1
|
Tumor Necrosis Factor Alpha: Implications of Anesthesia on Cancers. Cancers (Basel) 2023; 15:cancers15030739. [PMID: 36765695 PMCID: PMC9913216 DOI: 10.3390/cancers15030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Cancer remains a major public health issue and a leading cause of death worldwide. Despite advancements in chemotherapy, radiation therapy, and immunotherapy, surgery is the mainstay of cancer treatment for solid tumors. However, tumor cells are known to disseminate into the vascular and lymphatic systems during surgical manipulation. Additionally, surgery-induced stress responses can produce an immunosuppressive environment that is favorable for cancer relapse. Up to 90% of cancer-related deaths are the result of metastatic disease after surgical resection. Emerging evidence shows that the interactions between tumor cells and the tumor microenvironment (TME) not only play decisive roles in tumor initiation, progression, and metastasis but also have profound effects on therapeutic efficacy. Tumor necrosis factor alpha (TNF-α), a pleiotropic cytokine contributing to both physiological and pathological processes, is one of the main mediators of inflammation-associated carcinogenesis in the TME. Because TNF-α signaling may modulate the course of cancer, it can be therapeutically targeted to ameliorate clinical outcomes. As the incidence of cancer continues to grow, approximately 80% of cancer patients require anesthesia during cancer care for diagnostic, therapeutic, or palliative procedures, and over 60% of cancer patients receive anesthesia for primary surgical resection. Numerous studies have demonstrated that perioperative management, including surgical manipulation, anesthetics/analgesics, and other supportive care, may alter the TME and cancer progression by affecting inflammatory or immune responses during cancer surgery, but the literature about the impact of anesthesia on the TNF-α production and cancer progression is limited. Therefore, this review summarizes the current knowledge of the implications of anesthesia on cancers from the insights of TNF-α release and provides future anesthetic strategies for improving oncological survival.
Collapse
|
2
|
Zhang D, Yang J, Ye S, Wang Y, Liu C, Zhang Q, Liu R. Combination of Photothermal Therapy with Anti-Inflammation Therapy Attenuates the Inflammation Tumor Microenvironment and Weakens Immunosuppression for Enhancement Antitumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107071. [PMID: 35128798 DOI: 10.1002/smll.202107071] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Photothermal therapy has gained widespread attention in cancer treatment, although its efficacy is suppressed due to the inflammatory response and immunosuppression, resulting in a discounted therapeutic effect. In this contribution, a high-performance NIR absorption organic small chromophore is developed, which is encapsulated into Pluronic F-127 to fabricate NIR absorption organic nanoparticles (TTM NPs) with excellent photothermal conversion efficiency (51.49%) for photothermal therapy. TTM NPs based photothermal therapy are combined with Aspisol, a kind of nonsteroidal anti-inflammatory drug, to weaken the inflammation and immunosuppression tumor microenvironment and enhance the antitumor effect. The results prove that the combination therapy realizes effective thermal elimination of primary tumors, inhibition of distant tumors, and suppression of tumor metastasis. The data show that combination therapy can suppress the expression of inflammatory factors, enhance dendritic cell activation and maturation, reverse the immunosuppression, facilitate T cell infiltration, and restore antitumor cytotoxic T lymphocyte activity. This study provides a paradigm to extend the development of photothermal therapy.
Collapse
Affiliation(s)
- Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sheng Ye
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yutong Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuang Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
3
|
Zhang L, Chen WX, Li LL, Cao YZ, Geng YD, Feng XJ, Wang AY, Chen ZL, Lu Y, Shen AZ. Paeonol Suppresses Proliferation and Motility of Non-Small-Cell Lung Cancer Cells by Disrupting STAT3/NF-κB Signaling. Front Pharmacol 2020; 11:572616. [PMID: 33442382 PMCID: PMC7797776 DOI: 10.3389/fphar.2020.572616] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Targeting inflammatory microenvironment is a promising anti-tumor strategy. Paeonol is a phenolic compound with effective anti-inflammatory and anti-tumor properties. However, the effects of paeonol on non-small cell carcinoma (NSCLC) have not been fully investigated. Here, we evaluated the effects of paeonol on proliferation and metastasis of NSCLC and elucidated the underlying mechanisms. Methods: The effects of paeonol on inflammatory cytokines were determined by cell proliferation and ELISA assays. Assays of wound healing, single cell migration and perforation invasion were used to evaluate migration and invasion of NSCLC cells. Expression of marker proteins in epithelial-mesenchymal transition (EMT) and matrix metalloproteinase (MMP) family enzymes were detected by Western blot assays. Nude mouse A549 cells transplantation tumor model was used to study the anti-lung cancer effects of paeonol in vivo. TUNEL stanining were used to detect the apoptosis of tumor cells in A549 lung cancer mice, and Ki67 analysis was used to detect the proliferation of tumor cells in A549 lung cancer mice. Immunohistochemistry was used to detect the effects of paeonol on signaling molecules in tumor tissues. Results: Paeonol inhibited A549 cancer cell migration and invasion in vitro. Paeonol inhibited secreaion of inflammatory cytokines in A549 cells, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and transforming growth factor (TGF)-β. Paeonol altered the expression of marker proteins involved in EMT and MMP family enzymes. In addition, paeonol inhibited the transcriptional activity of nuclear factor-κB (NF-κB) and phosphorylation of signal transducers and activators of transcription 3 (STAT3). Paeonol inhibited the growth of A549 cells transplanted tumors in nude mice. Conclusion: Paeonol potently inhibited NSCLC cell growth, migration and invasion associated with disruption of STAT3 and NF-κB pathways, suggesting that it could be a promising anti-metastatic candidate for tumor chemotherapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wen-Xu Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling-Li Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yu-Zhu Cao
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Ya-Di Geng
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Xiao-Jun Feng
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Ai-Yun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao-Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ai-Zong Shen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China.,Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Imatinib exhibit synergistic pleiotropy in the prevention of colorectal cancer by suppressing proinflammatory, cell survival and angiogenic signaling. Cell Signal 2020; 76:109803. [PMID: 33022360 DOI: 10.1016/j.cellsig.2020.109803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Recent global incidences and mortality rates have placed colorectal cancer (CRC) at third and second positions, respectively, among both sexes of all ages. Resistance during chemotherapy is a big problem in the treatment and disease-free survival of CRC patients. Discovery of new anticancer drug(s) is a time taking process and therefore, invites studies for repurposing the known therapeutics. The present study was conceived to analyze the anticancer role of Imatinib in experimental CRC at early stages. Different experimental procedures e.g. tumor incidences or histoarchitectural changes, gene and protein expression analysis, estimations of intracellular calcium, ROS, mitochondrial membrane potential, apoptotic index and molecular docking was performed to support the hypothesis. It was observed that Imatinib could function as an immunomodulator by breaking the feed-back loop between the proinflammatory cytokines (IL-1β and TNF-α) and transcription factors (NF-κB, Jak3/Stat3) knowingly involved in increased cell proliferation during tumorigenesis via activating different intracellular signaling. Also, Imatinib could independently deregulate the other cell survival and proliferation signaling e.g. PI3-K/Akt/mTOR, Wnt/β-catenin and MAPK. Proinflammatory cytokines orchestrated intracellular signaling also involve angiogenic factors to be upregulated during CRC which were also seemed to be independently suppressed by Imatinib. Restoration of physiological apoptosis by increasing the release of intracellular calcium to generate ROS thereby reducing the mitochondrial membrane potential for the release of cytochrome c and activation of caspase-3 was also reported with Imatinib administration. Thus, it may be suggested that Imatinib show synergistic pleiotropy in suppressing the interlinked tumorigenic signaling pathways independently.
