1
|
Tian C, Yu M, Fang Y, Zhao Y, Fu L, Chen J, Xia D. Therapeutic Effect of Smilax glabra Roxb. on Weaning Rats Against Pb-Induced Nephrotoxicity Based on Network Pharmacology. Biol Trace Elem Res 2024:10.1007/s12011-024-04366-3. [PMID: 39240306 DOI: 10.1007/s12011-024-04366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Lead (Pb) is a major environmental pollutant that can cause nephrotoxicity, hepatotoxicity, encephalopathy, and even death. Smilax glabra Roxb. has been used to treat heavy metal poisoning in China for over 500 years. We hypothesized that the Smilax glabra flavonoid extract (SGF) can ameliorate lead poisoning and investigated the possible mechanisms using network pharmacology. In total, 13 active compounds of Smilax glabra Roxb. and 71 overlapping potential targets were identified. The drug-compound-target-disease network analysis revealed that oxidative stress, inflammation, and apoptosis were mainly involved in the treatment of lead poisoning. Gene Ontology (GO) enrichment analysis showed that the biological processes involved in the therapeutic effect of Smilax glabra Roxb. against lead poisoning included biological processes, cellular components, and molecular functions. Additionally, 112 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways were obtained with the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways showing strong associations with lead poisoning by KEGG enrichment. The results of target pathway analysis showed that NF-κB was the most relevant gene involved in the therapeutic effect of Smilax glabra Roxb. against lead poisoning and was closely related to the MAPK signaling pathway. In vivo experiments confirmed that SGF treatment alleviated the pathological damage caused by lead-induced nephrotoxicity in weaning rats. Furthermore, SGF treatment markedly inhibited the expression of key proteins involved in the NF-κB/MAPK signaling pathway, highlighting the strong therapeutic effect of SGF against lead-induced nephrotoxicity. Results from network pharmacology and experimental verification indicated that SGF mitigated Pb-induced nephrotoxicity by downregulating the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, China
| | - Meiting Yu
- Department of Nephrology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Yuejuan Fang
- Department of Pharmacy, Quzhou Maternal And Child Health Care Hospital, Quzhou, 324000, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, China
| | - Jingbai Chen
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, China.
| | - Daozong Xia
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 108th mailbox, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
2
|
Zhang C, Lu M, Li C, Qi C, Lin Q, Huang L, Ding H. Mechanism of inhibition of TLR4/NFκB/NLRP3 inflammatory pathway against AD based on the network pharmacology of Erjing Pills. Medicine (Baltimore) 2024; 103:e39392. [PMID: 39183433 PMCID: PMC11346867 DOI: 10.1097/md.0000000000039392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Alzheimer disease is an irreversible neurodegenerative disease, and its pathogenesis involves various mechanisms such as neuroinflammation and β-amyloid deposition. Erjing Pills can inhibit neuroinflammation by inhibiting toll-like receptor 4/nuclear factor kappa-B/nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3; however, qualitative analysis of the material basis is lacking. Therefore, it is necessary to analyze and explore the material basis of network pharmacology research. This study employed a multifaceted approach, including drug-like screening, molecular docking, and bioinformatic analysis. Preliminary screening identified 59 drug ingredients in Erjing Pills that met the Absorption, Distribution, Metabolism, Excretion and Toxicity screening criteria. Among these, 7 ingredients, including diosgenin, exhibited superior binding properties compared with the positive drugs in molecular docking. Gene ontology annotation and pathway analysis revealed their involvement in crucial biological processes, such as hormone response, insulin resistance, and steroid hormone biosynthesis signaling pathways, which are known for their anti-inflammatory and cognitive enhancement effects. A meta-analysis of relevant literature corroborated the anti-inflammatory activities of diosgenin and 5 other ingredients. These 5 ingredients, with diosgenin as a prominent candidate, exert anti-inflammatory effects by targeting key components of the toll-like receptor 4/nuclear factor kappa-B/nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3 inflammatory pathway, thereby presenting potential efficacy in the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Chen Zhang
- School of Medical, Qilu Institute of Technology, Jinan, China
| | - Mingjing Lu
- School of Medical, Qilu Institute of Technology, Jinan, China
| | - CunNeng Li
- School of Medical, Qilu Institute of Technology, Jinan, China
| | - Chao Qi
- School of Medical, Qilu Institute of Technology, Jinan, China
| | - Qian Lin
- School of Medical, Qilu Institute of Technology, Jinan, China
| | - LiPing Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Key Laboratory of TCM Pharmacology of Jiangxi Province, Nanchang, China
| | - Hailing Ding
- School of Medical, Qilu Institute of Technology, Jinan, China
| |
Collapse
|
3
|
Wang Z, Xu Y, Liang S. Network pharmacology and molecular docking analysis on the mechanism of Tripterygium wilfordii Hook in the treatment of Sjögren syndrome. Medicine (Baltimore) 2024; 103:e37532. [PMID: 38579044 PMCID: PMC10994482 DOI: 10.1097/md.0000000000037532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 04/07/2024] Open
Abstract
Tripterygium wilfordii Hook. F (TWH) has significant anti-inflammatory and immunosuppressive effects, and is widely used in the inflammatory response mediated by autoimmune diseases. However, the multi-target mechanism of TWH action in Sjögren syndrome (SS) remains unclear. Therefore, the aim of this study was to explore the molecular mechanism of TWH in the treatment of SS using network pharmacology and molecular docking methods. TWH active components and target proteins were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. SS-related targets were obtained from the GeneCards database. After overlap, the therapeutic targets of TWH in the treatment of SS were screened. Protein-protein interaction and core target analysis were performed by STRING network platform and Cytoscape software. In addition, the affinity between TWH and the disease target was confirmed by molecular docking. Finally, the DAVID (visualization and integrated) database was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of overlapping targets. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database shows that TWH contains 30 active components for the treatment of SS. Protein-protein interaction and core target analysis suggested that TNF, MMP9, TGFB1, AKT1, and BCL2 were the key targets of TWH in the treatment of SS. In addition, the molecular docking method confirmed that the bioactive molecules of TWH had a high affinity with the target of SS. Enrichment analysis showed that TWH active components were involved in multiple signaling pathways. Pathways in cancer, Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications is the main pathway. It is associated with a variety of biological processes such as inflammation, apoptosis, immune injury, and cancer. Based on data mining network pharmacology, and molecular docking method validation, TWH is likely to be a promising candidate for the treatment of SS drug, but still need to be further verified experiment.
Collapse
Affiliation(s)
- Zelin Wang
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanan Xu
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufen Liang
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Rai M, Singh AV, Paudel N, Kanase A, Falletta E, Kerkar P, Heyda J, Barghash RF, Pratap Singh S, Soos M. Herbal concoction Unveiled: A computational analysis of phytochemicals' pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Curr Res Toxicol 2023; 5:100118. [PMID: 37609475 PMCID: PMC10440360 DOI: 10.1016/j.crtox.2023.100118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Herbal medications have an extensive history of use in treating various diseases, attributed to their perceived efficacy and safety. Traditional medicine practitioners and contemporary healthcare providers have shown particular interest in herbal syrups, especially for respiratory illnesses associated with the SARS-CoV-2 virus. However, the current understanding of the pharmacokinetic and toxicological properties of phytochemicals in these herbal mixtures is limited. This study presents a comprehensive computational analysis utilizing novel approach methodologies (NAMs) to investigate the pharmacokinetic and toxicological profiles of phytochemicals in herbal syrup, leveraging in-silico techniques and prediction tools such as PubChem, SwissADME, and Molsoft's database. Although molecular dynamics, docking, and broader system-wide analyses were not considered, future studies hold potential for further investigation in these areas. By combining drug-likeness with molecular simulation, researchers identify diverse phytochemicals suitable for complex medication development examining their pharmacokinetic-toxicological profiles in phytopharmaceutical syrup. The study focuses on herbal solutions for respiratory infections, with the goal of adding to the pool of all-natural treatments for such ailments. This research has the potential to revolutionize environmental and alternative medicine by leveraging in-silico models and innovative analytical techniques to identify novel phytochemicals with enhanced therapeutic benefits and explore network-based and systems biology approaches for a deeper understanding of their interactions with biological systems. Overall, our study offers valuable insights into the computational analysis of the pharmacokinetic and toxicological profiles of herbal concoction. This paves the way for advancements in environmental and alternative medicine. However, we acknowledge the need for future studies to address the aforementioned topics that were not adequately covered in this research.
