1
|
Law C, Pattathil N, Simpson H, Ward MJ, Lampen S, Kamath B, Aleman TS. Intraretinal hemorrhages and detailed retinal phenotype of three patients with Alagille syndrome. Ophthalmic Genet 2024; 45:522-531. [PMID: 38956866 DOI: 10.1080/13816810.2024.2362214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/01/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE To explore patterns of disease expression in Alagille syndrome (ALGS). METHODS Patients underwent ophthalmic examination, optical coherence tomography (OCT) imaging, fundus intravenous fluorescein angiography (IVFA), perimetry and full-field electroretinograms (ffERGs). An adult ALGS patient had multimodal imaging and specialized perimetry. RESULTS The proband (P1) had a heterozygous pathogenic variant in JAG1; (p.Gln410Ter) and was incidentally diagnosed at age 7 with a superficial retinal hemorrhage, vascular tortuosity, and midperipheral pigmentary changes. The hemorrhage recurred 15 months later. Her monozygotic twin sister (P2) had a retinal hemorrhage at the same location at age 11. Visual acuities for both patients were 20/30 in each eye. IVFA was normal. OCT showed thinning of the outer nuclear in the peripapillary retina. A ffERG showed normal cone-mediated responses in P1 (rod-mediated ERGs not documented), normal ffERGs in P2. Coagulation and liver function were normal. An unrelated 42-year-old woman with a de-novo pathogenic variant (p. Gly386Arg) in JAG1 showed a similar pigmentary retinopathy and hepatic vascular anomalies; rod and cone function was normal across large expanses of structurally normal retina that sharply transitioned to a blind atrophic peripheral retina. CONCLUSION Nearly identical recurrent intraretinal hemorrhages in monozygotic twins with ALGS suggest a shared subclinical microvascular abnormality. We hypothesize that the presence of large areas of functionally and structurally intact retina surrounded by severe chorioretinal degeneration, is against a predominant involvement of JAG1 in the function of the neurosensory retina, and that instead, primary abnormalities of chorioretinal vascular development and/or homeostasis may drive the peculiar phenotypes.
Collapse
Affiliation(s)
- Christine Law
- Queen's University School of Medicine, Kingston, Ontario, Canada
- Department of Ophthalmology, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | | | - Hailey Simpson
- Department of Ophthalmology, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Michael J Ward
- Division of Ophthalmology, Department of Surgery, Chester County Hospital and Chester County Eye Care Associates, West Chester, Pennsylvania, USA
| | - Shaun Lampen
- Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Binita Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Sick Kids Hospital, Toronto, Ontario, Canada
| | - Tomas S Aleman
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Guo CJ, Cao XL, Zhang YF, Yue KY, Han J, Yan H, Han H, Zheng MH. Exosome-mediated inhibition of microRNA-449a promotes the amplification of mouse retinal progenitor cells and enhances their transplantation in retinal degeneration mouse models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:763-778. [PMID: 36937621 PMCID: PMC10020531 DOI: 10.1016/j.omtn.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Inherited and age-related retinal degenerations are the commonest causes of blindness without effective treatments. Retinal progenitor cells (RPCs), which have the multipotency to differentiate into various retinal cell types, are regarded as a promising source of cell transplantation therapy for retinal degenerative diseases. However, the self-limited expansion of RPCs causes difficulty in cell source supply and restrict its clinical treatment. In this work, we found that inhibition of microRNA-449a (miR-449a) in RPCs can promote proliferation and inhibit apoptosis of RPCs, partially through upregulating Notch signaling. Further optimization of transduction miR-449a inhibitor into RPCs by endothelial cell-derived exosomes can promote the survival of RPCs transplanted in vivo and reduce cell apoptosis in retinal degeneration mouse models. In summary, these studies have shown that exosome-miR-449a inhibitor can effectively promote the expansion of RPCs in vitro and enhance transplanted RPCs survival in vivo, which might provide a novel intervention strategy for retinal degenerations in the future.