Collapse
|
5
|
Ma P, Zhang C, Huo P, Li Y, Yang H. A novel role of the miR-152-3p/ERRFI1/STAT3 pathway modulates the apoptosis and inflammatory response after acute kidney injury. J Biochem Mol Toxicol 2020; 34:e22540. [PMID: 32583487 DOI: 10.1002/jbt.22540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is one of the most common and serious complications in the development of sepsis. Many microRNAs are closely related to the occurrence, development, and prognosis of sepsis AKI (but the effect and mechanism of miR-152-3p in it is unclear). Meanwhile, the ERBB receptor feedback inhibitor 1 (ERRFI1) has a negative regulatory effect on signal transducer and activator of transcription 3 (STAT3) phosphorylation on uterine epithelial cells. But, the relationship between miR-152-3p and renal function, inflammatory factors, prognosis in AKI, and the mechanism is not clear. Analyzing sepsis-induced AKI rats and the cell model, our results revealed that miR-152-3p was upregulated in septic AKI patients and positively correlated with serum creatinine, urea nitrogen, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α). Downregulation of miR-152-3p with the inhibitor could dramatically attenuate caspase-3, bromodeoxyuridine and IL-1β, and TNF-α in the AKI rats' model. Furthermore, downregulation of miR-152-3p attenuated lipopolysaccharide-induced apoptosis and inflammatory response in HK-2 and HEK293 cells. To further explore the mechanisms, we found ERRFI1 was appreciably downregulated and STAT3 was upregulated in AKI, whereas ERRFI1 was radically upregulated and STAT3 was greatly downregulated after the addition of miR-152-3p inhibitor, no matter in vivo or in vitro. Summarily, our study confirmed that miR-152-3p could promote the expression of STAT3 by targeting ERRFI1, aggravate cell apoptosis and inflammatory response, and thereby aggravate kidney injury in sepsis AKI.
Collapse
Affiliation(s)
- Piyong Ma
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Chunmei Zhang
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Huo
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Li
- Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Hailing Yang
- Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Imatinib modulates pro-inflammatory microenvironment with angiostatic effects in experimental lung carcinogenesis. Inflammopharmacology 2019; 28:231-252. [PMID: 31676982 DOI: 10.1007/s10787-019-00656-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Lung cancer has second highest rate of incidence and mortality around the world. Smoking cigarettes is the main stream cause of lung carcinogenesis along with other factors such as spontaneous mutations, inactivation of tumor suppressor genes. The present study was aimed to identify the mechanistic role of Imatinib in the chemoprevention of experimental lung carcinogenesis in rat model. Gross morphological observations for tumor formation, histological examinations, RT-PCR, Western blotting, fluorescence spectroscopy and molecular docking studies were performed to elucidate the chemopreventive effects of Imatinib and support our hypothesis by various experiments. It is evident that immuno-compromised microenvironment inside solid tumors is responsible for tumor progression and drug resistance. Therefore, it is inevitable to modulate the pro-inflammatory signaling inside solid tumors to restrict neoangiogenesis. In the present study, we observed that Imatinib could downregulate the inflammatory signaling and also attributed angiostatic effects. Moreover, Imatinib also altered the biophysical properties of BAL cells such as plasma membrane potential, fluidity and microviscosity to restrict their infiltration and thereby accumulation to mount immuno-compromised environment inside the solid tumors during angiogenesis. Our molecular docking studies suggest that immunomodulatory and angiostatic properties of Imatinib could be either independent of each other or just a case of synergistic pleiotropy. Imatinib was observed to activate the intrinsic or mitochondrial pathway of apoptosis to achieve desired effects in cancer cell killings. Interestingly, binding of Imatinib inside the catalytic domain of PARP-1 also suggests that it has caspase-independent properties in promoting cancer cell deaths.
Collapse
|
7
|
Sharaf LK, Sharma M, Chandel D, Shukla G. Prophylactic intervention of probiotics (L.acidophilus, L.rhamnosus GG) and celecoxib modulate Bax-mediated apoptosis in 1,2-dimethylhydrazine-induced experimental colon carcinogenesis. BMC Cancer 2018; 18:1111. [PMID: 30424722 PMCID: PMC6234654 DOI: 10.1186/s12885-018-4999-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer has been found to be attenuated either with prophylactic manipulation of gut microbiome with probiotics or celecoxib, a non-steroidal anti-inflammatory drug mainly by suppressing early pro-carcinogenic markers in various experimental studies. Therefore, the present study was designed to assess the prophylactic potential of combinatorial administration of probiotics (Lactobacillus rhamnosus GG, Lactobacillus acidophilus) and celecoxib in experimental colon carcinogenesis. METHODS Six groups of Spraugue Dawely rats received probiotics L.rhamnosus GG or/and L.acidophilus in combination with celecoxib one week prior to the inducement of tumor by 1,2-dimethylhydrazine (DMH) and the treatment continued for 18 weeks. Prophylactic potentials of probiotics and celecoxib were determined by employing various methods such as tumor incidence, tumor burden, tumor multiplicity, apoptosis, caspase activity, expression of proto-oncogene K-ras and tumor suppressor p53 gene in colonic tumors. RESULTS Interestingly, it was found that one week prior supplementation of both probiotics and celecoxib reduced tumor burden, tumor multiplicity, down-regulated the expression of anti-apoptotic Bcl-2, proto-oncogene K-ras and up-regulated pro-apoptotic Bax as well as tumor suppressor p53 in L.rhamnosus GG + celecoxib+DMH animals compared with counter controls and DMH-treated. CONCLUSIONS It can be concluded that such combinatorial approach may be useful in reducing the burden and severity of disease in highly susceptible individuals but needs to be validated clinically.
