and industrial application testing, was carried out. The expressed protein was identified by SDS-PAGE as a smear from 56.3 to 125.1 kDa, which sharpens into bands at 46.0 kDa, 48.4 kDa and a smear above 60 kDa when treated with PNGase F. The acid-active chitinase was primarily a chitobiosidase but displayed some endo-chitinase and acetyl-glucosamidase activity. The enzyme was optimally active at 50 °C, and markedly low pH of 2.8. As far as the authors are aware, this is the lowest pH optima reported for any fungal chitinase. The acid-active chitinase likely plays a role in chitin degradation for cell uptake in its native environment, perhaps in conjunction with a chitin deacetylase. Comparative studies with other R. emersonii chitinases indicate that they may play a synergistic role in this. The acid-active chitinase displayed some efficacy against non-treated substrates; fungal chitin and chitin from shrimp. Thus, it may be suited to industrial chitin hydrolysis reactions for extraction of glucosamine and chitobiose at low pH.
Collapse
Affiliation(s)
- Kelly Dwyer
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland.
- Chemical Sciences Department, University of Limerick, Castletroy, Limerick, Ireland.
| | - Ian S Bentley
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | | | - Aliabbas A Saleh
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Emma Tighe
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Eibhilin McGleenan
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Darragh Gaffney
- MBio Labs at Monaghan Mushrooms Ireland Ultd, Tyholland, Monaghan, Ireland
| | - Gary Walsh
- Chemical Sciences Department, University of Limerick, Castletroy, Limerick, Ireland.
| |
Collapse
|
3
|
Chung D, Kwon YM, Lim JY, Bae SS, Choi G, Lee DS. Characterization of Chitinolytic and Antifungal Activities in Marine-Derived Trichoderma bissettii Strains. MYCOBIOLOGY 2022; 50:244-253. [PMID: 36158047 PMCID: PMC9467547 DOI: 10.1080/12298093.2022.2105509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 05/30/2023]
Abstract
Trichoderma fungi have been intensively studied for mycoparasitism, and the latter is closely related to their cell-wall degrading enzymes including chitinase. Here, we studied marine-derived Trichoderma spp., isolated from distinct sources and locations, for chitinolytic and antifungal activity. Based on morphological and phylogenetic analyses, two strains designated GJ-Sp1 and TOP-Co8 (isolated from a marine sponge and a marine alga, respectively) were identified as Trichoderma bissettii. This species has recently been identified as a closely related species to Trichoderma longibrachiatum. The extracellular crude enzymes of GJ-Sp1 and TOP-Co8 showed activities of chitobiosidase and β-N-acetylglucosaminidase (exochitinase) and chitotriosidase (endochitinase). The optimum chitinolytic activity of the crude enzymes was observed at 50 °C, pH 5.0, 0-0.5% NaCl concentrations, and the activities were stable at temperatures ranging from 10 to 40 °C for 2 h. Moreover, the crude enzymes showed inhibitory activity against hyphal growth of two filamentous fungi Aspergillus flavus and Aspergillus niger. To the best of our knowledge, this is the first report of the chitinolytic and antifungal activity of T. bissettii.