Collapse
Affiliation(s)
- Chen Jun Guo
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Xiu Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Yu Fei Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kang Yi Yue
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Hua Han, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi’an 710032, China.
| | - Min Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Min-Hua Zheng, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, China.
| |
Collapse
|
3
|
Jin Z, Guo Q, Wang Z, Wu X, Hu W, Li J, Li H, Zhu S, Zhang H, Chen Z, Xu H, Shi L, Yang L, Wang Y. Andrographolide suppresses hypoxia-induced embryonic hyaloid vascular system development through HIF-1a/VEGFR2 signaling pathway. Front Cardiovasc Med 2023; 10:1090938. [PMID: 36844722 PMCID: PMC9944699 DOI: 10.3389/fcvm.2023.1090938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Ocular abnormalities and the development of retinal vasculature may cause postnatal retinopathy. In the past decade, tremendous progress has been made in identifying the mechanisms that regulate retina vasculature. However, the means of regulating embryonic hyaloid vasculature development is largely unknown. This study aims to determine whether and how andrographolide regulates embryonic hyaloid vasculature development. Methods Murine embryonic retinas were used in this study. Whole mount isolectin B4 (IB4) staining, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and immunofluorescence staining (IF) were performed to determine whether andrographolide is critical for embryonic hyaloid vasculature development. BrdU incorporation assay, Boyden chamber migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay were performed to evaluate whether andrographolide regulates the proliferation and migration of vascular endothelial cells. Molecular docking simulation and Co-immunoprecipitation assay were used to observe protein interaction. Results Hypoxia conditions exist in murine embryonic retinas. Hypoxia induces HIF-1a expression; high-expressed HIF-1a interacts with VEGFR2, resulting in the activation of the VEGF signaling pathway. Andrographolide suppresses hypoxia-induced HIF-1a expression and, at least in part, interrupts the interaction between HIF-1a and VEGFR2, causing inhibiting endothelial proliferation and migration, eventually inhibiting embryonic hyaloid vasculature development. Conclusion Our data demonstrated that andrographolide plays a critical role in regulating embryonic hyaloid vasculature development.
Collapse
Affiliation(s)
- Zhong Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiru Guo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zheng Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangming Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongfei Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Zhu
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haidi Zhang
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqin Shi
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yong Wang, ✉ ; ✉
| |
Collapse
|
4
|
Liu B, He J, Zhong L, Huang L, Gong B, Hu J, Qian H, Yang Z. Single-cell transcriptome reveals diversity of Müller cells with different metabolic-mitochondrial signatures in normal and degenerated macula. Front Neurosci 2022; 16:1079498. [PMID: 36620436 PMCID: PMC9817153 DOI: 10.3389/fnins.2022.1079498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Müller cell is the most abundant glial cell in mammalian retina, supporting the functions of photoreceptors and other retinal neurons via maintaining environmental homeostasis. In response to injury and/or neuronal degeneration, Müller cells undergo morphological and functional alternations, known as reactive gliosis documented in multiple retinal diseases, including age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and traumatic retinal detachment. But the functional consequences of Müller glia cell reactivation or even the regulatory networks of the retinal gliosis are still controversial. In this study, we reveal different subpopulations of Müller cells with distinct metabolic-mitochondrial signatures by integrating single cell transcriptomic data from Early AMD patients and healthy donors. Our results show that a portion of Müller cells exhibits low mitochondrial DNA (mtDNA) expressions, reduced protein synthesis, impaired homeostatic regulation, decreased proliferative ability but enhanced proangiogenic function. Interestingly, the major alternation of Müller cells in Early AMD retina is the change of subpopulation abundance, rather than generation of new subcluster. Transcription factor enrichment analysis further highlights the key regulators of metabolic-mitochondrial states of Müller glias in Early AMD patients especially. Our study demonstrates new characteristics of retinal gliosis associated with Early AMD and suggests the possibility to prevent degeneration by intervening mitochondrial functions of Müller cells.