Collapse
Affiliation(s)
- Leila Kaeid Sharaf
- Department of Microbiology, Basic Medical Sciences (Block I), South Campus, Panjab University, -160014, Chandigarh, India
| | - Mridul Sharma
- Department of Microbiology, Basic Medical Sciences (Block I), South Campus, Panjab University, -160014, Chandigarh, India
| | - Deepika Chandel
- Department of Microbiology, Basic Medical Sciences (Block I), South Campus, Panjab University, -160014, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences (Block I), South Campus, Panjab University, -160014, Chandigarh, India
| |
Collapse
|
8
|
Glenn K, Klarich DS, Kalaba M, Figueroa A, Hooshmand S, Kern M, Hong MY. Effects of Watermelon Powder and l-arginine Supplementation on Azoxymethane-Induced Colon Carcinogenesis in Rats. Nutr Cancer 2018; 70:938-945. [PMID: 30207495 DOI: 10.1080/01635581.2018.1490782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diets high in fruits and vegetables may help prevent colorectal cancer (CRC). Watermelon consumption may reduce CRC risk due to its concentration of l-citrulline and its role in endothelial nitric oxide (NO) production. Research suggests that increased NO levels have tumoricidal effects. The purpose of this study was to determine the effects of watermelon powder supplementation on aberrant crypt foci (ACF) formation, precancerous lesions, and expression of genes associated with colon carcinogenesis. Thirty-two male Sprague-Dawley rats were assigned into three groups: control, 0.36% l-arginine, or 0.5% watermelon powder and injected with azoxymethane (15 mg/kg body weight). Both l-arginine and watermelon powder groups exhibited lower total numbers of ACF and high multiplicity ACF (P < 0.01). The watermelon powder group exhibited higher NO levels and lower 8-hydroxyguanosine DNA damage (P < 0.05). Watermelon powder and l-arginine downregulated 8-oxoguanine DNA glycosylase gene expression and upregulated O6-methylguanine DNA methyltransferase gene expression (P < 0.05). Cyclooxgenase-2 gene expression was lower for rats fed with watermelon powder (P < 0.05). These results suggest that watermelon powder or l-arginine supplementation may reduce the risk of colon cancer by suppressing ACF formation through lowering oxidative DNA damage and inflammation, modulating DNA repair enzyme expression, and/or enhancing NO production.
Collapse
Affiliation(s)
- Keith Glenn
- a School of Exercise and Nutritional Sciences , San Diego State University , San Diego , California , USA
| | - DawnKylee S Klarich
- a School of Exercise and Nutritional Sciences , San Diego State University , San Diego , California , USA
| | - Milica Kalaba
- a School of Exercise and Nutritional Sciences , San Diego State University , San Diego , California , USA
| | - Arturo Figueroa
- b Department of Kinesiology and Sport Management , Texas Tech University , Lubbock , Texas , USA
| | - Shirin Hooshmand
- a School of Exercise and Nutritional Sciences , San Diego State University , San Diego , California , USA
| | - Mark Kern
- a School of Exercise and Nutritional Sciences , San Diego State University , San Diego , California , USA
| | - Mee Young Hong
- a School of Exercise and Nutritional Sciences , San Diego State University , San Diego , California , USA
| |
Collapse
|
9
|
Gungor H, Ilhan N, Eroksuz H. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer. Biomed Pharmacother 2018; 102:221-229. [PMID: 29562216 DOI: 10.1016/j.biopha.2018.03.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is an important cause of cancer-related deaths worldwide. Early diagnosis and treatment of CRCs are of importance for improving the survival. In the present study, we studied the effects of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effects on tumor development incidence and angiogenesis in experimental CRC rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and two NSAIDs (celecoxib and diclofenac) were given orally as chemopreventive agents. Histopathological and immuno histochemical evaluations were performed in colorectal tissue samples, whereas angiogenesis parameters were studied in blood samples. Histopathological examination showed that adenocarcinoma (62.5%), dysplastic changes (31.25%) and inflammattory changes (6.25%) were detected in DMH group, whereas no pathological change was observed in control rats. In treatment groups, there was marked decrease in adenocarcinoma rate (30% and 10%, respectively). A significant increase was detected in MMP-2, MMP-9 levels and MMP-2/TIMP-2 ratio in DMH group as compared with controls and treatment groups. In immunohistochemical evaluations, there was an increase in intensity and extent of staining of MMP-2 and MMP-9 in DMH group as compared to controls and treatment groups. The decrease in celecoxib group was more prominent. Overall, it was concluded that NSAIDs, particularly cyclooxygenase-2 (COX-2) inhibitors, might have a protective effect on CRC development and slow down progression of tumor in a DMH-induced experimental cancer model. One of the possible mechanisms in the chemoprevention of colon cancer seems to be inhibition of angiogenesis by diclofenac and celecoxib.
Collapse
Affiliation(s)
- Hilal Gungor
- Department of Medical Biochemistry, Firat University, Medical Faculty, Elazig, Turkey
| | - Nevin Ilhan
- Department of Medical Biochemistry, Firat University, Medical Faculty, Elazig, Turkey.
| | - Hatice Eroksuz
- Department of Pathology, Firat University, Faculty of Veterinary Medicine, Elazig, Turkey
| |
Collapse
|
10
|
Pluske JR, Kim JC, Black JL. Manipulating the immune system for pigs to optimise performance. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17598] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disease and enhanced microbial load are considered to be major factors limiting the performance and overall efficiency of feed use by pigs in Australian piggeries. It is recognised that pigs exposed to conventional housing systems with high microbial loads grow 10–20% more slowly than do gnotobiotic pigs or pigs kept in ‘clean’ environments. Consequently, a proportion of pigs in any production cycle are continuously being challenged by their immediate environment, which can cause an immune response to be mounted. Such a process is physiologically expensive in terms of energy and protein (comprised of amino acids), with, for example, the enhanced rate of protein turnover associated with the production of immune cells, antibodies and acute-phase proteins increasing energy expenditure by 10–15% of maintenance needs and protein requirements by 7–10%. The requirements for lysine, tryptophan, sulfur-containing amino acids and threonine can be increased by a further 10%. The over-stimulation of the immune response with excess production of pro-inflammatory cytokines causes excessive production primarily of the prostaglandin E2 (PGE2), which contributes to anorexia, fever and increased proteolysis, and a concomitant reduction in pig performance. Prostaglandin E2 is produced from dietary and cell-membrane phospholipids via secretory phospholipase A2 (sPLA2) to produce arachidonic acid, which is catalysed by the COX-2 enzyme. Negating the negative effects of PGE2 appears not to adversely affect the ability of the immune system to combat pathogens, but improves pig performance. There are negative outcomes for pig health and productivity through both under- and over-stimulation of the immune response. This review briefly outlines the impact of immune stimulation on pigs and discusses strategies to optimise the immune response for pig health and performance.