Collapse
Affiliation(s)
- Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Namuna Paudel
- Department of Chemistry, Amrit Campus, Institute of Science and Technology, Tribhuvan University, Lainchaur, Kathmandu 44600, Nepal
| | - Anurag Kanase
- Opentrons Labworks Inc., Brooklyn, NY 11201, the United States of America
| | - Ermelinda Falletta
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Pranali Kerkar
- Rutgers School of Public Health, 683 Hoes Lane West Piscataway, NJ 08854, the United States of America
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6 Dejvice, 166 28, Czech Republic
| | - Reham F. Barghash
- Institute of Chemical Industries Researches, National Research Centre, Dokki, Cairo 12622, Egypt
| | | | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 3, Prague 6 Dejvice, 166 28, Czech Republic
| |
Collapse
|
5
|
Zhu X, Li Y, Wang X, Huang Y, Mao J. Investigation of the mechanism of Prunella vulgaris in treatment of papillary thyroid carcinoma based on network pharmacology integrated molecular docking and experimental verification. Medicine (Baltimore) 2023; 102:e33360. [PMID: 37115092 PMCID: PMC10145964 DOI: 10.1097/md.0000000000033360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 04/29/2023] Open
Abstract
To analyze the molecular mechanism of Prunella vulgaris L. (PV) in the treatment of papillary thyroid carcinoma (PTC) by using network pharmacology combined with molecular docking verification. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to predict the main active components of PV, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, PubChem, and Swiss Target Prediction databases were used to obtain the corresponding targets of all active components. Targets collected for PTC treatment through Gene Cards, Digest and Online Mendelian Inheritance in Man databases respectively. The Search Tool for the Retrieval of Interaction Gene/Protein database was used to obtain the interaction information between proteins, and the topology analysis and visualization were carried out through Cytoscape 3.7.2 software (https://cytoscape.org/). The R package cluster profiler was used for gene ontology and Kyoto encyclopedia of genes and genomes analysis. The "active ingredient-target-disease" network was constructed by using Cyto scape 3.7.2, and topological analysis was carried out to obtain the core compound. The molecular docking was processed by using Discovery Studio 2019 software, and the core target and active ingredient were verified. The inhibition rate was detected by CCK8 method. Western blot was used to detect the expression levels of kaempferol anti-PTC related pathway proteins. A total of 11 components and 83 corresponding targets in the component target network of PV, of which 6 were the core targets of PV in the treatment of PTC. It was showed that quercetin, luteolin, beta (β)-sitosterol, kaempferol may be the core components of PV in the treatment of PTC. vascular endothelial growth factor A, tumor protein p53, transcription factor AP-1, prostaglandin endoperoxidase 2, interleukin 6, and IL-1B may be important targets for the treatment of PTC. The main biological processes mainly including response to nutrient levels, response to xenobiotic stimulus, response to extracellular stimulus, external side of plasma membrane, membrane raft, membrane microdomain, serine hydrolase activity, serine-type endopeptidase activity, antioxidant activity, etc IL-17 signaling pathway, and PI3K-Akt signaling pathway may affect the recurrence and metastasis of PTC. Kaempferol may significantly reduce the activity of Papillary cells of human thyroid carcinoma bcpap cell lines cells compared with quercetin, luteolin, β-sitosterol. Kaempferol may reduce the protein expression levels of interleukin 6, vascular endothelial growth factor A, transcription factor AP-1, tumor protein p53, 1L-1B and prostaglandin endoperoxidase 2, respectively. PV has the characteristics of multi-components, multi-targets and multi- pathways in the treatment of PTC, which network pharmacology help to provides a theoretical basis for the screening of effective components of PV and further research.
Collapse
Affiliation(s)
- Xiling Zhu
- Anshun University, Guizhou Anshun, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | | | - Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Lv L, Wang X, Wu H. Assessment of palmitic acid toxicity to animal hearts and other major organs based on acute toxicity, network pharmacology, and molecular docking. Comput Biol Med 2023; 158:106899. [PMID: 37058761 DOI: 10.1016/j.compbiomed.2023.106899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
Palmitic acid is a common ingredient in many foods and traditional Chinese medicines. However, modern pharmacological experiments have shown that palmitic acid has toxic side effects. It can damage glomeruli, cardiomyocytes, and hepatocytes, as well as promote the growth of lung cancer cells. Despite this, there are few reports evaluating the safety of palmitic acid through animal experiments, and the mechanism of palmitic acid toxicity remains unclear. Clarifying the adverse reactions and mechanisms of palmitic acid in animal hearts and other major organs is of great significance for ensuring the safety of clinical application. Therefore, this study records an acute toxicity experiment on palmitic acid in a mouse model, and the observation of pathological changes in the heart, liver, lungs, and kidneys. It is found that palmitic acid had toxic and side effects on animal heart. Then the key targets of palmitic acid in regulating cardiac toxicity were screened using network pharmacology, and a "component-target-cardiotoxicity" network diagram and PPI network were constructed. The mechanisms regulating cardiotoxicity were explored using KEGG signal pathway and GO biological process enrichment analyses. Molecular docking models were used for verification. The results showed that the maximum dose of palmitic acid had low toxicity in the hearts of mice. The mechanism of cardiotoxicity of palmitic acid involves multiple targets, biological processes, and signaling pathways. Palmitic acid can induce steatosis in hepatocytes, and regulate cancer cells. This study preliminarily evaluated the safety of palmitic acid and provided a scientific basis for its safe application.
Collapse
Affiliation(s)
- Lijuan Lv
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Xiangpei Wang
- National Medical College, Guizhou Minzu University, Guiyang, Guizhou, China
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| |
Collapse
|
7
|
Niu W, Miao J, Li X, Guo Q, Zhang N, Deng Z, Wu L. Combined systematic pharmacology and urine metabonomics to study the therapeutic mechanism of type 2 diabetic treated with the herbal pair of Salvia miltiorrhiza Bunge and Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123627. [PMID: 36796216 DOI: 10.1016/j.jchromb.2023.123627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The herbal pair of Salvia miltiorrhiza Bunge and Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (DG) is commonly used in the treatment of type 2 diabetes (T2DM) in traditional Chinese medicine (TCM). The drug pair DG was designed by Dr. Zhu chenyu to improve the treatment of T2DM. AIM This study combined with systematic pharmacology and urine metabonomics to explore the mechanism of DG in the treatment of T2DM. METHODS The therapeutic effect of DG on T2DM was evaluated by fasting blood glucose (FBG) and biochemical indexes. Systematic pharmacology was used to screen the active components and targets that may be related to DG. Metabonomics was established to find urinary metabolites and pathways that may be induced by DG. Finally, integrate the results of these two parts for mutual verification. RESULTS FBG and biochemical indexes showed that DG could reduce FBG and adjust the related biochemical indexes. Metabolomics analysis indicated that 39 metabolites were related to DG for T2DM treatment. In addition, systematic pharmacology showed compounds and potential targets which were associated with DG. Finally, 12 promising targets were selected as targets for T2DM therapy by integrating the results. CONCLUSION The combination of metabonomics and systematic pharmacology based on LC-MS is feasible and effective, which provides strong support for exploring the effective components and pharmacological mechanism of TCM.