Collapse
Affiliation(s)
- Dawoon Chung
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Ji Yeon Lim
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Seung Sub Bae
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Grace Choi
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon, South Korea
| |
Collapse
|
4
|
Akram F, Jabbar Z, Aqeel A, Haq IU, Tariq S, Malik K. A Contemporary Appraisal on Impending Industrial and Agricultural Applications of Thermophilic-Recombinant Chitinolytic Enzymes from Microbial Sources. Mol Biotechnol 2022; 64:1055-1075. [PMID: 35397055 DOI: 10.1007/s12033-022-00486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
Abstract
The ability of chitinases to degrade the second most abundant polymer, chitin, into potentially useful chitooligomers and chitin derivatives has not only rendered them fit for chitinous waste management but has also made them important from industrial point of view. At the same time, they have also been recognized to have an imperative role as promising biocontrol agents for controlling plant diseases. As thermostability is an important property for an industrially important enzyme, various bacterial and fungal sources are being exploited to obtain such stable enzymes. These stable enzymes can also play a role in agriculture by maintaining their stability under adverse environmental conditions for longer time duration when used as biocontrol agent. Biotechnology has also played its role in the development of recombinant chitinases with enhanced activity, thermostability, fungicidal and insecticidal activity via recombinant DNA techniques. Furthermore, a relatively new approach of generating pathogen-resistant transgenic plants has opened new ways for sustainable agriculture by minimizing the yield loss of valuable crops and plants. This review focuses on the potential applications of thermostable and recombinant microbial chitinases in industry and agriculture.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Shahbaz Tariq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Suryawanshi N, Eswari JS. Purification and characterization of chitinase produced by thermophilic fungi Thermomyces lanuginosus. Prep Biochem Biotechnol 2022; 52:1087-1095. [PMID: 35112660 DOI: 10.1080/10826068.2022.2028639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In the past few years, the production of shrimp shell waste from the seafood processing industries has confronted a significant surge. Furthermore, insignificant dumping of waste has dangerous effects on both nature and human well-being. This marine waste contains a huge quantity of chitin which has several applications in different fields. The chitinase enzyme can achieve degradation of chitin, and the chitin itself can be used as the substrate as well for production of chitinase. In the current study, the chitinase enzyme was produced by Thermomyces lanuginosus. The extracellular chitinase was purified from crude extract using ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography and Sephadex G-100 gel filtration chromatography. The stability and activity of chitinase with different pH, temperature, different times for a reaction, in the presence of different metal ions, and different concentration of enzyme and substrate were analyzed. RESULT The chitinase activity was found to be highest at pH 6.5, 50 °C, and 60 min after the reaction began. and the chitinase showed the highest activity and stability in the presence of β-mercaptoethanol (ME). The SDS-PAGE of denatured purified chitinase showed a protein band of 18 kDa. CONCLUSION The characterization study concludes that Cu2+, Hg2+, and EDTA have an inhibitory effect on chitinase activity, whereas β-ME acts as an activator for chitinase activity. The utilization of chitin to produce chitinase and the degradation of chitin using that chitinase enzyme would be an opportunity for bioremediation of shrimp shell waste.
Collapse
Affiliation(s)
- Nisha Suryawanshi
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - J Satya Eswari
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
6
|
Recombinant production and characterisation of two chitinases from Rasamsonia emersonii, and assessment of their potential industrial applicability. Appl Microbiol Biotechnol 2021; 105:7769-7783. [PMID: 34581845 DOI: 10.1007/s00253-021-11578-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Rasamsonia emersonii (previously Talaromyces emersonii) is a thermophilic filamentous fungus displaying optimum growth at 45 °C. It has a history of use in commercial food enzyme production. Its unfractionated chitinolytic secretome was partially characterised in the early 1990s; however, no individual chitinase from this source has been described in literature previously. This study describes two GH18 chitinases originating from the R. emersonii genome, expressed in the methylotrophic yeast P. pastoris. Chit1 comprises of a GH18 catalytic domain and Chit2 comprises of a GH18 catalytic domain and a chitin-binding motif at the C-terminal. The chitinases were expressed as glycoproteins. The apparent molecular weight of Chit1 was 35.8-42.1 kDa with a smearing tail associated with glyco-sidechains visible up to 72.2 kDa. This became two bands of 30.8 and 29.0 kDa upon de-glycosylation. The apparent molecular weight of Chit2 was 50.4 kDa, reducing to 48.2 kDa upon de-glycosylation. Both chitinases displayed endo-chitinase and chitobiosidase activity, temperature optima of 50-55 °C and low pH optima (pH 4.5 or lower); Chit1 displayed a pH optimum of 3.5, retaining > 60% maximum activity at pH 2.2, a pH range lower than most enzymes of fungal origin. Chit2 displayed the highest chitin-degrading ability at 3456 µmol/mg on 4-NP-triacetylchitotriose, but lost activity faster than Chit1, which displayed 403 µmol/mg on the same substrate. The predicted D values (time required to reduce the enzyme activity to 10% of its original value at 50 °C) were 19.2 and 2.3 days for Chit1 and Chit2, respectively. Thus, Chit1 can be considered one of few hyperthermostable chitinase enzymes described in literature to date. Their physicochemical properties render these chitinases likely suitable for shrimp chitin processing including one-step chitin hydrolysis and alternative sustainable protein processing and the attractive emerging application of mushroom food waste valorisation.Key points• Two GH18 chitinases originating from the industrially relevant thermophilic fungus R. emersonii were cloned and expressed in P. pastoris.• The purified recombinant chitinases showed low pH and high temperature optima and appreciable thermostability at industrially relevant temperatures.• The chitinases displayed characteristics that indicate their likely suitability to several industrial applications including sustainable alternative protein processing, food waste valorisation of commercial mushroom production and one-step shrimp chitin processing.