Collapse
|
11
|
Santos AMD, Coelho JPF, Juanes CDC, Azevedo RBD, Melo NDOR, Jamacaru FVF, Dornelas CA. Carcinogenesis in rats subjected to a new model ureterosigmoidostomy and treated with L-lysine. Acta Cir Bras 2017; 31:793-800. [PMID: 28076502 DOI: 10.1590/s0102-865020160120000003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To evaluate the effects of L-lysine on the intestinal and urothelial epithelium of rats subjected to ureterosigmoidostomy (new model for surgical carcinogenesis). METHODS: Forty-two rats, 9 weeks of age, were divided into 6 groups. Animals in groups A, B, C were subjected to ureterosigmoidostomy (US) and treated with L-lysine, celecoxib and H2O, respectively. Groups D, E and F (non-operated controls) received L-lysine, celecoxib and H2O, respectively. The L-lysine dose was 150 mg/kg and that of celecoxib was 20 mg/kg. The colon was analyzed for the presence of aberrant crypt foci (ACF) under a stereomicroscope.The tissue was stained with hematoxylin and eosin and PAS alcian blue. RESULTS: There were rare ACF, and there was no statistically significant difference between the groups. Histopathologic study of the ureteral epithelium identified moderate to severe urothelial hyperplasia in rats with ureterosigmoidostomy. Transitional hyperplasia in the ureters of animals receiving L-lysine (A) showed an apparent difference compared to the control (C) (P=0.2424). There was no dysplasia or atypia. CONCLUSION: L-lysine does not promote carcinogenesis of the intestinal and urethelial epithelium of rats subjected to ureterosigmoidostomy at the doses and times studied.
Collapse
Affiliation(s)
- Alessandra Marques Dos Santos
- Fellow Master degree, Postgraduate Program in Pathology, Department of Pathology, Universidade Federal do Ceará (UFC), Brazil. Intellectual and scientific content of the study, histopathological examinations, technical procedures, manuscript preparation
| | | | | | | | | | - Francisco Vagnaldo Fechine Jamacaru
- PhD, Researcher, Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), School of Medicine, UFC, Fortaleza-CE, Brazil. Analysis and interpretation of data, statistical analysis
| | - Conceição Aparecida Dornelas
- PhD, Associate Professor, Department of Pathology, UFC, Fortaleza-CE, Brazil. Conception and design of the study, technical procedures, critical revision, supervised all phases of the study
| |
Collapse
|
12
|
Lisboa FA, Bradley MJ, Hueman MT, Schobel SA, Gaucher BJ, Styrmisdottir EL, Potter BK, Forsberg JA, Elster EA. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds. Surgery 2016; 161:1164-1173. [PMID: 27919449 DOI: 10.1016/j.surg.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND After adequate operative debridement and antimicrobial therapies, combat-related extremity wounds that either heal or fail are both associated with a distinct inflammatory response. Short-term use of nonsteroidal anti-inflammatory drugs in postoperative pain management may affect this response and, by consequence, the healing potential of these wounds. We investigated whether patients treated with nonsteroidal anti-inflammatory drugs had a distinct inflammatory response; different rates of critical colonization, defined as >105 colony forming units on quantitative bacteriology; and healing potential. METHODS We retrospectively reviewed the records of 73 patients with combat-related extremity wounds. Patients were separated into 2 groups: those who received nonsteroidal anti-inflammatory drugs during the debridement period (nonsteroidal anti-inflammatory drugs group, N = 17) and those who did not (control group; N = 56). Serum and wound tissue samples collected during each operative debridement were measured for 32 known cytokines and tested for quantitative bacteriology, respectively. We compared cytokine concentrations between groups and then designed a logistic regression model to identify variables associated with successful wound healing, while controlling for known confounders. RESULTS Despite similar demographics and wound characteristics, the nonsteroidal anti-inflammatory drugs group had significant lesser concentrations of inflammatory cytokines, interleukin-2, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1. On multivariate analysis, nonsteroidal anti-inflammatory drug treatment emerged as a predictor of successful wound healing after controlling for known confounders such as wound size, tobacco use, Acute Physiology and Chronic Health Evaluation II score, and critical colonization. CONCLUSION Treatment with nonsteroidal anti-inflammatory drugs for postoperative pain management after major combat-related extremity trauma is associated with lesser concentrations of inflammatory cytokines and may contribute to a more favorable inflammatory response leading to successful wound healing.
Collapse
Affiliation(s)
- Felipe A Lisboa
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Matthew J Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Matthew T Hueman
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Beverly J Gaucher
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Edda L Styrmisdottir
- Surgical Critical Care Initiative (SC2i), Bethesda, MD; DecisionQ, Arlington, VA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Eric A Elster
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD.
| |
Collapse
|
13
|
Akingbasote JA, Foster AJ, Jones HB, David R, Gooderham NJ, Wilson ID, Kenna JG. Improved hepatic physiology in hepatic cytochrome P450 reductase null (HRN™) mice dosed orally with fenclozic acid. Toxicol Res (Camb) 2016; 6:81-88. [PMID: 30090479 DOI: 10.1039/c6tx00376a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022] Open
Abstract
Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN™) mice exhibit no functional expression of hepatic cytochrome P450 (P450) when compared to wild type (WT) mice, but have normal hepatic and extrahepatic expression of other biotransformation enzymes. We have assessed the utility of HRN™ mice for investigation of the role of metabolic bioactivation in liver toxicity caused by the nonsteroidal anti-inflammatory drug (NSAID) fenclozic acid. In vitro studies revealed significant NADPH-dependent (i.e. P450-mediated) covalent binding of [14C]-fenclozic acid to liver microsomes from WT mice and HRN™ mice, whereas no in vitro covalent binding was observed in the presence of the UDP-glucuronyltransferase cofactor UDPGA. Oral fenclozic acid administration did not alter the liver histopathology or elevate the plasma liver enzyme activities of WT mice, or affect their hepatic miRNA contents. Livers from HRN™ mice exhibited abnormal liver histopathology (enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration, necrosis, inflammatory cell infiltration) and plasma clinical chemistry (elevated alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities). Modest apparent improvements in these abnormalities were observed when HRN™ mice were dosed orally with fenclozic acid for 7 days at 100 mg kg-1 day-1. Previously we observed more marked effects on liver histopathology and integrity in HRN™ mice dosed orally with the NSAID diclofenac for 7 days at 30 mg kg-1 day-1. We conclude that HRN™ mice are valuable for assessing P450-related hepatic drug biotransformation, but not for drug toxicity studies due to underlying liver dysfunction. Nonetheless, HRN™ mice may provide novel insights into the role of inflammation in liver injury, thereby aiding its treatment.