Collapse
Affiliation(s)
- Bei Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiali He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Jing Hu,
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Hao Qian,
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China,Zhenglin Yang,
| |
Collapse
|
5
|
da Palma MM, Igelman AD, Ku C, Burr A, You JY, Place EM, Wang NK, Oh JK, Branham KE, Zhang X, Ahn J, Gorin MB, Lam BL, Ronquillo CC, Bernstein PS, Nagiel A, Huckfeldt R, Cabrera MT, Kelly JP, Bakall B, Iannaccone A, Hufnagel RB, Zein WM, Koenekoop RK, Birch DG, Yang P, Fahim AT, Pennesi ME. Characterization of the Spectrum of Ophthalmic Changes in Patients With Alagille Syndrome. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34185059 PMCID: PMC8254011 DOI: 10.1167/iovs.62.7.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose The purpose of this study was to characterize the phenotypic spectrum of ophthalmic findings in patients with Alagille syndrome. Methods We conducted a retrospective, observational, multicenter, study on 46 eyes of 23 subjects with Alagille syndrome. We reviewed systemic and ophthalmologic data extracted from medical records, color fundus photography, fundus autofluorescence, optical coherence tomography, visual fields, electrophysiological assessments, and molecular genetic findings. Results Cardiovascular abnormalities were found in 83% of all cases (of those, 74% had cardiac murmur), whereas 61% had a positive history of hepatobiliary issues, and musculoskeletal anomalies were present in 61% of all patients. Dysmorphic facies were present in 16 patients, with a broad forehead being the most frequent feature. Ocular symptoms were found in 91%, with peripheral vision loss being the most frequent complaint. Median (range) Snellen visual acuity of all eyes was 20/25 (20/20 to hand motion [HM]). Anterior segment abnormalities were present in 74% of the patients; of those, posterior embryotoxon was the most frequent finding. Abnormalities of the optic disc were found in 52%, and peripheral retinal abnormalities were the most frequent ocular finding in this series, found in 96% of all patients. Fifteen JAG1 mutations were identified in 16 individuals; of those, 6 were novel. Conclusions This study reports a cohort of patients with Alagille syndrome in which peripheral chorioretinal changes were more frequent than posterior embryotoxon, the most frequent ocular finding according to a number of previous studies. We propose that these peripheral chorioretinal changes are a new hallmark to help diagnose this syndrome.
Collapse
Affiliation(s)
- Mariana Matioli da Palma
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States.,Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Austin D Igelman
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Cristy Ku
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Amanda Burr
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Jia Yue You
- Departments of Ophthalmology, Human Genetics, and Pediatric Surgery, Montreal Children's Hospital, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emily M Place
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, United States
| | - Jin Kyun Oh
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, United States.,State University of New York, Downstate Medical Center, Brooklyn, New York, United States
| | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Xinxin Zhang
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Jeeyun Ahn
- UCLA Stein Eye Institute, Division of Retinal Disorders and Ophthalmic Genetics, Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, California, United States.,Department of Ophthalmology, Seoul National University, College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Michael B Gorin
- UCLA Stein Eye Institute, Division of Retinal Disorders and Ophthalmic Genetics, Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, California, United States.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Cecinio C Ronquillo
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Paul S Bernstein
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States.,Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Rachel Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Michelle T Cabrera
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, Seattle Children's Hospital, Seattle, Washington, United States
| | - John P Kelly
- Department of Ophthalmology, Seattle Children's Hospital, Seattle, Washington, United States
| | - Benjamin Bakall
- Department of Ophthalmology, University of Arizona College of Medicine, Phoenix, Arizon, United States
| | - Alessandro Iannaccone
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert K Koenekoop
- Departments of Ophthalmology, Human Genetics, and Pediatric Surgery, Montreal Children's Hospital, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, United States
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
6
|
Bhattacharya U, Neizer-Ashun F, Mukherjee P, Bhattacharya R. When the chains do not break: the role of USP10 in physiology and pathology. Cell Death Dis 2020; 11:1033. [PMID: 33277473 PMCID: PMC7718870 DOI: 10.1038/s41419-020-03246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
Deubiquitination is now understood to be as important as its partner ubiquitination for the maintenance of protein half-life, activity, and localization under both normal and pathological conditions. The enzymes that remove ubiquitin from target proteins are called deubiquitinases (DUBs) and they regulate a plethora of cellular processes. DUBs are essential enzymes that maintain intracellular protein homeostasis by recycling ubiquitin. Ubiquitination is a post-translational modification where ubiquitin molecules are added to proteins thus influencing activation, localization, and complex formation. Ubiquitin also acts as a tag for protein degradation, especially by proteasomal or lysosomal degradation systems. With ~100 members, DUBs are a large enzyme family; the ubiquitin-specific peptidases (USPs) being the largest group. USP10, an important member of this family, has enormous significance in diverse cellular processes and many human diseases. In this review, we discuss recent studies that define the roles of USP10 in maintaining cellular function, its involvement in human pathologies, and the molecular mechanisms underlying its association with cancer and neurodegenerative diseases. We also discuss efforts to modulate USPs as therapy in these diseases.