Collapse
Affiliation(s)
- Wanlin Niu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junjie Miao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuejia Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian Guo
- Jiangsu Hengrui Medicine Co, Ltd, Lianyungang, China
| | - Na Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zujun Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
8
|
He CL, Tang Y, Chen X, Long T, He YN, Wei J, Wu JM, Lan C, Yu L, Huang FH, Gu CW, Liu J, Yu CL, Wong VKW, Law BYK, Qin DL, Wu AG, Zhou XG. Folium Hibisci Mutabilis extract, a potent autophagy enhancer, exhibits neuroprotective properties in multiple models of neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154548. [PMID: 36610154 DOI: 10.1016/j.phymed.2022.154548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Protein aggregates are considered key pathological features in neurodegenerative diseases (NDs). The induction of autophagy can effectively promote the clearance of ND-related misfolded proteins. OBJECTIVE In this study, we aimed to screen natural autophagy enhancers from traditional Chinese medicines (TCMs) presenting potent neuroprotective potential in multiple ND models. METHODS The autophagy enhancers were broadly screened in our established herbal extract library using the transgenic Caenorhabditis elegans (C. elegans) DA2123 strain. The neuroprotective effects of the identified autophagy enhancers were evaluated in multiple C. elegans ND models by measuring Aβ-, Tau-, α-synuclein-, and polyQ40-induced pathologies. In addition, PC-12 cells and 3 × Tg-AD mice were employed to further validate the neuroprotective ability of the identified autophagy enhancers, both in vitro and in vivo. Furthermore, RNAi bacteria and autophagy inhibitors were used to evaluate whether the observed effects of the identified autophagy enhancers were mediated by the autophagy-activated pathway. RESULTS The ethanol extract of Folium Hibisci Mutabilis (FHME) was found to significantly increase GFP::LGG-1-positive puncta in the DA2123 worms. FHME treatment markedly inhibited Aβ, α-synuclein, and polyQ40, as well as prolonging the lifespan and improving the behaviors of C. elegans, while siRNA targeting four key autophagy genes partly abrogated the protective roles of FHME in C. elegans. Additionally, FHME decreased the expression of AD-related proteins and restored cell viability in PC-12 cells, which were canceled by cotreatment with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). Moreover, FHME ameliorated AD-like cognitive impairment and pathology, as well as activating autophagy in 3 × Tg-AD mice. CONCLUSION FHME was successfully screened from our natural product library as a potent autophagy enhancer that exhibits a neuroprotective effect in multiple ND models across species through the induction of autophagy. These findings offer a new and reliable strategy for screening autophagy inducers, as well as providing evidence that FHME may serve as a possible therapeutic agent for NDs.
Collapse
Affiliation(s)
- Chang-Long He
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xue Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Tao Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Yan-Ni He
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Jing Wei
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Cai Lan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fei-Hong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Cong-Wei Gu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
9
|
Wang Z, Zhan J, Gao H. Computer-aided drug design combined network pharmacology to explore anti-SARS-CoV-2 or anti-inflammatory targets and mechanisms of Qingfei Paidu Decoction for COVID-19. Front Immunol 2022; 13:1015271. [PMID: 36618410 PMCID: PMC9816407 DOI: 10.3389/fimmu.2022.1015271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. Severe cases of COVID-19 are characterized by an intense inflammatory process that may ultimately lead to organ failure and patient death. Qingfei Paidu Decoction (QFPD), a traditional Chines e medicine (TCM) formula, is widely used in China as anti-SARS-CoV-2 and anti-inflammatory. However, the potential targets and mechanisms for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects remain unclear. Methods In this study, Computer-Aided Drug Design was performed to identify the antiviral or anti-inflammatory components in QFPD and their targets using Discovery Studio 2020 software. We then investigated the mechanisms associated with QFPD for treating COVID-19 with the help of multiple network pharmacology approaches. Results and discussion By overlapping the targets of QFPD and COVID-19, we discovered 8 common targets (RBP4, IL1RN, TTR, FYN, SFTPD, TP53, SRPK1, and AKT1) of 62 active components in QFPD. These may represent potential targets for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects. The result showed that QFPD might have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation-related pathways. Our work will promote the development of new drugs for COVID-19.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
10
|
Zhu W, Li Y, Zhao J, Wang Y, Li Y, Wang Y. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Ann Med 2022; 54:541-552. [PMID: 35132912 PMCID: PMC8843192 DOI: 10.1080/07853890.2022.2034931] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is associated with substantial morbidity and mortality, which is one of the key systematic manifestations of connective tissue disease (CTD). Tripterygium wilfordii, known as Leigongteng in Chinese, has been applied to treat connective tissue disease-related interstitial lung disease (CTD-ILD) for many years. Triptolide is a key effective component from Tripterygium wilfordii. But the molecular mechanism of Triptolide for treating CTD-ILD is not yet clear. METHODS Gaining insight into the molecular mechanism of Triptolide intervention CTD-ILD, we used the method of network pharmacology. And then we conducted drug-target networks to analyse the potential protein targets between Triptolide and CTD-ILD. Finally, AutoDock Vina was selected for molecular docking. RESULTS By analysing the interaction genes between Triptolide and CTD-ILD, 242 genes were obtained. The top 10 targets of the highest enrichment scores were STAT3, AKT1, MAPK1, IL6, TP53, MAPK3, RELA, TNF, JUN, JAK2. GO and KEGG enrichment analysis exhibited that multiple signalling pathways were involved. PI3K-Akt, multiple virus infections, cancer signalling, chemokine, and apoptosis signalling pathway are the main pathways for Triptolide intervention CTD-ILD. And it is related to various biological processes such as inflammation, infection, cell apoptosis, and cancer. Molecular docking shows Triptolide can bind with its target protein in a good bond by intermolecular force. CONCLUSIONS This study preliminarily reveals the internal molecular mechanism of Triptolide interfere with CTD-ILD through multiple targets, multiple access, validated through molecular docking.KEY MESSAGESTriptolide intervention CTD-ILD, which are related to various biological processes such as inflammation, infection, cell apoptosis, and cancer.PI3K-Akt, multiple virus infections, and apoptosis signalling pathway are the main pathways for Triptolide intervention CTD-ILD.Triptolide can bind with related target protein in a good bond by Intermolecular force, exhibiting a good docking activity.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Rheumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yehui Li
- Department of Pneumology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Junjie Zhao
- Department of Rheumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Wang
- Department of Rheumatology, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yixi Li
- Department of Rheumatology, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Rheumatology, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Zhao Y, Li H, Li X, Sun Y, Shao Y, Zhang Y, Liu Z. Network pharmacology-based analysis and experimental in vitro validation on the mechanism of Paeonia lactiflora Pall. in the treatment for type I allergy. BMC Complement Med Ther 2022; 22:199. [PMID: 35879791 PMCID: PMC9317138 DOI: 10.1186/s12906-022-03677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The incidence of allergic reaction is increasing year by year, but the specific mechanism is still unclear. Paeonia lactiflora Pall.(PLP) is a traditional Chinese medicine with various pharmacological effects such as anti-tumor, anti-inflammatory, and immune regulation. Previous studies have shown that PLP has potential anti-allergic activity. However, there is still no comprehensive analysis of the targeted effects and exact molecular mechanisms of the anti-allergic components of PLP. This study aimed to reveal the mechanism of PLP. in the treatment of type I allergy by combining network pharmacological methods and experimental verification.
Methods
First, we used the traditional Chinese medicine systems pharmacology (TCMSP) database and analysis platform to screen the main components and targets of PLP, and then used databases such as GeneCards to retrieve target information related to ‘allergy’. Protein–protein interaction (PPI) analysis obtained the core target genes in the intersection target, and then imported the intersection target into the David database for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis. Furthermore, the therapeutic effect of paeoniflorin, the main component of PLP, on IgE-induced type I allergy was evaluated in vitro.