Collapse
|
7
|
Akram F, Akram R, Ikram Ul Haq, Nawaz A, Jabbar Z, Ahmed Z. Biotechnological Eminence of Chitinases: A Focus on Thermophilic Enzyme Sources, Production Strategies and Prominent Applications. Protein Pept Lett 2021; 28:1009-1022. [PMID: 33602064 DOI: 10.2174/0929866528666210218215359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chitin, the second most abundant polysaccharide in nature, is a constantly valuable and renewable raw material after cellulose. Due to advancement in technology, industrial interest has grown to take advantage of the chitin. OBJECTIVE Now, biomass is being treated with diverse microbial enzymes or cells for the production of desired products under best industrial conditions. Glycosidic bonds in chitin structure are degraded by chitinase enzymes, which are characterized into number of glycoside hydrolase (GHs) families. METHODS Thermophilic microorganisms are remarkable sources of industrially important thermostable enzymes, having ability to survive harsh industrial processing conditions. Thermostable chitinases have an edge over mesophilic chitinases as they can hydrolyse the substrate at relatively high temperatures and exhibit decreased viscosity, significantly reduced contamination risk, thermal and chemical stability and increased solubility. Various methods are employed to purify the enzyme and increase its yield by optimizing various parameters such as temperature, pH, agitation, and by investigating the effect of different chemicals and metal ions etc. Results: Thermostable chitinase enzymes show high specific activity at elevated temperature which distinguish them from mesophiles. Genetic engineering can be used for further improvement of natural chitinases, and unlimited potential for the production of thermophilic chitinases has been highlighted due to advancement in synthetic biological techniques. Thermostable chitinases are then used in different fields such as bioremediation, medicine, agriculture and pharmaceuticals. CONCLUSION This review will provide information about chitinases, biotechnological potential of thermostable enzyme and the methods by which they are being produced and optimized for several industrial applications. Some of the applications of thermostable chitinases have also been briefly described.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Rabia Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| |
Collapse
|
8
|
Symbiotic chitin degradation by a novel anaerobic thermophilic bacterium Hydrogenispora sp. UUS1-1 and the bacterium Tepidanaerobacter sp. GT38. Enzyme Microb Technol 2020; 144:109740. [PMID: 33541575 DOI: 10.1016/j.enzmictec.2020.109740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 01/21/2023]
Abstract
Chitin is the second most abundant organic compound in nature. Although mesophilic bacteria degrade insoluble chitin, there is a paucity of data describing degradation of insoluble chitin by anaerobic thermophilic bacteria. In this report, we screened cow manure compost for new chitin degradation systems, and identified a chitinolytic bacterial community (CBC) that showed high chitin degradation activity under thermophilic conditions, i.e., 1% (w/v) chitin powder degraded completely within 7 days at 60 °C. Metagenomic analysis revealed that the CBC was dominated by two bacterial genera from Hydrogenispora, an uncultured taxonomic group, and Tepidanaerobacter. Hydrogenispora were abundant in the early-to-mid stages of culturing with chitin, whereas the population of Tepidanaerobacter increased during the later stages of culturing. Strains UUS1-1 and GT38, which were isolated as pure cultures using the roll-tube method with colloidal chitin, N-acetyl-d-glucosamine, and glucose as carbon sources, were found to be closely related to H. ethanolica and T. acetatoxydans, respectively. Strain UUS1-1 readily degraded chitin and is the first anaerobic thermophilic chitinolytic bacterium reported, whereas strain GT38 showed no chitinolytic activity. Based on phylogenetic analysis, UUS1-1 and GT38 should be classified as novel genera and species. Zymogram analysis revealed that UUS1-1 produces at least two chitinases with molecular weights of 150 and 40 kDa. A coculture of UUS1-1 and GT38 degraded crystalline chitin faster with lower accumulation of lactate compared with UUS1-1 alone, indicating that the strains maintained a symbiotic association through assimilation of organic acids in chitin degradation and that strain GT38 consumed end-products to reduce end-product inhibition and enhance the degradation of crystalline chitin.