Collapse
Affiliation(s)
- James A Akingbasote
- MRC Centre for Drug Safety Science , University of Liverpool , Liverpool , L69 3GE , UK .
| | - Alison J Foster
- Drug Safety and Metabolism , Unit 310 - Darwin Building , Cambridge Science Park , Milton Road , Cambridge , CB4 0WG , UK . ; ;
| | - Huw B Jones
- Drug Safety and Metabolism , Unit 310 - Darwin Building , Cambridge Science Park , Milton Road , Cambridge , CB4 0WG , UK . ; ;
| | - Rhiannon David
- Drug Safety and Metabolism , Unit 310 - Darwin Building , Cambridge Science Park , Milton Road , Cambridge , CB4 0WG , UK . ; ;
| | - Nigel J Gooderham
- Section of Computational and Systems Medicine , Department of Surgery and Cancer Faculty of Medicine , Imperial College London , South Kensington Campus , London , SW7 2AZ UK . ;
| | - Ian D Wilson
- Section of Computational and Systems Medicine , Department of Surgery and Cancer Faculty of Medicine , Imperial College London , South Kensington Campus , London , SW7 2AZ UK . ;
| | - J Gerry Kenna
- Drug Safety Consultant , Macclesfield , UK . ; Tel: +44 (0)1625432113
| |
Collapse
|
14
|
Negi AK, Renuka, Bhatnagar A, Agnihotri N. Celecoxib and fish oil: a combination strategy for decreased inflammatory mediators in early stages of experimental mammary cancer. Inflammopharmacology 2016; 24:11-22. [PMID: 26749133 DOI: 10.1007/s10787-015-0259-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 12/27/2022]
Abstract
Chronic inflammation has been directly linked to cancer progression. Therefore, current study was designed to understand the mechanism of action of chemo-preventive effect of celecoxib and fish oil on inflammatory mediators in experimental mammary carcinoma. Female Wistar rats were distributed into control and DMBA treated groups and further subdivided based on pretreatment with celecoxib and/or fish oil. Inflammation was measured by assessing expression of NF-κB, COX-2 and cytokines. The results indicated an elevation in expression of NF-κB, COX-2 and cytokines' levels (IFN-γ, IL-4 and IL-10) in DMBA group as compared to controls. On pretreatment with celecoxib and/or fish oil in DMBA treated animals, a significant reduction in expression of NF-κB, COX-2 and cytokines' levels was observed. The decrease was more pronounced with combinatorial regimen than either celecoxib or fish oil alone. To conclude, a combinatorial strategy of celecoxib and fish oil may generate an immune response against the tumor cell by altering cytokine repertoire and decrease the tendency of tumor cells to escape immune surveillance.
Collapse
Affiliation(s)
- Anjana Kumari Negi
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Renuka
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Archana Bhatnagar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
15
|
Petrick JL, Sahasrabuddhe VV, Chan AT, Alavanja MC, Beane-Freeman LE, Buring JE, Chen J, Chong DQ, Freedman ND, Fuchs CS, Gaziano JM, Giovannucci E, Graubard BI, Hollenbeck AR, Hou L, Jacobs EJ, King LY, Koshiol J, Lee IM, Linet MS, Palmer JR, Purdue MP, Rosenberg L, Schairer C, Sesso HD, Sigurdson AJ, Wactawski-Wende J, Zeleniuch-Jacquotte A, Campbell PT, McGlynn KA. NSAID Use and Risk of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: The Liver Cancer Pooling Project. Cancer Prev Res (Phila) 2015; 8:1156-62. [PMID: 26391917 PMCID: PMC4704448 DOI: 10.1158/1940-6207.capr-15-0126] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022]
Abstract
Chronic inflammation plays a pivotal role in the pathogenesis of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), the two most common types of liver cancer. A number of prior experimental studies have suggested that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and ibuprofen, may potentially protect against liver cancer. However, no observational study has examined the association between aspirin duration and dose or other over-the-counter non-aspirin NSAIDs, such as ibuprofen, and liver cancer incidence. Furthermore, the association between NSAID use and risk of ICC is unclear. As part of the Liver Cancer Pooling Project, we harmonized data on 1,084,133 individuals (HCC = 679, ICC = 225) from 10 U.S.-based prospective cohort studies. Cox proportional hazards regression models were used to evaluate multivariable-adjusted HRs and 95% confidence intervals (CI). Current aspirin use, versus nonuse, was inversely associated with HCC (HR, 0.68; 95% CI, 0.57-0.81), which persisted when restricted to individuals not using non-aspirin NSAIDs and in a 5- and 10-year lag analysis. The association between aspirin use and HCC risk was stronger for users who reported daily use, longer duration use, and lower dosage. Ibuprofen use was not associated with HCC risk. Aspirin use was associated with a reduced ICC risk in men (HR, 0.64; 95% CI, 0.42-0.98) but not women (HR, 1.34; 95% CI, 0.89-2.01; P(interaction) = 0.01). The observed inverse association between aspirin use and liver cancer in our study, together with previous data, suggests the merit of future intervention studies of aspirin and other agents that affect chronic inflammatory pathways for HCC and possibly ICC.
Collapse
Affiliation(s)
- Jessica L Petrick
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| | - Vikrant V Sahasrabuddhe
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland. Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland. Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael C Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Laura E Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julie E Buring
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Jie Chen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Dawn Q Chong
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Charles S Fuchs
- Department of Medicine, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - John Michael Gaziano
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. VA Boston Healthcare System, Brockton, Massachusetts
| | | | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Lindsay Y King
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - I-Min Lee
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Catherine Schairer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Howard D Sesso
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Alice J Sigurdson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York
| | | | - Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
16
|
Vaish V, Rana C, Piplani H, Vaiphei K, Sanyal SN. Sulindac and Celecoxib regulate cell cycle progression by p53/p21 up regulation to induce apoptosis during initial stages of experimental colorectal cancer. Cell Biochem Biophys 2014; 68:301-19. [PMID: 23857431 DOI: 10.1007/s12013-013-9711-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study we have elaborated the putative mechanisms could be followed by the non-steroidal anti-inflammatory drugs (NSAIDs) viz. Sulindac and Celecoxib in the regulation of cell cycle checkpoints along with tumor suppressor proteins to achieve their chemopreventive effects in the initial stages of experimental colorectal cancer. Male Sprague-Dawley rats were administered with 1,2-dimethylhydrazine dihydrochloride (DMH) to produce early stages of colorectal carcinogenesis. The mRNA expression profiles of various target genes were analyzed by RT-PCR and validated by quantitative real-time PCR, whereas protein expression was analyzed by Western blotting. Nuclear localization of transcription factors or other nuclear proteins was analyzed by electrophoretic mobility shift assay and immunofluorescence. Flowcytometry was performed to analyze the differential apoptotic events and cell cycle regulation. Molecular docking studies with different target proteins were also performed to deduce the various putative mechanisms of action followed by Sulindac and Celecoxib. We observed that DMH administration has abruptly increased the proliferation of colonic cells which is macroscopically visible in the form of multiple plaque lesions and co-relates with the disturbed molecular mechanisms of cell cycle regulation. However, co-administration of NSAIDs has shown regulatory effects on cell cycle checkpoints via induction of various tumor suppressor proteins. We may conclude that Sulindac and Celecoxib could possibly follow p53/p21 mediated regulation of cell proliferation, where down regulation of NF-κB signaling and activation of PPARγ might serve as important additional events in vivo.
