1
|
Yang M, Yang T, Mei L, Zhang Y, Liang C, Bai X, Zhang Z, Shi Y, Chen Q. The Potential of Berberine to Target Telocytes in Rabbit Heart. PLANTA MEDICA 2024; 90:84-95. [PMID: 37714195 DOI: 10.1055/a-2176-5881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
A brand-new class of interstitial cells, called telocytes, has been detected in the heart. Telocytes can connect and transmit signals to almost all cardiomyocytes; this is highly interrelated with the occurrence and development of heart diseases. Modern studies have shown that berberine has a therapeutic effect on cardiovascular health. However, berberine's mechanism of action on the cardiovascular system through cardiac telocytes is unclear. Interestingly, 5 µm of berberine remarkably decreased the concentration of intracellular calcium and membrane depolarization in cultured telocytes, upregulated the expression of CX43 and β-catenin, and downregulated the expressions of TRPV4 and TRPV1. Here, telocytes were identified in the vascular adventitia and intima, endocardium, myocardium, adventitia, and heart valves. Moreover, telocytes were broadly dispersed around cardiac vessels and interacted directly through gap junctions and indirectly through extracellular vesicles. Together, cardiac telocytes interact with berberine and then deliver drug information to the heart. Telocytes may be an essential cellular target for drug therapy of the cardiovascular system.
Collapse
Affiliation(s)
- Min Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tong Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Lu Mei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yingxing Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Chunhua Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Zhenwei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yonghong Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Bönisch H, Fink KB, Malinowska B, Molderings GJ, Schlicker E. Serotonin and beyond-a tribute to Manfred Göthert (1939-2019). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1829-1867. [PMID: 33991216 PMCID: PMC8376721 DOI: 10.1007/s00210-021-02083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
Manfred Göthert, who had served Naunyn-Schmiedeberg's Arch Pharmacol as Managing Editor from 1998 to 2005, deceased in June 2019. His scientific oeuvre encompasses more than 20 types of presynaptic receptors, mostly on serotoninergic and noradrenergic neurones. He was the first to identify presynaptic receptors for somatostatin and ACTH and described many presynaptic receptors, known from animal preparations, also in human tissue. In particular, he elucidated the pharmacology of presynaptic 5-HT receptors. A second field of interest included ligand-gated and voltage-dependent channels. The negative allosteric effect of anesthetics at peripheral nACh receptors is relevant for the peripheral clinical effects of these drugs and modified the Meyer-Overton hypothesis. The negative allosteric effect of ethanol at NMDA receptors in human brain tissue occurred at concentrations found in the range of clinical ethanol intoxication. Moreover, the inhibitory effect of gabapentinoids on P/Q Ca2+ channels and the subsequent decrease in AMPA-induced noradrenaline release may contribute to their clinical effect. Another ligand-gated ion channel, the 5-HT3 receptor, attracted the interest of Manfred Göthert from the whole animal via isolated preparations down to the cellular level. He contributed to that molecular study in which 5-HT3 receptor subtypes were disclosed. Finally, he found altered pharmacological properties of 5-HT receptor variants like the Arg219Leu 5-HT1A receptor (which was also shown to be associated with major depression) and the Phe124Cys 5-HT1B receptor (which may be related to sumatriptan-induced vasospasm). Manfred Göthert was a brilliant scientist and his papers have a major impact on today's pharmacology.
Collapse
Affiliation(s)
- H Bönisch
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany
| | - K B Fink
- Merz Pharmaceuticals, Frankfurt/Main, Germany
| | - B Malinowska
- Department of Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - G J Molderings
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Schlicker
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany.
| |
Collapse
|
3
|
Richards JR. Mechanisms for the Risk of Acute Coronary Syndrome and Arrhythmia Associated With Phytogenic and Synthetic Cannabinoid Use. J Cardiovasc Pharmacol Ther 2020; 25:508-522. [PMID: 32588641 DOI: 10.1177/1074248420935743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phytogenic cannabinoids from Cannabis sativa and synthetic cannabinoids are commonly used substances for their recreational and medicinal properties. There are increasing reports of cardiotoxicity in close temporal association with cannabinoid use in patients with structurally normal hearts and absence of coronary arterial disease. Associated adverse events include myocardial ischemia, conduction abnormalities, arrhythmias, and sudden death. This review details the effects of phytogenic and synthetic cannabinoids on diverse receptors based on evidence from in vitro, human, and animal studies to establish a molecular basis for these deleterious clinical effects. The synergism between endocannabinoid dysregulation, cannabinoid receptor, and noncannabinoid receptor binding, and impact on cellular ion flux and coronary microvascular circulation is delineated. Pharmacogenetic factors placing certain patients at higher risk for cardiotoxicity are also correlated with the diverse effects of cannabinoids.