Results
GO analysis obtained the main biological processes, cell components and molecular functions involved in the target genes. KEGG analysis screened out MAPK1, MAPK10, MAPK14 and TNF that have a strong correlation with PLP anti-type I allergy, and showed that PLP may pass through signal pathways such as IgE/FcεR I, PI3K/Akt and MAPK to regulate type I allergy. RT-qPCR and Western Blot results confirmed that paeoniflorin can inhibit the expression of key genes and down-regulate the phosphorylation level of proteins in these signal pathways. It further proved the reliability of the results of network pharmacology research.
Conclusion
The results of this study will provide a basis for revealing the multi-dimensional regulatory mechanism of PLP for the treatment of type I allergy and the development of new drugs.
Collapse
|
12
|
Geng Z, Guo M, Zhou Q, Pan L. The Mechanism of Crocetin Targeting Cardiovascular Disease Based on Network Pharmacology Constrained by Spectral Experiments. Chem Biodivers 2022; 19:e202200685. [PMID: 36251941 DOI: 10.1002/cbdv.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
The network pharmacology under conditions is a recent development trend. We use network pharmacology methods to analyze the mechanism of crocetin (CRO) that regulates cardiovascular diseases. In this work, the spectral experimental data of CRO-Protein interaction is first time combined with constraint conditions to solve the problems of targeting redundancy and lack of verification. CRO targets and cardiovascular disease targets were obtained by the target database. The STRING platform was used for PPI analysis. The GO and KEGG pathways of the target were analyzed using the Metascape platform; The core functional targets of CRO were screened by molecular docking techniques and the spectra of CRO and human serum albumin (HSA). Under the collaborative constraint conditions, the core targets of CRO that regulate cardiovascular diseases are ADRA1A, ADRA1B, CHRM1, CHRM2, GABRA1, and PTGS2; This study incorporates spectroscopy and molecular docking as constraints into the network pharmacological analysis, which significantly improves the credibility of network pharmacological analysis compared with unconstrained conditions. This method provides theoretical references for the in-depth study of the mechanism between active substances and protein targets for other medicines in network pharmacology.
Collapse
Affiliation(s)
- Zhaoming Geng
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Qingteng Zhou
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Lanying Pan
- College of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Hangzhou Zhejiang, 311300, China
| |
Collapse
|
13
|
The Molecular Mechanism of Traditional Chinese Medicine Prescription: Gu-tong Formula in Relieving Osteolytic Bone Destruction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4931368. [PMID: 35872837 PMCID: PMC9300326 DOI: 10.1155/2022/4931368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 01/01/2023]
Abstract
Bone metastasis is a common complication in patients with advanced tumors, causing pain and bone destruction and affecting their quality of life. Typically, complementary and alternative medicine (CAM), with unique theoretical guidance, has played key roles in the treatment of tumor-related diseases. Gu-tong formula (GTF), as a representative prescription of traditional Chinese medicine, has been demonstrated to be an effective clinical medication for the relief of cancer pain. However, the molecular mechanism of GTF in the treatment of osteolytic metastasis is still unclear. Herein, we employ network pharmacology and molecular dynamics methods to uncover the potential treatment mechanism, indicating that GTF can reduce the levels of serum IL6 and TGFB1 and thus limit the scope of bone cortical damage. Among the active compounds, sesamin and deltoin can bind stably with IL6 and TGFB1, respectively, and have the potential to become anti-inflammatory and anticancer drugs. Although the reasons for the therapeutic effect of GTF are complex and comprehensive, this work provides biological plausibility in the treatment of osteolytic metastases, which has a guiding significance for the treatment of cancer pain with CAM.
Collapse
|
14
|
Long T, Tang Y, He YN, He CL, Chen X, Guo MS, Wu JM, Yu L, Yu CL, Law BYK, Qin DL, Wu AG, Zhou XG. Citri Reticulatae Semen extract promotes healthy aging and neuroprotection via autophagy induction in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2022; 77:2186-2194. [PMID: 35788666 DOI: 10.1093/gerona/glac136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Nutrition intervention has emerged as a potential strategy to delay aging and promote healthy longevity. Citri Reticulatae Semen (CRS) has diverse beneficial effects and has been used for thousands of years to treat pain. However, the health benefits of CRS in prolonging healthspan and improving aging-related diseases and the exact mechanisms remain poorly characterized. In this study, Caenorhabditis elegans (C. elegans) was used as a model organism to study the anti-aging and healthspan promoting activities of 75% ethanol extract of CRS (CRSE). The results showed that treatment with CRSE at 1000 μg/mL significantly extended the lifespan of worms by 18.93% without detriment to healthspan and fitness, as evidenced by the delayed aging-related phenotypes and increased body length and width and reproductive output. In addition, CRSE treatment enhanced the ability of resistance under heat, oxidative, and pathogenic bacterial stress. Consistently, heat shock proteins and antioxidant enzyme-related and pathogenesis-related (PR) genes were up-regulated by CRSE treatment. Furthermore, CRSE supplementation also improved α-synuclein, 6-OHDA, and polyQ40-induced pathologies in transgenic C. elegans models of Parkinson's disease (PD) and Huntington's disease (HD). The mechanistic study demonstrated that CRSE induced autophagy in worms, while the RNAi knockdown of 4 key autophagy-related genes including lgg-1, bec-1, vps-34, and unc-51 remarkably abrogated the beneficial effects of CRSE on the extending of lifespan and healthspan and neuroprotection, demonstrating that CRSE exerts beneficial effects via autophagy induction in worms. Together, our current findings provide new insights into the practical application of CRS for the prevention of aging and aging-related diseases.
Collapse
Affiliation(s)
- Tao Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yan-Ni He
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Chang-Long He
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xue Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
15
|
Zhao Q, Ren X, Song SY, Yu RL, Li X, Zhang P, Shao CL, Wang CY. Deciphering the Underlying Mechanisms of Formula Le-Cao-Shi Against Liver Injuries by Integrating Network Pharmacology, Metabonomics, and Experimental Validation. Front Pharmacol 2022; 13:884480. [PMID: 35548342 PMCID: PMC9081656 DOI: 10.3389/fphar.2022.884480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Le-Cao-Shi (LCS) has long been used as a folk traditional Chinese medicine formula against liver injuries, whereas its pharmacological mechanisms remain elusive. Our study aims to investigate the underlying mechanism of LCS in treating liver injuries via integrated network pharmacology, metabonomics, and experimental validation. By network pharmacology, 57 compounds were screened as candidate compounds based on ADME parameters from the LCS compound bank (213 compounds collected from the literature of three single herbs). According to online compound–target databases, the aforementioned candidate compounds were predicted to target 87 potential targets related to liver injuries. More than 15 pathways connected with these potential targets were considered vital pathways in collectively modulating liver injuries, which were found to be relevant to cancer, xenobiotic metabolism by cytochrome P450 enzymes, bile secretion, inflammation, and antioxidation. Metabonomics analysis by using the supernatant of the rat liver homogenate with UPLC-Q-TOF/MS demonstrated that 18 potential biomarkers could be regulated by LCS, which was closely related to linoleic acid metabolism, glutathione metabolism, cysteine and methionine metabolism, and glycerophospholipid metabolism pathways. Linoleic acid metabolism and glutathione metabolism pathways were two key common pathways in both network pharmacology and metabonomics analysis. In ELISA experiments with the CCl4-induced rat liver injury model, LCS was found to significantly reduce the levels of inflammatory parameters, decrease liver malondialdehyde (MDA) levels, and enhance the activities of hepatic antioxidant enzymes, which validated that LCS could inhibit liver injuries through anti-inflammatory property and by suppressing lipid peroxidation and improving the antioxidant defense system. Our work could provide new insights into the underlying pharmacological mechanisms of LCS against liver injuries, which is beneficial for its further investigation and modernization.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chang-Lun Shao, ; Chang-Yun Wang,
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chang-Lun Shao, ; Chang-Yun Wang,
| |
Collapse
|
16
|
Liu J, Zhang L, Wang Z, Chen S, Feng S, He Y, Zhang S. Network Pharmacology-Based Strategy to Identify the Pharmacological Mechanisms of Pulsatilla Decoction against Crohn's Disease. Front Pharmacol 2022; 13:844685. [PMID: 35450039 PMCID: PMC9016333 DOI: 10.3389/fphar.2022.844685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To explore pharmacological mechanisms of Pulsatilla decoction (PD) against Crohn's disease (CD) via network pharmacology analysis followed by experimental validation. Methods: Public databases were searched to identify bioactive compounds and related targets of PD as well as related genes in patients with CD. Analyses using the drug-compound-target-disease network, the protein-protein interaction (PPI) network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the core targets and pathways of PD against CD. Colon tissue resected from patients with CD and tissue samples from a mouse model of CD fibrosis treated with PD were assessed to verify the major targets of PD in CD predicted by network pharmacologic analysis. Results: A search of the targets of bioactive compounds in PD and targets in CD identified 134 intersection targets. The target HSP90AA1, which was common to the drug-compound-target-disease and PPI networks, was used to simulate molecular docking with the corresponding bioactive compound. GO and KEGG enrichment analyses showed that multiple targets in the antifibrotic pathway were enriched and could be experimentally validated in CD patients and in a mouse model of CD fibrosis. Assays of colon tissues from CD patients showed that intestinal fibrosis was greater in stenoses than in nonstenoses, with upregulation of p-AKT, AKT, p-mTOR, mTOR, p-ERK1/2, ERK1/2, p-PKC, and PKC targets. Treatment of CD fibrosis mice with PD reduced the degree of fibrosis, with downregulation of the p-AKT, AKT, p-mTOR, mTOR, p-ERK1/2, ERK1/2, and PKC targets. Conclusion: Network pharmacology analysis was able to predict bioactive compounds in PD and their potential targets in CD. Several of these targets were validated experimentally, providing insight into the pharmacological mechanisms underlying the biological activities of PD in patients with CD.