Collapse
Affiliation(s)
- Vivek Vaish
- Department of Biophysics, Basic Medical Science Building, Panjab University, Chandigarh, 160014, India
| | | | | | | | | |
Collapse
|
17
|
Chang JW, Kang SU, Choi JW, Shin YS, Baek SJ, Lee SH, Kim CH. Tolfenamic acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive oxygen species generation. Free Radic Biol Med 2014; 67:115-30. [PMID: 24216474 DOI: 10.1016/j.freeradbiomed.2013.10.818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/27/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are usually used for the treatment of inflammatory diseases. However, certain NSAIDs also have antitumor activities in various cancers, including head and neck cancer, through cyclooxygenase-dependent or independent pathways. Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a TGF-β superfamily protein, is induced by NSAIDs and has been shown to be induced by several antitumorigenic compounds and to exhibit proapoptotic and antitumorigenic activities. In this report, we demonstrate for the first time that tolfenamic acid (TA) transcriptionally induced the expression of NAG-1 during TA-induced apoptosis of anaplastic thyroid cancer (ATC) cells. TA reduced the viability of ATC cells in a dose-dependent manner and induced apoptosis, findings that were coincident with NAG-1 expression. Overexpression of the NAG-1 gene using cDNA enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. Subsequently, we found that intracellular ROS generation plays an important role in activating the proapoptotic protein NAG-1. Then, we confirmed antitumorigenic effects of TA in a nude mouse orthotopic ATC model, and this result accompanied the augmentation of NAG-1 expression and ROS generation in tumor tissue. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression and ROS generation in in vitro and in vivo ATC models, providing a novel mechanistic explanation and indicating a potential chemotherapeutic approach for treatment of ATC.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- Growth Differentiation Factor 15/agonists
- Growth Differentiation Factor 15/antagonists & inhibitors
- Growth Differentiation Factor 15/genetics
- Growth Differentiation Factor 15/metabolism
- Humans
- Male
- Mice
- Mice, Nude
- Neoplasm Transplantation
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Thyroid Carcinoma, Anaplastic/drug therapy
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/metabolism
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea.
| |
Collapse
|
18
|
The Role of Inflammation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:1-23. [DOI: 10.1007/978-3-0348-0837-8_1] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Vaish V, Piplani H, Rana C, Sanyal SN. Angiostatic properties of sulindac and celecoxib in the experimentally induced inflammatory colorectal cancer. Cell Biochem Biophys 2013; 66:205-27. [PMID: 23149858 DOI: 10.1007/s12013-012-9469-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Initiation of various cancers has been observed to be regulated via a prolonged inflammatory state in the tissues. However, molecular role of such a localized inflammation is not clear in the advanced stages of colorectal cancer. In this study, we have elaborated the role of various pro- and anti-inflammatory cytokines, transcription, and angiogenic factors in the progression of the 1,2-dimethylhydrazine dihydrochloride (DMH)-induced late phage colorectal cancer and also observed the chemopreventive role of the two non-steroidal anti-inflammatory drugs (NSAIDs), viz., Sulindac and Celecoxib. Carcinogenic changes were observed with morphological and histopathological studies, whereas mRNA and protein regulations of various biomolecules were identified via RT- or qRT-PCR, western blot and immunofluorescence analysis, respectively. Activity of inducible nitric oxide (NO) and cyclooxygenase-2 enzymes were analyzed using standard NO assay and prostaglandin E2 immunoassay, whereas activities of matrix metalloproteinases (MMP-2 and-9) were identified by gelatin zymography. Flowcytometry was performed for the relative quantification of the apoptotic events. Molecular docking studies of Sulindac and Celecoxib were also performed with different target proteins to observe their putative mechanisms of action. As a result, we found that DMH-treated animals were having over-expression of various pro-inflammatory cytokines (IL-1β, IL-2, and IFNγ), aberrant nuclear localization of activated cell survival transcription factors (NF-κB and Stat3) along with the increased incidence of activated angiogenic factors (MMP-2 and MMP-9) suggesting a marked role of inflammation in the tumor progression. However, NSAIDs co-administration has significantly reduced the angiogenic potential of the growing neoplasm.
Collapse
Affiliation(s)
- Vivek Vaish
- Department of Biophysics, Panjab University, Chandigarh, 160 014, India
| | | | | | | |
Collapse
|
20
|
Potential targets for colorectal cancer prevention. Int J Mol Sci 2013; 14:17279-303. [PMID: 23975167 PMCID: PMC3794728 DOI: 10.3390/ijms140917279] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022] Open
Abstract
The step-wise development of colorectal neoplasia from adenoma to carcinoma suggests that specific interventions could delay or prevent the development of invasive cancer. Several key factors involved in colorectal cancer pathogenesis have already been identified including cyclooxygenase 2 (COX-2), nuclear factor kappa B (NF-κB), survivin and insulin-like growth factor-I (IGF-I). Clinical trials of COX-2 inhibitors have provided the “proof of principle” that inhibition of this enzyme can prevent the formation of colonic adenomas and potentially carcinomas, however concerns regarding the potential toxicity of these drugs have limited their use as a chemopreventative strategy. Curcumin, resveratrol and quercetin are chemopreventive agents that are able to suppress multiple signaling pathways involved in carcinogenesis and hence are attractive candidates for further research.
Collapse
|
21
|
Hong MY, Nulton E, Shelechi M, Hernández LM, Nemoseck T. Effects of Dark Chocolate on Azoxymethane-Induced Colonic Aberrant Crypt Foci. Nutr Cancer 2013; 65:677-85. [DOI: 10.1080/01635581.2013.789542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem 2013; 378:47-64. [DOI: 10.1007/s11010-013-1593-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/08/2013] [Indexed: 01/30/2023]
|
23
|
Burdan F, Starosławska E, Szumiło J. Prenatal tolerability of acetaminophen and other over-the-counter non-selective cyclooxygenase inhibitors. Pharmacol Rep 2013; 64:521-7. [PMID: 22814005 DOI: 10.1016/s1734-1140(12)70847-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/02/2012] [Indexed: 01/18/2023]
Abstract
Over-the-counter cyclooxygenase inhibitors are used to relief fever and various types of acute pain like headache, toothache, earache, sore throat, as well as postoperative and menstrual ones. They are also major ingredients in cold and flu mixtures. Unlike well-known organ toxicological profile, their prenatal toxicity was not fully established. For a long time, acetaminophen was considered as a relatively safe antipyretic and analgesic drug during pregnancy. However, a new data indicate that it may increase the risk of cryptorchidism and asthma during childhood as well as preeclampsia, preterm birth, maternal phlebothrombosis and pulmonary embolism. Contrary to acetaminophen, non-selective cyclooxygenase inhibitors (non-steroidal anti-inflammatory drugs - NSAID; i.e., diclofenac, ibuprofen, naproxen) may induce intrauterine growth retardation, ductus arteriosus constriction with secondary persistent pulmonary hypertension, reduced fetal renal perfusion that led to oligohydramion, prolonged pregnancy as well as increase prevalence of intracranial bleeding in newborns. Furthermore, a higher risk of miscarriage, stillbirth and some congenital malformations (cardiac and diaphragmatic defects, celosomy - gastroschisis and umbilical hernia) was reported for non-selective inhibitors, in particular high doses of acetylsalicylic acid (aspirin).