Collapse
Affiliation(s)
- John R Richards
- Department of Emergency Medicine, 70083University of California Davis Medical Center, Sacramento, California, CA, USA
| |
Collapse
|
4
|
Minic Z, O'Leary DS, Goshgarian HG, Scislo TJ. Colocalization of A 2a but not A 1 adenosine receptors with GABA-ergic neurons in cardiopulmonary chemoreflex network in the caudal nucleus of the solitary tract. Physiol Rep 2018; 6:e13913. [PMID: 30467998 PMCID: PMC6250926 DOI: 10.14814/phy2.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Accepted: 10/12/2018] [Indexed: 12/03/2022] Open
Abstract
Adenosine operating in the nucleus of the solitary tract (NTS) may inhibit or facilitate neurotransmitter release from nerve terminals and directly inhibit or facilitate central neurons via A1 and A2a pre- and postsynaptic receptors, respectively. However, adenosine A2a receptors, may also activate GABA-ergic neurons/terminals which in turn inhibit glutamatergic transmission in the NTS network. Our previous studies showed that adenosine operating via both A1 (inhibitor) and A2a (activator) receptors powerfully inhibits the cardiopulmonary chemoreflex (CCR) at the level of the caudal NTS. A1 receptors most likely inhibit glutamate release in the CCR network, whereas A2a receptors facilitate NTS GABA-ergic mechanisms which in turn inhibit CCR glutamatergic transmission. Therefore, we hypothesized that A2a receptors are located on NTS GABA-ergic neurons/terminals whereas A1 receptors may be located on NTS glutamatergic neurons/terminals. We investigated this hypothesis using double immunofluorescent staining for A2a or A1 adenosine receptors and GABA synthesizing enzyme, GAD67, in 30 μm thick, floating, medullary rat sections. We found that A2a adenosine receptors are localized within the GABA-ergic cells in the caudal NTS, whereas A1 adenosine receptors are absent from these neurons. Instead, A1 receptors were located on non-GABA-ergic (likely glutamatergic) neurons/terminals in the caudal NTS. These data support our functional findings and the hypothesis that adenosine A2a, but not A1 receptors are located on GABA-ergic neurons.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of PhysiologyWayne State University School of MedicineDetroitMichigan
- Department of Anatomy and Cell BiologyWayne State University School of MedicineDetroitMichigan
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichigan
- Cardiovascular Research InstituteWayne State University School of MedicineDetroitMichigan
| | - Donal S. O'Leary
- Department of PhysiologyWayne State University School of MedicineDetroitMichigan
- Cardiovascular Research InstituteWayne State University School of MedicineDetroitMichigan
| | - Harry G. Goshgarian
- Department of Anatomy and Cell BiologyWayne State University School of MedicineDetroitMichigan
| | - Tadeusz J. Scislo
- Department of PhysiologyWayne State University School of MedicineDetroitMichigan
- Cardiovascular Research InstituteWayne State University School of MedicineDetroitMichigan
| |
Collapse
|
5
|
Abstract
AIM The inhibitory responses of renal sympathetic nerve activity (RSNA) and heart rate (HR) to sustained hemorrhagic shock occurred in anesthetized rats, but have not yet been determined in mice. Here, we investigated the responses of RSNA and HR to hemorrhagic hypotension in anesthetized mice, with an emphasis on the molecule-based mechanism for roles of afferent vagal nerves. METHODS RSNA, HR, and mean systemic arterial pressure were continuously measured in male pentobarbital-anesthetized C57BL/6N mice. Hemorrhagic hypotension of 50 mmHg was evoked and maintained for 10 min. RESULTS During hemorrhagic hypotension, RSNA initially increased and then sustainedly decreased, while HR progressively decreased. Vagotomy eliminated the second-phase sympathoinhibition and bradycardia, and carotid sinus denervation with vagotomy abolished the initial renal sympathoexcitation. The renal sympathoinihibition during hemorrhagic hypotension of 50 mmHg was eliminated in mice pretreated with a transient receptor potential vanilloid type 1 channel (TRPV1) inhibitor, capsazepine, and in TRPV1 knockout (TRPV1) mice, but not in TRPV4 knockout mice. The bradycardia response to hemorrhagic hypotension was also absent in TRPV1 mice and mice pretreated with capsazepine. CONCLUSION Hemorrhagic hypotension in anesthetized mice causes biphasic responses of RSNA with an initial increase, followed by a sustained decrease, and a progressive decrease in HR. The initial sympathoexcitation is mediated by carotid sinus baroreceptors, while the later sympathoinhibition and bradycardia are mediated via the TRPV1 signals of vagal afferents.