Collapse
Affiliation(s)
- Udayan Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
8
|
Masson C, García-García D, Bitard J, Grellier ÉK, Roger JE, Perron M. Yap haploinsufficiency leads to Müller cell dysfunction and late-onset cone dystrophy. Cell Death Dis 2020; 11:631. [PMID: 32801350 PMCID: PMC7429854 DOI: 10.1038/s41419-020-02860-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Hippo signalling regulates eye growth during embryogenesis through its effectors YAP and TAZ. Taking advantage of a Yap heterozygous mouse line, we here sought to examine its function in adult neural retina, where YAP expression is restricted to Müller glia. We first discovered an unexpected temporal dynamic of gene compensation. At postnatal stages, Taz upregulation occurs, leading to a gain of function-like phenotype characterised by EGFR signalling potentiation and delayed cell-cycle exit of retinal progenitors. In contrast, Yap+/- adult retinas no longer exhibit TAZ-dependent dosage compensation. In this context, Yap haploinsufficiency in aged individuals results in Müller glia dysfunction, late-onset cone degeneration, and reduced cone-mediated visual response. Alteration of glial homeostasis and altered patterns of cone opsins were also observed in Müller cell-specific conditional Yap-knockout aged mice. Together, this study highlights a novel YAP function in Müller cells for the maintenance of retinal tissue homeostasis and the preservation of cone integrity. It also suggests that YAP haploinsufficiency should be considered and explored as a cause of cone dystrophies in human.
Collapse
Affiliation(s)
- Christel Masson
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France.
| | - Diana García-García
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France
| | - Juliette Bitard
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France
| | - Élodie-Kim Grellier
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France.
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, 91405, France.
| |
Collapse
|
9
|
Shi WJ, Huang GY, Jiang YX, Ma DD, Chen HX, Huang MZ, Hou LP, Xie L, Ying GG. Medroxyprogesterone acetate affects eye growth and the transcription of associated genes in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110371. [PMID: 32114246 DOI: 10.1016/j.ecoenv.2020.110371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Medroxyprogesterone acetate (MPA) is a widely used synthetic progestin in contraception pills and hormone replacement therapy. However, its effects on eye growth and development and function were largely unknown. In this study, the transcription of genes in the Notch signaling pathway and the visual cycle network were evaluated after chronic MPA exposure at 4.32 (L), 42.0 (M), and 424 (H) ng L-1 for 120 days in zebrafish. Meanwhile, the histology of the eyes was also examined. Transcriptional results showed that MPA at all three concentrations significantly increased the transcription of notch1a, dll4, jag1a, ctbp1 and rbpjb (key genes in the Notch signaling pathway) in the eyes of females. The up-regulation of noth1a, ctbp1 and kat2b was also observed in the eyes of males exposed to MPA at 424 ng L-1. In the visual cycle pathway, MPA increased the transcription of opn1sw1, opn1sw2, arr3a and rpe65a in the eyes of females from the M and H treatments. Histopathological analysis showed that exposure to 42.0 ng L-1 of MPA increased the thicknesses of inner nuclear layer in females and outer segment in males. Moreover, exposure to 424 ng L-1 of MPA increased the lens diameter in females. These results indicated that chronic MPA exposure affected the transcription of genes in the Notch signaling and in the visual cycle pathways, resulting in overgrowth of the eyes and interference of the eye functions. This study suggests that MPA pose a risk to fitness and survival of zebrafish in areas where MPA contamination exists.