Collapse
|
9
|
Du J, Duan S, Miao J, Zhai M, Cao Y. Purification and characterization of chitinase from Paenibacillus sp. . Biotechnol Appl Biochem 2020; 68:30-40. [PMID: 31957084 DOI: 10.1002/bab.1889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/15/2020] [Indexed: 11/10/2022]
Abstract
The chitinase-producing bacteria Paenibacillus sp. was isolated from soil samples. The chitinase was purified successively by ammonia sulfate fractional precipitation followed by chromatography on DEAE 52-cellulose column and then on Sephadex G-75 column. The chitinase has a molecular weight of ca. 30 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis. Its optimum pH is 4.5, and its optimum temperature is 50 °C with colloidal chitin as a substrate. The enzyme is stable below 45 °C and in pH ranges between 4.5 and 5.5. It is activated by glucosamine, glucose, N-acetylglucosamine, and metal ions including Ca2+ , Fe2+ , Fe3+ , and Ni2+ . It is inhibited by SDS, H2 O2 , ascorbic acid, Cu2+ , Mg2+ , Ba2+ , Sn2+ , Cr3+ , and K+ . With colloidal chitin as substrate, the Km and the Vmax of the chitinase are 4.28 mg/mL and 14.29 μg/(Min·mL), respectively, whereas the end products of the enzymatic hydrolysis are 14.33% monomer and 85.67% dimer of N-acetylglucosamine. The viscosity of carboxymethyl chitin decreased rapidly at the initial stages when subjected to chitinase hydrolysis, which indicates that the chitinase acts in an endosplitting pattern.
Collapse
Affiliation(s)
- Jinghe Du
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,Guangdong Ke Long Biotechnology Co., Ltd., Jingmen, People's Republic of China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| | - Miaomiao Zhai
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J Microbiol 2019; 57:372-380. [PMID: 30806979 DOI: 10.1007/s12275-019-8469-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Chitin is the most abundant biopolymer in marine environments. To facilitate its utilization, our laboratory screened marine-derived fungal strains for chitinolytic activity. One chitinolytic strain isolated from seawater, designated YS2-2, was identified as Acremonium species based on morphological and phylogenetic analyses. Acremonium species are cosmopolitan fungi commonly isolated from both terrestrial and marine environments, but their chitinolytic activity is largely unknown. The extracellular crude enzyme of YS2-2 exhibited optimum chitinolytic activity at pH 6.0-7.6, 23-45°C, and 1.5% (w/v) NaCl. Degenerate PCR revealed the partial cDNA sequence of a putative chitinase gene, chiA, in YS2-2. The expression of chiA was dramatically induced in response to 1% (w/v) colloidal chitin compared to levels under starvation, chitin powder, and glucose conditions. Moreover, the chiA transcript levels were positively correlated with chitinolytic activities under various colloidal chitin concentrations, suggesting that ChiA mediates chitinolytic activity in this strain. Our results provide a basis for additional studies of marinederived chitinolytic fungi aimed at improving industrial applications.
Collapse
|
11
|
Comparative biocontrol ability of chitinases from bacteria and recombinant chitinases from the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 2019; 127:663-671. [PMID: 30670323 DOI: 10.1016/j.jbiosc.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023]
Abstract
Microbial chitinases (EC 3.2.1.14) are known to hydrolyse the chitinous gut epithelium of insects and cell walls of many fungi. In this study, seven chitinases from different bacteria and fungi were produced, characterized and their biocontrol abilities against graminaceous stem borers Eldana saccharina, Chilo partellus and Sesamia calamistis were assessed. All chitinases were stable over broad ranges of pH and temperature, however, recombinant fungal chitinases were more acid-stable than the bacterial counterparts. Chitinases from the thermophilic filamentous fungi Thermomyces lanuginosus SSBP (Chit1) and from Bacillus licheniformis (Chit lic) caused 70% and 80% mortality, respectively, in second instar larvae of E. saccharina. Six of the seven partially-purified microbial chitinases inhibited Aspergillus niger, A. flavus, A. alliaceus, A. ochraceus, Fusarium verticillioides and Mucor sp. Overall, microbial chitinases show promise as biocontrol agents of fungi and stalk-boring lepidopterans.