Collapse
Affiliation(s)
- Jinguo Liu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaojun Wang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujin He
- Department of Gastroenterology, Edong Healthcare City Hospital of Traditional Chinese Medicine, Hubei Chinese Medical University, Wuhan, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
17
|
Yuan H, Liu L, Zhou J, Zhang T, Daily JW, Park S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J Med Food 2022; 25:355-366. [PMID: 35438554 DOI: 10.1089/jmf.2021.k.0144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the molecular mechanism by which Houttuynia cordata Thunb (HCT) may intervene in coronavirus disease 2019 (COVID-19) and COVID-19-induced cytokine storms using network pharmacology and molecular docking approaches. Using the Traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a "component-target-pathway" topology map of HCT for COVID-19 treatment was constructed using Cytoscape. Core target genes were analyzed using the STRING database, and the signal pathway map and biological mechanism of COVID-19 therapy were obtained using cluster profilers. Active components of HCT were docked with severe respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) using AutoDockTools. Data visualization and statistical analysis were conducted using the R program. A molecular dynamic simulation was carried out with the Groningen Machine for Chemical Simulation program. HCT had six active anti-COVID-19 ingredients and 45 molecular targets. Their crucial target proteins for COVID-19 treatment were the RELA (nuclear factor kappa B [NF-κB] p65 subunit), interleukin 6, and mitogen-activated protein kinase 1. In functional enrichment analysis, the potential molecular targets of active components of HCT for COVID-19 treatment belonged to 18 signaling pathways (adjusted P = 2.12E-11). Gene ontology obtained by Kyoto Encyclopedia of Genes and Genome enrichment screening showed that the primary mechanism of COVID-19 treatment was upregulation of protein kinase C followed by downregulations of T cell differentiation and proliferation and NF-κB signaling. Molecular docking showed that the active components of HCT (quercetin and kaempferol) had similar binding affinities for SARS-CoV-2 3CLpro and SARS-CoV-2 RdRp, primary COVID-19 target proteins as did clinically used drugs. These results were confirmed with molecular dynamics simulation. In conclusion, multiple components of HCT, especially quercetin and kaempferol, have the potential to treat COVID-19 infection and COVID-19-induced cytokine storm by targeting multiple proteins.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Liping Liu
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Junyu Zhou
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Ting Zhang
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - James W Daily
- Daily Manufacturing, Inc., Rockwell, North Carolina, USA
| | - Sunmin Park
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea.,Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
18
|
Zhao Q, Song SY, Zhang YQ, Ren X, Zhang P, Li X, Fu XM, Wang CY. The underlying mechanisms of anti-hepatitis B effects of formula Le-Cao-Shi and its single herbs by network pharmacology and gut microbiota analysis. Biomed Pharmacother 2022; 148:112692. [PMID: 35151160 DOI: 10.1016/j.biopha.2022.112692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Formula Le-Cao-Shi (LCS), a traditional Chinese medicine (TCM), has been used as folk remedy for treating hepatitis B for a long time. In our previous study, the anti-hepatitis B effects of LCS have been verified. In the present study, the anti-hepatitis B activities of LCS and its three single herbs were investigated in vitro by HepG2.2.15 cellular model, and the mechanisms against hepatitis B were deciphered via network pharmacology and gut microbiota analysis. By network pharmacology method, twelve key compounds that played a vital role in LCS were filtered from 213 ingredients. The targets RORA, CDK2, RELA, AKT1, IKBKG, PRKCβ and CASP3 were directly related to hepatitis B pathway, which indicated that LCS could exert anti-hepatitis B effect by co-regulating cell cycle and inflammatory pathways. The interactions between candidate compounds and target proteins that were directly involved in hepatitis B pathway were validated by molecular docking simulation and RT-PCR. By gut microbiota analysis, it was revealed that LCS could alter the disordered microbial composition in the infected ducks towards normal, especially the restoration of three key strains, namely Streptococcus alactolyticus, Enterococcus cecorum and Bacteroides fragilis. The above findings could provide a scientific basis for further development and utilization of LCS against hepatitis B.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Yu-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, PR China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Peng Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; College of Economics, Ocean University of China, Qingdao 266100, PR China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
19
|
Screening of Active Components and Key Targets of Radix Codonopsis in the Treatment of Gastric Cancer. J CHEM-NY 2021. [DOI: 10.1155/2021/6056636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer is the fifth most common cancer type in the world. The incidence and mortality of gastric cancer in China ranks second among malignant tumors in the country. At present, the main treatment method of gastric cancer is still surgical resection combined with chemotherapy. However, chemotherapy drugs will cause serious toxic and side effects on other normal tissues and cells. At the same time, chemotherapy drugs can make patients develop drug resistance and seriously affect the curative effect. By contrast, Chinese medicine has more advantages in the treatment of cancer. Dangshen (Radix Codonopsis), a traditional Chinese medicine, has been proved to be effective for the clinical treatment of gastric cancer. However, due to the complex components of Dangshen, the main active components and pharmacological mechanism for its treatment of gastric cancer are still unclear. In this study, the main active components and pharmacological mechanism of Radix Codonopsis in the treatment of gastric cancer were preliminarily explored based on network pharmacology and molecular docking. We obtained bioactive compounds and targets from Radix Codonopsis from the Chinese Medicine System Pharmacology Database (TCMSP) and constructed the active ingredient-target network of Codonopsis pilosula. We then obtained targets related to gastric cancer from the disease database. The common targets of Radix Codonopsis and gastric cancer were the key target of Radix Codonopsis for the treatment of gastric cancer. Then, we used Metascapedatabase to conduct functional enrichment analysis on the key targets of Radix Codonopsis for the treatment of gastric cancer to clarify the mechanism of Radix Codonopsis for the treatment of gastric cancer. We constructed a network to screen the main bioactive compounds and therapeutic targets, assessed the prognostic value of the main target genes by survival analysis, and finally assessed the binding affinity of the main target genes and main bioactive compounds of Radix Codonopsis for the treatment of gastric cancer by molecular docking. The results showed that the main active compounds of Codonopsis pilosula in treating gastric cancer were luteolin and cryptotanshinone, which played a role in the treatment of gastric cancer through the multitarget and multipathway mechanism.