Collapse
Affiliation(s)
- Franciszek Burdan
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, PL 20-090 Lublin, Poland.
| | | | | |
Collapse
|
24
|
Bilska-Wilkosz A, Ochenduszka M, Iciek M, Sokołowska-Jeżewicz M, Wiliński B, Góralska M, Srebro Z, Włodek L. Effects of acetylsalicylic acid on the levels of sulfane sulfur and non-protein sulfhydryl groups in mouse tissues. Pharmacol Rep 2013; 65:173-8. [DOI: 10.1016/s1734-1140(13)70975-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 09/14/2012] [Indexed: 11/29/2022]
|
25
|
Nadda N, Setia S, Vaish V, Sanyal SN. Role of cytokines in experimentally induced lung cancer and chemoprevention by COX-2 selective inhibitor, etoricoxib. Mol Cell Biochem 2012; 372:101-12. [PMID: 22991065 DOI: 10.1007/s11010-012-1451-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023]
Abstract
This study explored the role of pro- and anti-inflammatory cytokines in dimethyl benz(a)anthracene (DMBA)-induced lung cancer and its subsequent correction with a COX-2 inhibitory NSAID, etoricoxib. A single dose of DMBA (20 mg/kg body weight) in 0.9 % NaCl administered intratracheally was used to induce tumors in the rat lungs in 20 weeks. The study of pro-inflammatory cytokines like IL-1β, TNF-α, and IFN-γ revealed their upregulation by DMBA administration and restoration of their levels toward normal by the treatment with etoricoxib, while the anti-inflammatory cytokine IL-2 was found to be down-regulated with carcinogen administration and corrected with etoricoxib treatment. Apoptosis was studied by mitochondrial Bcl-2/Bax ratio and staining with fluorescent dyes acridine orange/ethidium bromide. The results showed a decreased apoptotic level with DMBA which was corrected with etoricoxib. Also, mitochondrial membrane potential was studied using JC-1 and rhodamine-123, which are membrane permeant fluorescent dyes, and generate information about cells at lower and higher mitochondrial membrane potential (∆Ψ(M)). The results showed the presence of maximum number of cells with higher ∆Ψ(M) in the DMBA group and their number was considerably lowered in the other three groups.
Collapse
Affiliation(s)
- Neeti Nadda
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
26
|
Bounaama A, Djerdjouri B, Laroche-Clary A, Le Morvan V, Robert J. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice. Toxicology 2012; 302:308-17. [PMID: 22982865 DOI: 10.1016/j.tox.2012.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022]
Abstract
This study investigated the effect of short curcumin treatment, a natural antioxidant on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in mice. The incidence of aberrant crypt foci (ACF) was 100%, with 54 ± 6 per colon, 10 weeks after the first DMH injection and reached 67 ± 12 per colon after 12 weeks. A high level of undifferentiated goblet cells and a weak apoptotic activity were shown in dysplastic ACF. The morphological alterations of colonic mucosa were associated to severe oxidative stress ratio with 43% increase in malondialdehyde vs. 36% decrease in GSH. DMH also increased inducible nitric synthase (iNOS) mRNA transcripts (250%), nitrites level (240%) and arginase activity (296%), leading to nitrosative stress and cell proliferation. Curcumin treatment, starting at week 10 post-DMH injection for 14 days, reduced the number of ACF (40%), iNOS expression (25%) and arginase activity (73%), and improved redox status by approximately 46%, compared to DMH-treated mice. Moreover, curcumin induced apoptosis of dysplastic ACF cells without restoring goblet cells differentiation. Interestingly, curcumin induced a parallel increase in TGF-β1 and HES-1 transcripts (42% and 26%, respectively). In conclusion, the protective effect of curcumin was driven by the reduction of arginase activity and nitrosative stress. The up regulation of TGF-β1 and HES-1 expression by curcumin suggests for the first time, a potential interplay between these signalling pathways in the chemoprotective mechanism of curcumin.
Collapse
Affiliation(s)
- Abdelkader Bounaama
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | | | | | | | | |
Collapse
|
27
|
Zhang WS, Hao JL, Wang S, Bi MM, Zhang H, Zhou HY. Molecular mechanism of the inhibition effect of Celecoxib on corneal collagen degradation in three dimensions. Int J Ophthalmol 2012; 5:434-9. [PMID: 22937501 DOI: 10.3980/j.issn.2222-3959.2012.04.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/09/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To clarify the molecular mechanism of Celecoxib on corneal collagen degradation and corneal ulcer. METHODS Rabbit corneal fibroblasts were harvested and suspended in serum-free MEM. Type I collagen, DMEM, collagen reconstitution buffer and corneal fibroblast suspension were mixed on ice. The resultant mixture solidify in an incubator, after which test reagents and plasminogen was overlaid and the cultures were returned to the incubator. The supernatants from collagen gel incubations were collected and the amount of hydroxyproline in the hydrolysate was measured. Immunoblot analysis of MMP1, 3 and TIMP1, 2 was performed. MMP2, 9 was detected by the method of Gelatin zymography. Cytotoxicity Assay was measured. RESULTS Celecoxib inhibited corneal collagen degradation in a dose and time manner; Celecoxib inhibited the IL-1ß induced increases in proMMP1, 2, 3, 9 and active MMP1, 2, 3, 9 in a concentration-depended manner. Celecoxib can also inhibit the IL-1ß induced increases in the TIMP1, 2. CONCLUSION Celecoxib can inhibit corneal collagen degradation induced by IL-1β, this effect is the consequence of the reduction of MMP1, 2, 3, 9 and TIMP1, 2. The results of the present study provide new insight into Celecoxib in corneal ulcer treatment.
Collapse
Affiliation(s)
- Wen-Song Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
28
|
Kaur J, Vaish V, Sanyal SN. COX-2 as a molecular target of colon cancer chemoprevention: Promise and reality. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Donalisio C, Barbero R, Cuniberti B, Vercelli C, Casalone M, Re G. Effects of flunixin meglumine and ketoprofen on mediator production in ex vivo and in vitro models of inflammation in healthy dairy cows. J Vet Pharmacol Ther 2012; 36:130-9. [PMID: 22724509 DOI: 10.1111/j.1365-2885.2012.01396.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, ex vivo assays were carried out in dairy cows to evaluate the anti-inflammatory effects of two nonsteroidal anti-inflammatory drugs: ketoprofen (KETO) and flunixin meglumine (FM). Twelve healthy Holstein dairy cattle were randomly allocated to two groups (n=6): group 1 received FM and group 2 received KETO at recommended therapeutic dosages. The anti-inflammatory effects of both drugs were determined by measuring the production of coagulation-induced thromboxane B2 (TXB2 ), lipopolysaccharides (LPS) (10 μg/mL)-induced prostaglandin E2 (PGE2 ), and calcium ionophore (60 μm)-induced leukotrien B4 (LTB4 ). Cytokine production was assessed by measuring tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-8 (CXCL8) concentrations after incubation in the presence of 10 μg/mL LPS. The IC50 of FM and KETO was determined in vitro by determining the concentration of TXB2 and PGE2 in the presence of scalar drug concentrations (10(-9) -10(-3) m). Both FM and KETO inhibited the two COX isoforms in vitro, but showed a preference for COX-1. FM and KETO showed similar anti-inflammatory effects in the cow.