Collapse
|
12
|
Kumar M, Brar A, Vivekanand V, Pareek N. Process optimization, purification and characterization of a novel acidic, thermostable chitinase from Humicola grisea. Int J Biol Macromol 2018; 116:931-938. [DOI: 10.1016/j.ijbiomac.2018.05.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 05/18/2018] [Indexed: 01/09/2023]
|
13
|
Alves TB, de Oliveira Ornela PH, de Oliveira AHC, Jorge JA, Guimarães LHS. Production and characterization of a thermostable antifungal chitinase secreted by the filamentous fungus Aspergillus niveus under submerged fermentation. 3 Biotech 2018; 8:369. [PMID: 30105194 DOI: 10.1007/s13205-018-1397-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
The filamentous fungus Aspergillus niveus produced extracellular antifungal chitinase when cultured under submerged fermentation (SbmF) using crab shells as the carbon source. Maximal chitinase production was achieved at 192 h of cultivation using minimal medium containing 1% chitin. The enzyme was purified 1.97-fold with 40% recovery by ammonium sulfate precipitation and Sephadex G-100 gel filtration. The molecular mass was estimated to be 44 kDa by both 12% SDS-PAGE and Sepharose CL-6B gel filtration. Maximal A. niveus chitinase activity was obtained at 65 °C and pH 5.0. The enzyme was fully stable at 60 °C for up to 120 min and the enzymatic activity was increased by Mn2+. In the presence of reducing and denaturing compounds, the enzyme activity was not drastically affected. The chitinase was able to hydrolyze colloidal chitin, azure chitin, and 4-nitrophenyl N-acetyl-β-D glucosaminide; for the latter, the K0.5 and maximal velocity (Vmax) were 3.51 mM and 9.68 U/mg of protein, respectively. The A. niveus chitinase presented antifungal activity against Aspergillus niger (MIC = 84 µg/mL), A. fumigatus (MIC = 21 µg/mL), A. flavus (MIC = 24 µg/mL), A. phoenicis (MIC = 24 µg/mL), and Paecilomyces variotii (MIC = 21 µg/mL). The fungus A. niveus was able to produce a thermostable and denaturation-resistant chitinase able to inhibit fungal development, signaling its biotechnological potential.
Collapse
|
14
|
Sosnowska ME, Jankiewicz U, Kutwin M, Chwalibog A, Gałązka A. Influence of salts and metal nanoparticles on the activity and thermal stability of a recombinant chitinase from Stenotrophomonas maltophilia N4. Enzyme Microb Technol 2018; 116:6-15. [PMID: 29887018 DOI: 10.1016/j.enzmictec.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 11/28/2022]
Abstract
Cells of Escherichia coli Rosetta, containing plasmid pET-28a with sequences of DNA of chitinase from Stenotrophomonas maltophilia N4, were used for the efficient synthesis of recombinant chitinolytic enzyme. The objective of this study was to improve thermal stability of the recombinant chitinase by salts and metal nanoparticles (NP). The studied chitinase was thermolabile and largely lost its activity in the first minutes of storage at 50 and 60 °C. The optimum temperature for colloidal chitin hydrolysis by the enzyme was 50 °C. Application of sodium aurothiomalate hydrate and manganese chloride enhanced the activity of the recombinant enzyme. In general, chitinase activity was higher when silver nanoparticles (Ag-NP) were used, but lower for other NP. The thermal stability of chitinase immobilized on Ag-NP and manganese chloride was significantly higher than that of free chitinase. Chitinase thermal stability after gold and manganese oxide nanoparticle application was higher than that of the control at 50 °C. Platinum nanoparticles had no significant effect on thermostability. The Ag-NP had a smaller diameter (from 2 to 20 nm) than Au-NP (from 5 to 70 nm) and Pt-NP (from 4 to 80 nm). The TEM analysis showed that the used NP had a higher affinity for chitinase than for the synthetic substrate. The type, size, and location of the NP on the enzyme played a major role in the thermal stability of chitinase.