Collapse
|
20
|
Zhu H, Wang X, Wang X, Pan G, Zhu Y, Feng Y. The toxicity and safety of Chinese medicine from the bench to the bedside. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
He T, Liu C, Li M, Wang M, Liu N, Zhang D, Han S, Li W, Chen S, Yuan R, Huang J. Integrating non-targeted metabolomics and toxicology networks to study the mechanism of Esculentoside A-induced hepatotoxicity in rats. J Biochem Mol Toxicol 2021; 35:1-15. [PMID: 33788351 DOI: 10.1002/jbt.22761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/11/2020] [Accepted: 03/02/2021] [Indexed: 11/06/2022]
Abstract
Esculentoside A (EsA) is a kind of triterpenoid saponins from the root tuber of Phytolacca acinosa Roxb. It has extensive medicinal activity, such as antibacterial, anti-inflammatory, immune regulation, and cell proliferation inhibition. However, some researches suggested that EsA can cause hepatotoxicity, whose mechanism is not precise. To ensure the safety and reliability in the clinical use of Phytolacca acinosa Roxb., it is necessary to establish a rapid and accurate method to evaluate the toxicity, analyze and verify the toxicity mechanism of EsA. Therefore, this research explored the mechanism of hepatotoxicity induced by EsA in rats and analyzed endogenous metabolites' changes in rat plasma by combining network toxicology with non-targeted metabolomics. We obtained 58 critical targets of EsA induced hepatotoxicity in rats based on the strategy of network toxicology, including albumin, mitogen-activated protein kinase 1, Caspase-3, etc. Many important pathways were obtained by Kyoto Encyclopedia of Genes and Genomes enrichment analysis, such as HIF-1 signaling pathway, TNF signaling pathway, IL-17 signaling pathway, and other concerning pathways. Sixteen biomarkers, including 5-hydroxykynurenamine, N-acetylserotonin, palmitic acid, etc., were screened from rat plasma using Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS), mainly involve Glycerophospholipid metabolism, Tryptophan metabolism, and other metabolic pathways. Further analysis showed that EsA may induce liver injury by activating oxidative stress and energy metabolism disorders, triggering inflammation and apoptosis.
Collapse
Affiliation(s)
- Tao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Mengyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Mingshuang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Ning Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Dan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Shuang Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Wenxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Shilin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Ruijuan Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, China
| |
Collapse
|
22
|
Yuan Y, Wu Q, Zhao J, Feng Z, Dong J, An M, Wu G, Qin F, Zhao L. Investigation of pathogenesis and therapeutic targets of acute myeloid leukemia based on untargeted plasma metabolomics and network pharmacology approach. J Pharm Biomed Anal 2020; 195:113824. [PMID: 33358300 DOI: 10.1016/j.jpba.2020.113824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease originating from bone marrow hematopoietic stem cells, characterized by anemia, hemorrhage, fever, and infection, with low survival rate. However, the pathogenesis of AML is not fully understood at present. In this work, an integrated approach based untargeted metabolomics and network pharmacology was adopted to elucidate the pathogenesis of AML. Metabolic profiling of plasma samples from 14 patients and 16 healthy individuals were performed based on UHPLC-MS platform. As a result, 23 metabolites were identified by using the human metabolite database based on PLS-DA (partial least squares discriminant analysis) and independent sample test. And metabolic pathways related to AML mainly included fatty acid metabolism, amino acid metabolism, energy metabolism and lipid metabolism. Meanwhile, biomarkers-targets-pathways-disease network was constructed, 75 biomarker targets and 122 disease targets were identified. Furthermore, 30 pathways were predicted, some of which were consistent with these in metabolomics. This is the first time that metabolomics and network pharmacology approach have been combined to investigate the pathogenesis and therapeutic targets of AML. ALDH, CYP2E1 and CYP3A4 were potential therapeutic targets for AML, which provide available way to elucidate the pathogenesis and treatment of AML.
Collapse
Affiliation(s)
- Yunxia Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China
| | - Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, PR China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China
| | - Zhiao Feng
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Jiani Dong
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Ming An
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Guodong Wu
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, PR China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
23
|
Hu L, Chen Y, Chen T, Huang D, Li S, Cui S. A Systematic Study of Mechanism of Sargentodoxa cuneata and Patrinia scabiosifolia Against Pelvic Inflammatory Disease With Dampness-Heat Stasis Syndrome via Network Pharmacology Approach. Front Pharmacol 2020; 11:582520. [PMID: 33424592 PMCID: PMC7789873 DOI: 10.3389/fphar.2020.582520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023] Open
Abstract
Objective: To investigate the mechanism of Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson (SC) and Patrinia scabiosifolia (PS) against Pelvic Inflammatory Disease with Dampness-Heat Stasis Syndrome via network pharmacological approach and experimental validation. Methods: The active compounds with OB ≥ 30% and DL ≥ 0.18 were obtained from TCMSP database and further confirmed by literature research. The targets of the compounds and disease were acquired from multiple databases, such as GeneCards, CTD and TCMSP database. The intersection targets were identified by Venny software. Cytoscape 3.7.0 was employed to construct the protein-protein interaction (PPI) network and compound-target network. Moreover, GO enrichment and KEGG pathway analysis were analyzed by DAVID database. Finally, CCK-8, Griess assay and a cytometric bead array (CBA) immunoassay were used for experimental validation by detecting the influence of the active compounds on proliferation of macrophage, release of NO and TNF-α after LPS treatment. Results: 9 bioactive compounds were identified from SC and PS. Those compounds corresponded to 134 targets of pelvic inflammatory disease with dampness-heat stasis syndrome. The targets include vascular endothelial growth factor A (VEGFA), von willebrand factor (VWF), interleukin 6 (IL6), tumor necrosis factor (TNF) and nuclear transcription factor 1 (NFκB1). They act on the signaling pathways like advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE), focal adhesion (FA), Toll-like receptor (TLR) and nuclear transcription factor κB (NF-κB). In addition, by in vitro validation, the selected active components of SC and PS such as acacetin, kaempferol, linarin, isovitexin, sinoacutine could significantly inhibit the release of NO induced by LPS, respectively. Moreover, different dose of acacetin, kaempferol, isovitexin and sinoacutine significantly inhibits the TNF-α production. Conclusion: This study provides solid evidence for the anti-inflammatory mechanism of SC and PS against pelvic inflammatory disease with dampness-heat stasis syndrome, which will provide a preliminary evidence and novelty ideas for future research on the two herbs.
Collapse
Affiliation(s)
- Luanqian Hu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Yuqi Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Tingting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Dan Huang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Shihua Li
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China.,Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
24
|
A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem 2020; 90:107402. [PMID: 33338839 DOI: 10.1016/j.compbiolchem.2020.107402] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has been used for more than 2000 years in China. TCM has received wide attention recently due to its unique charm. At the same time, its main obstacles have attracted wide attention, including vagueness of drug composition and treatment mechanism. With the development of virtual screening technology, more and more Chinese medicine compounds have been studied to discover the potential active components and mechanisms of action. Molecular docking is a computer technology based on structural design. Network pharmacology establishes powerful and comprehensive databases to understand the relationship between TCM and disease network. In this review, emergent uses and applications of two techniques and further superiorities of the two techniques when embarked to boil down into a tidy system were illustrated. A combination of the two provides a theoretical basis and technical support for the construction of modern TCM based on the compatibility of components and accelerates the realization of two basic elements as well, including the clearness of the pharmacodynamic substances and explanation of the effect of TCM.