Collapse
Affiliation(s)
- C Donalisio
- Division of Pharmacology and Toxicology, Department of Animal Pathology, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Setia S, Sanyal SN. Upregulation of intrinsic apoptotic pathway in NSAIDs mediated chemoprevention of experimental lung carcinogenesis. Pharmacol Rep 2012; 64:615-24. [DOI: 10.1016/s1734-1140(12)70857-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/02/2012] [Indexed: 11/29/2022]
|
31
|
Vaish V, Sanyal SN. Role of Sulindac and Celecoxib in chemoprevention of colorectal cancer via intrinsic pathway of apoptosis: Exploring NHE-1, intracellular calcium homeostasis and Calpain 9. Biomed Pharmacother 2012; 66:116-30. [DOI: 10.1016/j.biopha.2011.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022] Open
|
32
|
Vaish V, Sanyal SN. Role of Sulindac and Celecoxib in the regulation of angiogenesis during the early neoplasm of colon: exploring PI3-K/PTEN/Akt pathway to the canonical Wnt/β-catenin signaling. Biomed Pharmacother 2012; 66:354-67. [PMID: 22397759 DOI: 10.1016/j.biopha.2012.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/04/2012] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis refers to the generation of new blood vasculature from the nearby pre-existing one and is regulated by a balance between the pro- and anti-angiogenic factors. During carcinogenesis, pro-angiogenic factors dominate and initialize the growth of new blood capillaries to provide nutrition, growth factors and overcome hypoxia inside the tumor microenvironment. In the present study, we have observed the role of Phosphatidylinositol-3-kinase (PI3-K)/Phophatase and tensin homolog deleted on chromosome ten (PTEN)/Akt (Protein kinase B) pathway and canonical Wnt/β-catenin downstream signaling in the regulation of various pro-angiogenic molecules including the vascular endocrine growth factor-A (VEGF-A), matix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS) and chemokines for the progression of experimental colorectal cancer with 1,2-dimethylhydrazine dihydrochloride (DMH) and anti-angiogenic effects of two non-steroidal anti-inflammatory drugs (NSAIDs) viz. Sulindac and Celecoxib. Morphological and histopathological studies were performed to analyze the tumorigenic modifications while flow cytometry for the relative quantification of apoptotic events. Transcriptional and translational modifications of biomolecules were analyzed via Reverse Transcriptase-and quantitative Real Time PCR, Western immoblotting and immunoflurescence, respectively. In vitro phosphorylation, gelatin zymography and nitric oxide (NO) assay were performed to observe the activation states of Akt, MMPs and iNOS enzyme, respectively. Dysregultion in Akt activation, and thereby, aberrant signaling of β-catenin along with the production of NO could positively regulate tumor angiogenesis. NSAIDs can overcome these carcinogenic effects by controlling various key check points including higher PTEN and glycogen synthase kinase-3β (GSK-3β) expression and repressing Akt, MMPs and iNOS activation while inducing apoptosis among the cancer cells.
Collapse
Affiliation(s)
- Vivek Vaish
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
33
|
Schmieder A, Michel J, Schönhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 2012; 22:289-97. [PMID: 22349514 DOI: 10.1016/j.semcancer.2012.02.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 01/17/2023]
Abstract
Tumor microenvironment is composed of proliferating neoplastic cells, a vascular network of endothelial cells, extra cellular matrix produced by fibroblasts, cellular compartments of adaptive immunity like lymphocytes and dendritic cells as well as cells of innate immunity, e.g., natural killer cells and macrophages. Many pre-clinical and clinical studies demonstrate an inversed correlation between macrophage infiltrate and patients' prognosis indicating a macrophage supporting role for tumor progression as producers of growth and angiogenic factors and as regulators of tissue remodelling. Based on in vitro models, macrophages have been classified in pro-inflammatory, classically activated macrophages (M1; stimulated by IFN-γ or LPS) and anti-inflammatory, alternatively activated macrophages (M2; stimulated by either IL-4/IL-13, IL-1β/LPS in combination with immune complexes or by IL-10/TGFβ/glucocorticoids). Tumor escape has been linked with a switch from M1 activation in the early tumor initiation process towards M2-like phenotype during tumor progression, a process that highlights the heterogeneity and plasticity of macrophage activation and which offers a possible therapeutic target directed against reversing the TAM phenotype in the tumor. Here, we review different tumor-environmental stimuli and signalling cascades involved in this switch in differentiation and the so connected gene regulation in TAMs. In addition, therapeutic applications deducted from this differentiation and gene regulatory processes are presented. Data from pre-clinical as well as clinical studies clearly support the notion, that TAMs are excellent novel therapeutic targets for the fight against cancer.
Collapse
Affiliation(s)
- Astrid Schmieder
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
34
|
Vaish V, Sanyal SN. Non steroidal anti-inflammatory drugs modulate the physicochemical properties of plasma membrane in experimental colorectal cancer: a fluorescence spectroscopic study. Mol Cell Biochem 2011; 358:161-71. [PMID: 21725642 DOI: 10.1007/s11010-011-0931-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/21/2011] [Indexed: 01/18/2023]
Abstract
According to "fluid-mosaic model," plasma membrane is a bilayer constituted by phospholipids which regulates the various cellular activities governed by many proteins and enzymes. Any chemical, biochemical, or physical factor has to interact with the bilayer in order to regulate the cellular metabolism where various physicochemical properties of membrane, i.e., polarization, fluidity, electrostatic potential, and phase state may get affected. In this study, we have observed the in vivo effects of a pro-carcinogen 1,2-dimethylhydrazine dihydrochloride (DMH) and the two non steroidal anti-inflammatory drugs (NSAIDs); sulindac and celecoxib on various properties of the plasma membrane of colonocytes, i.e., electric potential, fluidity, anisotropy, microviscosity, lateral diffusion, and phase state in the experimentally induced colorectal cancer. A number of fluorescence probes were utilized like membrane fluidity and anisotropy by 1,6-diphenyl-1,3,5-hexatriene, membrane microviscosity by Pyrene, membrane electric potential by merocyanine 540, lateral diffusion by N-NBD-PE, and phase state by Laurdan. It is observed that membrane phospholipids are less densely packed and therefore, the membrane is more fluid in case of carcinogenesis produced by DMH than control. But NSAIDs are effective in reverting back the membrane toward normal state when co-administered with DMH. The membrane becomes less fluid, composed of low electric potential phospholipids whose lateral diffusion is being prohibited and the membrane stays mostly in relative gel phase. It may be stated that sulindac and celecoxib, the two NSAIDs may exert their anti-neoplastic role in colorectal cancer via modifying the physicochemical properties of the membranes.
Collapse
Affiliation(s)
- Vivek Vaish
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|