Collapse
Affiliation(s)
- Malwina Ewa Sosnowska
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786 Poland; Department of Biochemistry, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, 02-776 Poland
| | - Urszula Jankiewicz
- Department of Biochemistry, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, 02-776 Poland
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786 Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| | - Agnieszka Gałązka
- Department of Biochemistry, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, 02-776 Poland
| |
Collapse
|
15
|
Krolicka M, Hinz SWA, Koetsier MJ, Joosten R, Eggink G, van den Broek LAM, Boeriu CG. Chitinase Chi1 from Myceliophthora thermophila C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1658-1669. [PMID: 29359934 PMCID: PMC5847117 DOI: 10.1021/acs.jafc.7b04032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A thermostable Chitinase Chi1 from Myceliophthora thermophila C1 was homologously produced and characterized. Chitinase Chi1 shows high thermostability at 40 °C (>140 h 90% activity), 50 °C (>168 h 90% activity), and 55 °C (half-life 48 h). Chitinase Chi1 has broad substrate specificity and converts chitin, chitosan, modified chitosan, and chitin oligosaccharides. The activity of Chitinase Chi1 is strongly affected by the degree of deacetylation (DDA), molecular weight (Mw), and side chain modification of chitosan. Chitinase Chi1 releases mainly (GlcNAc)2 from insoluble chitin and chito-oligosaccharides with a polymerization degree (DP) ranging from 2 to 12 from chitosan, in a processive way. Chitinase Chi1 shows higher activity toward chitin oligosaccharides (GlcNAc)4-6 than toward (GlcNAc)3 and is inactive for (GlcNAc)2. During hydrolysis, oligosaccharides bind at subsites -2 to +2 in the enzyme's active site. Chitinase Chi1 can be used for chitin valorisation and for production of chitin- and chito-oligosaccharides at industrial scale.
Collapse
Affiliation(s)
- Malgorzata Krolicka
- Department
of Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | | | - Rob Joosten
- DuPont
Industrial Biosciences, Wageningen, The Netherlands
| | - Gerrit Eggink
- Department
of Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
- Wageningen
Food & Biobased Research, Wageningen, The Netherlands
| | | | - Carmen G. Boeriu
- Wageningen
Food & Biobased Research, Wageningen, The Netherlands
- E-mail: . Phone: +31 317 480168
| |
Collapse
|
16
|
Dua A, Joshi S, Satyanarayana T. Recombinant exochitinase of the thermophilic mould Myceliopthora thermophila BJA: Characteristics and utility in generating N-acetyl glucosamine and in biocontrol of phytopathogenic fungi. Biotechnol Prog 2016; 33:70-80. [PMID: 27689686 DOI: 10.1002/btpr.2370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/26/2016] [Indexed: 11/06/2022]
Abstract
Chitinase from the thermophilic mould Myceliopthora thermophila BJA (MtChit) is an acid tolerant, thermostable and organic solvent stable biocatalyst which does not require any metal ions for its activity. To produce high enzyme titres, reduce fermentation time and overcome the need for induction, this enzyme has been heterologously expressed under GAP promoter in the GRAS yeast, Pichia pastoris. The production medium supplemented with the permeabilizing agent Tween-20 supported two-fold higher rMtChit production (5.5 × 103 U L-1 ). The consensus sequences S(132)xG(133)G(134) and D(168)xxD(171)xD(173)xE(175) in the enzyme have been found to represent the substrate binding and catalytic sites, respectively. The rMtChit, purified to homogeneity by a two-step purification strategy, is a monomeric glycoprotein of ∼48 kDa, which is optimally active at 55°C and pH 5.0. The enzyme is thermostable with t1/2 values of 113 and 48 min at 65 and 75°C, respectively. Kinetic parameters Km , Vmax , kcat , and kcat /Km of the enzyme are 4.655 mg mL-1 , 34.246 nmol mg-1 s-1 , 3.425 × 106 min-1 , and 1.36 × 10-6 mg mL-1 min-1 , respectively. rMtChit is an unique exochitinase, since its action on chitin liberates N-acetylglucosamine NAG. The enzyme inhibits the growth of phytopathogenic fungi like Fusarium oxysporum and Curvularia lunata, therefore, this finds application as biofungicide at high temperatures during summer in tropics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:70-80, 2017.