Collapse
|
25
|
Liang B, Zhang XX, Gu N. Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease. BMC Complement Med Ther 2020; 20:345. [PMID: 33187508 PMCID: PMC7664106 DOI: 10.1186/s12906-020-03133-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Guanxin V (GXV), a traditional Chinese medicine (TCM), has been widely used to treat coronary artery disease (CAD) in clinical practice in China. However, research on the active components and underlying mechanisms of GXV in CAD is still scarce. METHODS A virtual screening and network pharmacological approach was utilized for predicting the pharmacological mechanisms of GXV in CAD. The active compounds of GXV based on various TCM-related databases were selected and then the potential targets of these compounds were identified. Then, after the CAD targets were built through nine databases, a PPI network was constructed based on the matching GXV and CAD potential targets, and the hub targets were screened by MCODE. Moreover, Metascape was applied to GO and KEGG functional enrichment. Finally, HPLC fingerprints of GXV were established. RESULTS A total of 119 active components and 121 potential targets shared between CAD and GXV were obtained. The results of functional enrichment indicated that several GO biological processes and KEGG pathways of GXV mostly participated in the therapeutic mechanisms. Furthermore, 7 hub MCODEs of GXV were collected as potential targets, implying the complex effects of GXV-mediated protection against CAD. Six specific chemicals were identified. CONCLUSION GXV could be employed for CAD through molecular mechanisms, involving complex interactions between multiple compounds and targets, as predicted by virtual screening and network pharmacology. Our study provides a new TCM for the treatment of CAD and deepens the understanding of the molecular mechanisms of GXV against CAD.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
26
|
Duan S, Niu L, Yin T, Li L, Gao S, Yuan D, Hu M. A novel strategy for screening bioavailable quality markers of traditional Chinese medicine by integrating intestinal absorption and network pharmacology: Application to Wu Ji Bai Feng Pill. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153226. [PMID: 32521487 DOI: 10.1016/j.phymed.2020.153226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Major components are often used as marker compounds for quality control of traditional Chinese medicines (TCMs). However, these compounds may not necessarily bioavailable and active in vivo, thereby, failing to control the "quality". PURPOSE The purpose of this paper is to develop a novel strategy integrating absorption and activity deduced from network pharmacology to identify more reasonable markers for quality control of TCM formulas using Wu Ji Bai Feng Pill (WJBFP) as an example. STUDY DESIGN Human Caucasian colon adenocarcinoma (Caco-2) cell transport studies and a bioavailability-enhanced network pharmacological approach were integrated to identify better phytochemical markers for quality control. METHODS The absorption of multiple components in WJBFP was evaluated by a Caco-2 cell culture model. Nine databases were used to identify potential targets in the network pharmacology analysis. Cytoscape 3.7.2 was employed for the network data integration, visualization, and centrality analysis. Molecular docking was carried out to investigate the binding affinity of the identified markers to their candidate targets. RESULTS The apparent permeability coefficient (Papp) and efflux ratio (ER) of 66 compounds were determined. Five hundred and two putative targets and 187 primary dysmenorrhea (PD) related targets were identified. Twenty-two candidate targets interacting with 20 potential active compounds were screened with the putative PD related targets intersection network using Degree Centrality (DC) ranking. By integrating absorption, 16 candidate targets interacting with 8 potential active compounds were identified. Besides, 53 compounds hitting candidate targets were divided into two classes according to their DC values. Then each of the two classes of DC was stratified into two groups based on the Papp for a total of four classes. Finally, five compounds belonging to Class 1 with higher DC and higher Papp, formononetin, ferulic acid, isoliquiritigenin, neocryptotanshinone and senkyunolide A, were identified as potential bioavailable phytochemical markers for the quality control of WJBFP against PD. Furthermore, molecular docking analysis validated the interplay between candidate targets and marker ingredients. CONCLUSION A novel strategy combining intestinal absorption with network pharmacology analysis was successfully established to identify bioavailable and bioactive markers for quality control of WJBFP against PD.
Collapse
Affiliation(s)
- Shengnan Duan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX 77204-5037, USA
| | - Lei Niu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX 77204-5037, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX 77204-5037, USA
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX 77204-5037, USA.
| |
Collapse
|
27
|
Newman DJ. Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. PHARMACOLOGICAL ADVANCES IN NATURAL PRODUCT DRUG DISCOVERY 2020; 87:113-158. [DOI: 10.1016/bs.apha.2019.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Network pharmacology-based identification of the key mechanism of Qinghuo Rougan Formula acting on uveitis. Biomed Pharmacother 2019; 120:109381. [DOI: 10.1016/j.biopha.2019.109381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
|
29
|
Network toxicology and LC-MS-based metabolomics: New approaches for mechanism of action of toxic components in traditional Chinese medicines. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Xie F, Zheng W, Yan Q, Peng Z, Zhang T, Liu X. Network pharmacology—Deciphering the molecular mechanism of San-Zi-Yang-Qin decoction for the treatment of chronic obstructive pulmonary disease. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
New progress of interdisciplinary research between network toxicology, quality markers and TCM network pharmacology. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Wang YL, Cui T, Li YZ, Liao ML, Zhang HB, Hou WB, Zhang TJ, Liu L, Huang H, Liu CX. Prediction of quality markers of traditional Chinese medicines based on network pharmacology. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Hong W, Li S, Wu L, He B, Jiang J, Chen Z. Prediction of VEGF-C as a Key Target of Pure Total Flavonoids From Citrus Against NAFLD in Mice via Network Pharmacology. Front Pharmacol 2019; 10:582. [PMID: 31214028 PMCID: PMC6558193 DOI: 10.3389/fphar.2019.00582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023] Open
Abstract
Pure total flavonoids from Citrus (PTFC) effectively reduce the symptoms of non-alcoholic fatty liver disease (NAFLD). Our previous microarray analysis uncovered the alterations of important signaling pathways in the treatment of NAFLD with PTFC. However, the underlying core genes that might be targeted by PTFC, which play important roles in the progression of NALFD are yet to be identified. In this study, we predicted the vascular endothelial growth factor-C (VEGF-C) as potential key molecular target of PTFC against NAFLD via network pharmacology analysis. The network pharmacology approach presented here provided important clues for understanding the mechanisms of PTFC treatment in the development of NAFLD.