Collapse
Affiliation(s)
- Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong-Xing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ming-Zhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ling-Ping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
10
|
NOTCH1 signaling induces pathological vascular permeability in diabetic retinopathy. Proc Natl Acad Sci U S A 2019; 116:4538-4547. [PMID: 30787185 DOI: 10.1073/pnas.1814711116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability. By providing both human and mouse data, we show that NOTCH1 ligands JAGGED1 and DELTA LIKE-4 are up-regulated secondary to hyperglycemia and activate both canonical and rapid noncanonical NOTCH1 pathways that ultimately disrupt endothelial adherens junctions in diabetic retinas by causing dissociation of vascular endothelial-cadherin from β-catenin. We further demonstrate that neutralization of NOTCH1 ligands prevents diabetes-induced retinal edema. Collectively, these results identify a fundamental process in diabetes-mediated vascular permeability and provide translational rational for targeting the NOTCH pathway (primarily JAGGED1) in conditions characterized by compromised vascular barrier function.
Collapse
|
11
|
Jiao W, Ji J, Li F, Guo J, Zheng Y, Li S, Xu W. Activation of the Notch‑Nox4‑reactive oxygen species signaling pathway induces cell death in high glucose‑treated human retinal endothelial cells. Mol Med Rep 2018; 19:667-677. [PMID: 30431086 DOI: 10.3892/mmr.2018.9637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) occurs in almost all patients with diabetes and remains as one of the major causes of vision loss worldwide. Nevertheless, the molecular mechanisms underlying the pathogenesis of DR remain elusive. The present study aimed to investigate the role and association of Notch signaling and NADPH oxidase 4 (Nox4)‑mediated oxidative stress in high glucose (HG)‑treated retinal cells. Human retinal endothelial cells were cultured for various durations in RPMI‑1640 medium containing 30 mM glucose (HG) or 30 mM mannitol (MN) as an osmotic control; apoptotic cell death and reactive oxygen species (ROS) levels were assessed, respectively. Alterations in the expression profiles of Nox and Notch proteins were evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Knockdown of Nox4 and recombination signal‑binding protein J (RBPj) was generated by transfection with specific small interfering (siRNA). Persistent activation of Notch signaling was induced via the overexpression of Notch intracellular domain (NICD). In the present study, time‑dependent increases in ROS production and cell death were detected in HG‑treated cells. Depletion of ROS by diphenyleneiodonium decreased HG‑induced cell death, and suppressed increases in caspase 3 activity and B‑cell lymphoma 2‑associated X protein levels. In HG‑treated cells, Nox4 expression was upregulated at the mRNA and protein levels, and inhibition of Nox4 by GKT137831 or knockdown of expression by siRNA Nox4 significantly reduced ROS levels and cell death. In the presence of HG, Notch1 expression levels were elevated, and increased NICD abundance was detected in whole cell lysates and nuclear fractions. Additionally, HG‑induced cell death was decreased by treatment with γ‑secretase inhibitor (GSI), but increased via the overexpression of NICD. The application of GSI or knockdown of RBPj by siRNA RBPj prevented increases in Nox4 expression within HG‑treated cells. The findings of the present study demonstrated that Nox4‑mediated ROS serves an important role in HG‑induced retinal cell damage, in which the activation of Notch signaling may be responsible for Nox4 upregulation. Therefore, inhibition of Notch signaling or Nox4 expression may be considered as potential therapeutic targets in patients with DR.