Collapse
Affiliation(s)
- Ashima Dua
- Dept. of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - Swati Joshi
- Dept. of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - T Satyanarayana
- Dept. of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| |
Collapse
|
17
|
Characterization of an extracellular thermophilic chitinase from Paenibacillus thermoaerophilus strain TC22-2b isolated from compost. World J Microbiol Biotechnol 2014; 31:135-43. [DOI: 10.1007/s11274-014-1754-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
|
18
|
Li XJ, Zheng RC, Wu ZM, Ding X, Zheng YG. Thermophilic esterase from Thermomyces lanuginosus: Molecular cloning, functional expression and biochemical characterization. Protein Expr Purif 2014; 101:1-7. [DOI: 10.1016/j.pep.2014.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022]
|
19
|
Lee YS, Anees M, Park YS, Kim SB, Jung WJ, Kim KY. Purification and properties of a Meloidogyne-antagonistic chitinase from Lysobacter capsici YS1215. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The root-knot nematodes, Meloidogyne spp., cause serious diseases in various plants and their chemical control may lead to environmental problems. Therefore, alternative control measures against the phytopathogenic nematodes are being sought. One of the potential targets against Meloidogyne spp. may be the chitinolysis and degradation of nematode eggs. Therefore, in the present study, a chitinolytic and nematicidal strain of Lysobacter capsici YS1215 was isolated from an agricultural field in Korea. The aim of this study was to purify chitinase secreted by L. capsici YS1215 and investigate its nematicidal role against Meloidogyne incognita. The chitinase secreted by L. capsici YS1215 was purified by protein precipitation with 80% ammonium sulphate, anion-exchange chromatography with DEAE-cellulose and gel-filtration chromatography with Sephadex G-100. By chitinase-active staining of the purified enzyme, a single band was obtained with an estimated molecular mass of 43.6 kDa. The optimal pH and optimal temperature for the highest chitinase activity were 6.0 and 40°C, respectively. The purified chitinase degraded the chitin layer of the eggshells and significantly reduced hatch of second-stage juveniles. The activity of chitinase secreted by L. capsici YS1215 was not affected by CoCl2, MnCl2, MgCl2, CuSO4, CaCl2 or EDTA. The purified enzyme could also hydrolyse swollen chitin, glycol chitin, glycol chitosan and chitin powder. Thus, the role of chitinase secreted by L. capsici YS1215 against Meloidogyne spp. may be useful for further development of a biocontrol agent.
Collapse
Affiliation(s)
- Yong Seong Lee
- 1Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University, Gwangju 500-757, South Korea
| | - Muhammad Anees
- 2Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yun Serk Park
- 3Purne Co., Ltd, Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, South Korea
| | - Sun Bae Kim
- 4Damyang Agriculture Technical Center, Damyang 517-800, South Korea
| | - Woo Jin Jung
- 1Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University, Gwangju 500-757, South Korea
| | - Kil Yong Kim
- 1Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture (202), Chonnam National University, Gwangju 500-757, South Korea
| |
Collapse
|
20
|
Swiontek Brzezinska M, Jankiewicz U, Burkowska A, Walczak M. Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 2013; 68:71-81. [PMID: 23989799 PMCID: PMC3889922 DOI: 10.1007/s00284-013-0440-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/05/2013] [Indexed: 11/29/2022]
Abstract
This paper provides a review of the latest research findings on the applications of microbial chitinases to biological control. Microorganisms producing these enzymes can inhibit the growth of many fungal diseases that pose a serious threat to global crop production. Currently, efforts are being made to discover producers of chitinolytic enzymes. The potential exists that natural biofungicides will replace chemical fungicides or will be used to supplement currently used fungicides, which would reduce the negative impact of chemicals on the environment and support the sustainable development of agriculture and forestry.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland,
| | | | | | | |
Collapse
|
21
|
Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:135498. [PMID: 23304523 PMCID: PMC3532916 DOI: 10.1155/2012/135498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022]
Abstract
This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni(2+) (32%), K(+) (44%), and Cu(2+) (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg(2+) (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer.
Collapse
|
22
|
Kopparapu NK, Zhou P, Zhang S, Yan Q, Liu Z, Jiang Z. Purification and characterization of a novel chitinase gene from Paecilomyces thermophila expressed in Escherichia coli. Carbohydr Res 2012; 347:155-60. [DOI: 10.1016/j.carres.2011.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
|
23
|
Expression and Characterization of a Thermostable Xylanase Gene xynA from a Themophilic Fungus in Pichia pastoris. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
De-hui DAI, Wei LI, Wei-lian HU, Xiao-ying SA. Effect of Medium Composition on the Synthesis of Chitinase and Chitin Deacetylase from Thermophilic Paenibacillus sp.Hul. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proenv.2011.10.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Waghmare SR, Ghosh JS. Chitobiose production by using a novel thermostable chitinase from Bacillus licheniformis strain JS isolated from a mushroom bed. Carbohydr Res 2010; 345:2630-5. [DOI: 10.1016/j.carres.2010.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
|