Collapse
Affiliation(s)
- Wei Hong
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Songsong Li
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Liyan Wu
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Jianping Jiang
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
34
|
Liu L, Wang H. The Recent Applications and Developments of Bioinformatics and Omics Technologies in Traditional Chinese Medicine. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190102125403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background:Traditional Chinese Medicine (TCM) is widely utilized as complementary health care in China whose acceptance is still hindered by conventional scientific research methodology, although it has been exercised and implemented for nearly 2000 years. Identifying the molecular mechanisms, targets and bioactive components in TCM is a critical step in the modernization of TCM because of the complexity and uniqueness of the TCM system. With recent advances in computational approaches and high throughput technologies, it has become possible to understand the potential TCM mechanisms at the molecular and systematic level, to evaluate the effectiveness and toxicity of TCM treatments. Bioinformatics is gaining considerable attention to unearth the in-depth molecular mechanisms of TCM, which emerges as an interdisciplinary approach owing to the explosive omics data and development of computer science. Systems biology, based on the omics techniques, opens up a new perspective which enables us to investigate the holistic modulation effect on the body.Objective:This review aims to sum up the recent efforts of bioinformatics and omics techniques in the research of TCM including Systems biology, Metabolomics, Proteomics, Genomics and Transcriptomics.Conclusion:Overall, bioinformatics tools combined with omics techniques have been extensively used to scientifically support the ancient practice of TCM to be scientific and international through the acquisition, storage and analysis of biomedical data.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Hao Wang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
35
|
Nie Q, Chen H, Hu J, Fan S, Nie S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit Rev Food Sci Nutr 2018; 59:848-863. [PMID: 30569745 DOI: 10.1080/10408398.2018.1536646] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) and its complications are major public health concerns which strongly influence the quality of humans' life. Modification of gut microbiota has been widely used for the management of diabetes. In this review, the relationship between diabetes and gut microbiota, as well as the effects of different dietary components and traditional Chinese medicine (TCM) on gut microflora are summarized. Dietary compounds and TCM possessing bioactive components (fiber and phytochemicals) first change the composition of gut microbiota (inhibiting pathogens and promoting the beneficial bacteria growth) and then influence the production of their metabolites, which would further modify the intestinal environment through inhibiting the production of detrimental compounds (such as lipopolysaccharide, hydrogen sulfide, indol, etc.). Importantly, metabolites (short chain fatty acids and other bioactive components) fermented/degraded by gut microbiota can target multiple pathways in intestine, liver, pancreas, etc., resulting in the improvement of gut health, glycemic control, lipids profile, insulin resistance and inflammation. Furthermore, understanding the interaction between different dietary components and gut microbiota, as well as underlying mechanisms would help design different diet formula for the management of diabetes. Further researches could focus on the combination of different dietary components for preventing and treating diabetes, based on the principle of "multiple components against multiple targets" from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Qixing Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Haihong Chen
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Jielun Hu
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Songtao Fan
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Shaoping Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| |
Collapse
|
36
|
Zhang C, Zheng X, Ni H, Li P, Li HJ. Discovery of quality control markers from traditional Chinese medicines by fingerprint-efficacy modeling: Current status and future perspectives. J Pharm Biomed Anal 2018; 159:296-304. [DOI: 10.1016/j.jpba.2018.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/11/2023]
|
37
|
Li Y, Zhang W, Ma J, Chen M, Lin B, Yang X, Li F, Tang X, Wang F. Study on the regulation of brain–gut peptide by Shenling Baizhu San in functional diarrhea rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Research Advances on Hepatotoxicity of Herbal Medicines in China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7150391. [PMID: 28078299 PMCID: PMC5203888 DOI: 10.1155/2016/7150391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/31/2016] [Indexed: 02/07/2023]
Abstract
In general, herbal medicines have been considered as safe by the general public, since they are naturally occurring and have been applied in treatment for over thousands of years. As the use of herbal medicine is rapidly increasing globally, the potential toxicity of herbal drugs, in particular drug-induced liver injury (DILI), has now become a serious medical issue. According to the literature, the authors analyzed and discussed the hepatotoxicity problem of Chinese herbal medicines (CHM), including global overview on herbal-induced liver injury (HILI), current research progress on toxic CHM, diagnosis and treatment of HILI, and modern approaches and technologies of study of hepatotoxicity. As to promote the recognition of HILI and tackle the issue, a guideline for the diagnosis and treatment of HILI has recently been drafted by Chinese scientists. As suggested by the guideline, the hepatotoxicity issue of CHM, as a matter of fact, is overestimated. Up to date, the investigation of hepatotoxicity of CHM is now booming with worldwide application of CHM. This review therefore provides useful information for investigating hepatotoxicity of herbal medicine and characterizing DILI caused by CHM. In addition, authors describe in which way further efforts should be made to study the rationale of CHM and liver injury.
Collapse
|
39
|
Hou Y, Nie Y, Cheng B, Tao J, Ma X, Jiang M, Gao J, Bai G. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa-induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways. Acta Pharm Sin B 2016; 6:212-21. [PMID: 27175332 PMCID: PMC4856955 DOI: 10.1016/j.apsb.2016.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively.
Collapse
Key Words
- ATG, arctigenin
- Anti-inflammatory
- CGA, chlorogenic acid
- CLA, cholic acid
- DMSO, dimethylsulfoxide
- Dex, dexamethasone
- ELISA, enzyme-linked immunosorbent assay
- ESI, electrospray ionization
- GA, genetic algorithm
- HE, hematoxylin and eosin
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LB, Luria–Bertani
- LEV, levofloxacin
- Lung
- MAPK, mitogen activated protein kinase
- Mouse
- NFATc1, nuclear factor of activated T cells c1
- Network pharmacology
- Ninj1, ninjurin1
- PBS, phosphate-buffered saline
- PI3K, phosphoinositide 3-kinase
- PI3K/AKT pathway
- Pathogenic bacterial infection
- QF, Qingfei Xiaoyan Wan
- Ras/MAPK pathway
- SARS, severe acute respiratory syndrome
- SPA, sinapic acid
- TCM, traditional Chinese medicine
- TTBS, Tween 20/Tris-buffered saline
- UPLC, ultra-performance liquid chromatography
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Yan Nie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Binfeng Cheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Jin Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
- Corresponding author.
| |
Collapse
|
40
|
Bai G, Hou YY, Jiang M, Gao J. Integrated Systems Biology and Chemical Biology Approach to Exploring Mechanisms of Traditional Chinese Medicines. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60017-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
41
|
An integrated global chemomics and system biology approach to analyze the mechanisms of the traditional Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills for pulmonary diseases. Altern Ther Health Med 2016; 16:4. [PMID: 26742634 PMCID: PMC4705596 DOI: 10.1186/s12906-015-0983-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
Background Traditional Chinese medicine (TCM) herbal formulae provide valuable therapeutic strategies. However, the active ingredients and mechanisms of action remain unclear for most of these formulae. Therefore, the identification of complex mechanisms is a major challenge in TCM research. Methods This study used a network pharmacology approach to clarify the anti-inflammatory and cough suppressing mechanisms of the Chinese medicinal preparation Eriobotrya japonica – Fritillaria usuriensis dropping pills (ChuanbeiPipa dropping pills, CBPP). The chemical constituents of CBPP were identified by high-quality ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), and anti-inflammatory ingredients were selected and analyzed using the PharmMapper and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatics websites to predict the target proteins and related pathways, respectively. Then, an RNA-sequencing (RNA-Seq) analysis was carried out to investigate the different expression of genes in the lung tissue of rats with chronic bronchitis. Results Six main constituents affected 19 predicted pathways, including ursolic acid and oleanolic acid from Eriobotrya japonica (Thunb.) Lindl. (Eri), peiminine from Fritillaria usuriensis Maxim. (Fri), platycodigenin and polygalacic acid from Platycodon grandiflorum (Jacq.) A. DC. (Pla) and guanosine from Pinellia ternata (Thunb.) Makino. (Pin). Expression of 34 genes was significantly decreased after CBPP treatment, affecting four therapeutic functions: immunoregulation, anti-inflammation, collagen formation and muscle contraction. Conclusion The active components acted on the mitogen activated protein kinase (MAPK) pathway, transforming growth factor (TGF)-beta pathway, focal adhesion, tight junctions and the action cytoskeleton to exert anti-inflammatory effects, resolve phlegm, and relieve cough. This novel approach of global chemomics-integrated systems biology represents an effective and accurate strategy for the study of TCM with multiple components and multiple target mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0983-y) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Lee YT, Hsieh YL, Yeh YH, Huang CY. Synthesis of phenolic amides and evaluation of their antioxidant and anti-inflammatory activity in vitro and in vivo. RSC Adv 2015. [DOI: 10.1039/c5ra14137k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
15 phenolic amides (PAs) have been synthesized and examinedin vitrousing four tests: (1) prevention of Cu2+-induced human low-density lipoprotein oxidation, (2) scavenging of stable radicals, (3) anti-inflammatory activity, and (4) scavenging of superoxide radicals.
Collapse
Affiliation(s)
- Ya-Ting Lee
- Department of Beauty Science
- National Taichung University of Science and Technology
- Taichung
- Republic of China
| | - You-Liang Hsieh
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung
- Republic of China
| | - Yen-Hung Yeh
- School of Health Diet and Industry Management
- Chung Shan Medical University
- Taichung
- Republic of China
- Department of Nutrition
| | - Chih-Yang Huang
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung
- Republic of China
- Graduate Institute of Basic Medical Science
| |
Collapse
|