Collapse
Affiliation(s)
- Wanzhen Jiao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiafu Ji
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Fengjiao Li
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianlian Guo
- Department of Ophthalmology, Jinan Eighth People's Hospital, Jinan, Shandong 250014, P.R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Shangbin Li
- Department of Healthcare, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenwen Xu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
12
|
|
13
|
Wang Y, Zhang H, Liu Y, Li P, Cao Z, Cao Y. Erythropoietin (EPO) protects against high glucose-induced apoptosis in retinal ganglional cells. Cell Biochem Biophys 2015; 71:749-55. [PMID: 25287674 DOI: 10.1007/s12013-014-0259-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the protective effect and mechanism of EPO on the apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs). High glucose-induced apoptosis model was established in RGCs isolated from SD rats (1-3 days old) and identified with Thy1.1 mAb and MAP-2 pAb. The apoptosis was determined by Hochest assay. The levels of ROS were quantitated by staining the cells with dichloro-dihydro-fluorescein diacetate (DCFH-DA) and measure by flow cytometry. The SOD, GSH-Px, CAT activities, and levels of T-AOC and MDA were determined by ELISA. Change in mitochondrial membrane potential (Δψm) was also assessed by flow cytometry, and expressions of Bcl-2, Bax, caspase-3, caspase-9, and cytochrome C were assessed by western blotting. The RGCs treated with high glucose levels exhibited significantly increased apoptotic rate and concentrations of ROS and MDA. Pretreatment of the cells with EPO caused a significant blockade of the high glucose-induced increase in ROS and MDA levels and apoptotic rate. EPO also increased the activities of SOD, GSH-Px, and CAT, and recovered the levels of T-AOC levels. As a consequence, the mitochondrial membrane potential was improved and Cyt c release into the cytoplasm was prevented which led to significantly suppressed up-regulation of Bax reducing the Bax/Bcl-2 ratio. The expressions of caspase-3 and caspase-9 induced by high glucose exposure were also ameliorated in the RGCs treated with EPO. The protective effect of EPO against apoptosis was mediated through its antioxidant action. Thus, it blocked the generation of pro-apoptotic proteins and apoptotic degeneration of the RGCs by preventing the mitochondrial damage.
Collapse
Affiliation(s)
- Yunxiao Wang
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | | | | | | | | | | |
Collapse
|
14
|
Dombrowski E, McGregor GF, Bauer BS, Parker D, Grahn BH. Blindness in a wild American black bear cub (Ursus americanus). Vet Ophthalmol 2015; 19:340-346. [PMID: 26302466 DOI: 10.1111/vop.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An approximately six-month-old wild American black bear (Ursus americanus) was found wandering in Saskatchewan and was presented to the Veterinary Medical Centre of the Western College of Veterinary Medicine for apparent blindness. Clinical examination confirmed an inability to navigate a photopic maze, bilateral tapetal hyper-reflectivity, fundi devoid of retinal vessels, and small pale optic nerve papillae. Single-flash electroretinography revealed A and B-wave amplitudes of approximately 40 and 140 microvolts, respectively, in both eyes. Histologic abnormalities included bilateral optic papillary mineralization and bilateral segmental optic nerve degeneration, with occasional intralesional lymphocytes confirmed with immunohistochemistry for CD3+. There was also bilateral multifocal retinal dysplasia, gliosis, lymphocytic retinitis, a complete lack of retinal blood vessels, an intravitreal vascular membrane, and a mild lymphocytic-plasmacytic uveitis with small pre-iridal cellular membranes. The presence of a positive ERG in a blind bear with numerous retinal ganglion cells and degenerative changes in the optic nerve are most consistent with vision loss due to optic nerve injury, which given the young age of the bear likely occurred during ocular development. The presence of ocular inflammation suggests this injury resulted from an inflammatory/infectious process. The etiology could not be determined. Hepatic concentrations of vitamin A were within the normal reference range for domestic species. Pan-herpesvirus PCR and immunohistochemistry for canine distemper virus and Toxoplasma gondii were negative, although this does not rule out these or other infectious etiologies. This represents the first case report of neonatal or congenital ocular abnormalities in an ursid species.
Collapse
Affiliation(s)
- Elizabeth Dombrowski
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Glenna F McGregor
- Canadian Cooperative Wildlife Health Centre, Western/Northern Region, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan.,Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bianca S Bauer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dennilyn Parker
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bruce H Grahn
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Elmore SA, Cora MC, Gruebbel MM, Hayes SA, Hoane JS, Koizumi H, Peters R, Rosol TJ, Singh BP, Szabo KA. Proceedings of the 2014 National Toxicology Program Satellite Symposium. Toxicol Pathol 2014; 43:10-40. [PMID: 25385331 DOI: 10.1177/0192623314555526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 2014 annual National Toxicology Program (NTP) Satellite Symposium, entitled "Pathology Potpourri" was held in Washington, D.C., in advance of the Society of Toxicologic Pathology's 33rd annual meeting. The goal of this annual NTP Symposium is to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers' presentations, including diagnostic or nomenclature issues that were presented, along with select images that were used for audience voting and discussion. Some lesions and topics covered during the symposium included a pulmonary mucinous adenocarcinoma in a male B6C3F1 mouse; plexiform vasculopathy in Wistar Han (Crl:WI[Han]) rats; staging of the estrous cycle in rats and mice; peri-islet fibrosis, hemorrhage, lobular atrophy and inflammation in male Sprague-Dawley (SD) rats; retinal dysplasia in Crl:WI[Han] rats and B6C3F1 mice; multicentric lymphoma with intravascular microemboli and tumor lysis syndrome, and 2 cases of myopathy and vascular anomaly in Tg.rasH2 mice; benign thymomas in Crl:WI[Han] rats; angiomatous lesions in the mesenteric lymph nodes of Crl:WI[Han] rats; an unusual foveal lesion in a cynomolgous monkey; and finally a series of nomenclatures challenges from the endocrine International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) Organ Working Group (OWG).
Collapse
Affiliation(s)
- Susan A Elmore
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michelle C Cora
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Margarita M Gruebbel
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Schantel A Hayes
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| | - Jessica S Hoane
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| | | | - Rachel Peters
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | | | - Bhanu P Singh
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Kathleen A Szabo
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| |
Collapse
|
16
|
Li L, Li L, Xie F, Zhang Z, Guo Y, Tang G, Lv D, Lu Q, Chen L, Li J. Jagged-1/Notch3 signaling transduction pathway is involved in apelin-13-induced vascular smooth muscle cells proliferation. Acta Biochim Biophys Sin (Shanghai) 2013; 45:875-81. [PMID: 23924696 DOI: 10.1093/abbs/gmt085] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The apelin/apelin receptor (APJ, apelin-angiotensin receptor-like 1) system is a newly deorphanized G protein-coupled receptor system. Both apelin and APJ that are important regulatory factors are expressed in the cardiovascular system. Our previous studies demonstrated that apelin-13 significantly stimulated vascular smooth muscle cell (VSMC) proliferation. In this paper, our data suggested that the Jagged-1/Notch3 signaling transduction pathway is involved in apelin-13-induced VSMC proliferation by promoting the expression of Cyclin D1. Results indicated that apelin-13 stimulates the proliferation of VSMC and the expression of Jagged-1 and Notch3 in concentration- and time-dependent manners. The increased expression of Jagged-1 and Notch3 induced by apelin-13 could be abolished by extracellular signal-regulated protein kinase (ERK) blockade. PD98059 (ERK inhibitor) can inhibit the activation of Jagged-1/Notch3 induced by apelin-13. Down-regulation of Notch3 using small interfering RNA inhibits the expression of Cyclin D1 and prevents apelin-13-induced VSMC proliferation. In conclusion, Jagged-1/Notch3 signaling transduction pathway is involved in VSMC proliferation induced by apelin-13.
Collapse
Affiliation(s)
- Lifang Li
- Department of Microbiology and Immunology, University of South China, Hengyang 421001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Transcriptional regulation of breast cancer resistance protein. YI CHUAN = HEREDITAS 2012; 34:1529-36. [DOI: 10.3724/sp.j.1005.2012.01529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Abstract
Proliferative diabetic retinopathy (PDR), characterized by pathologic retinal angiogenesis, is a major cause of blindness in the USA and globally. Treatments targeting vascular endothelial growth factor (VEGF) have emerged as a beneficial part of the therapeutic armamentarium for this condition, highlighting the utility of identifying and targeting specific pathogenic molecules. There continues to be active research into the molecular players regulating retinal angiogenesis, including pro-angiogenic factors, anti-angiogenic factors, and integrins and matrix proteinases. New insights have been especially prominent regarding molecules which regulate specialized endothelial cells called tip cells, which play a lead role in endothelial sprouting. Together, these research efforts are uncovering new, important molecular regulators of retinal angiogenesis, which provide fertile areas for therapeutic exploration. This review discusses potential molecular targets, with an emphasis towards newer targets.
Collapse
Affiliation(s)
- Shuang Wang
- Ophthalmologic Department, China-Japan Union Hospital, Changchun City, Jilin Province, China.
| | | | | |
Collapse
|
19
|
Huang J, Lin Y, Han R, Chen J, Wang YY, Wang W, Wei YY, Kaneko T, Li YQ, Wu SX. Spatial and Temporal Distribution Patterns of Enkephalinergic Neurons in Adult and Developing Retinas of the Preproenkephalin-Green Fluorescent Protein Transgenic Mouse. Cells Tissues Organs 2012; 195:563-74. [DOI: 10.1159/000329733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2011] [Indexed: 11/19/2022] Open
|
20
|
Qin X, Zhang Z, Xu H, Wu Y. Notch signaling protects retina from nuclear factor-κB- and poly-ADP-ribose-polymerase-mediated apoptosis under high-glucose stimulation. Acta Biochim Biophys Sin (Shanghai) 2011; 43:703-11. [PMID: 21813561 DOI: 10.1093/abbs/gmr069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferative diabetic retinopathy, the primary cause of vision loss in adults, is one of serious microvascular complications caused by diabetes. Both poly-ADP-ribose-polymerase (PARP) and nuclear factor (NF)-κB signaling are involved in the injury process. Injury activates PARP, which in turn potentiates NF-κB activation and causes cell apoptosis. Like the NF-κB pathway, Notch1 signaling plays a key role in the regulation of cell proliferation, differentiation, and apoptosis. However, the connections between these signaling pathways are not well understood. In this study, we used both streptozotocin (STZ)-induced diabetic mice and human retinal vascular endothelial cells (HRVECs) cultured in high glucose to detect these relationships. We found that apoptosis was increased in both STZ-induced diabetic mice and high-glucose-treated HRVECs, which was due to increased activation of PARP, cleaved caspase3, and reduced expression of Notch1 and p-Akt. The results of Notch1 overexpression and knockdown indicated that Notch1 signaling participated in the interaction of PARP and p50, and inhibited PARP- and p50-mediated apoptosis directly. These phenomena could be blocked by pretreatment with the PI3K inhibitor wortmannin via reducing p-Akt levels. Thus, our study demonstrated that Notch1 signaling protects cells from PARP- and NF-κB-induced apoptosis under high glucose through the activation of Akt.
Collapse
Affiliation(s)
- Xiuhong Qin
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | | | | | | |
Collapse
|
21
|
Identification of differential expressed transcripts in cervical cancer of Mexican patients. Tumour Biol 2011; 32:561-8. [PMID: 21225484 DOI: 10.1007/s13277-010-0151-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/20/2010] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to identify the gene expression profile in biopsies of patients with cervical intraepithelial neoplasia (CIN) 1, CIN 2, CIN 3, and microinvasive cancer by suppression subtractive hybridization and Southern blotting. After analyzing 1,800 cDNA clones, we found 198 upregulated genes, 166 downregulated, and no significant change of gene expression in 86 clones (p = 0.005). These results were validated by Northern blot analysis (p = 0.0001) in the identification of 28 overexpressed and 7 downregulated transcripts. We observed a set of genes related to the Notch signaling pathway that may be involved in the transformation of cervical cells and in the development to malignancy. The differentially expressed genes may provide useful information about the molecular mechanisms involved in human cervical carcinoma and as diagnostic markers.
Collapse
|