Collapse
|
6
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
7
|
Randhawa PK, Jaggi AS. TRPV1 channels in cardiovascular system: A double edged sword? Int J Cardiol 2017; 228:103-113. [DOI: 10.1016/j.ijcard.2016.11.205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/06/2016] [Indexed: 02/08/2023]
|
8
|
Cao L, Cheng L, Xu J. TRPV1: A Potential Therapeutic Target for Myocardial Infarction? Cardiology 2016; 136:156. [PMID: 27657984 DOI: 10.1159/000449053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Lu Cao
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | | | | |
Collapse
|
9
|
"TRP inflammation" relationship in cardiovascular system. Semin Immunopathol 2015; 38:339-56. [PMID: 26482920 PMCID: PMC4851701 DOI: 10.1007/s00281-015-0536-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.
Collapse
|
10
|
Minic Z, O'Leary DS, Scislo TJ. Nucleus tractus solitarii A(2a) adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs. Auton Neurosci 2013; 180:32-42. [PMID: 24216055 DOI: 10.1016/j.autneu.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 01/18/2023]
Abstract
Previously we have shown that stimulation of inhibitory A1 adenosine receptors located in the nucleus tractus solitarii (NTS) attenuates cardiopulmonary chemoreflex (CCR) evoked inhibition of renal, adrenal and lumbar sympathetic nerve activity and reflex decreases in arterial pressure and heart rate. Activation of facilitatory A2a adenosine receptors, which dominate over A1 receptors in the NTS, contrastingly alters baseline activity of regional sympathetic outputs: it decreases renal, increases adrenal and does not change lumbar nerve activity. Considering that NTS A2a receptors may facilitate release of inhibitory transmitters we hypothesized that A2a receptors will act in concert with A1 receptors differentially inhibiting regional sympathetic CCR responses (adrenal>lumbar>renal). In urethane/chloralose anesthetized rats (n=38) we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of serotonin 5HT3 receptor agonist, phenylbiguanide, (1-8μg/kg) before and after selective stimulation, blockade or combined blockade and stimulation of NTS A2a adenosine receptors (microinjections into the NTS of CGS-21680 0.2-20pmol/50nl, ZM-241385 40pmol/100nl or ZM-241385+CGS-21680, respectively). We found that stimulation of A2a adenosine receptors uniformly inhibited the regional sympathetic and hemodynamic reflex responses and this effect was abolished by the selective blockade of NTS A2a receptors. This indicates that A2a receptor triggered inhibition of CCR responses and the contrasting shifts in baseline sympathetic activity are mediated via different mechanisms. These data implicate that stimulation of NTS A2a receptors triggers unknown inhibitory mechanism(s) which in turn inhibit transmission in the CCR pathway when adenosine is released into the NTS during severe hypotension.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Tadeusz J Scislo
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The involvement of neurohormonal factors in the pathogenesis of hypertension has been extensively studied. However, the mechanisms underlying the role of the transient receptor potential vanilloid type 1 (TRPV1) channels in hypertension are still largely unknown. This review presents some of the most recent findings regarding the potential mechanisms of TRPV1 in mediating blood pressure, the pathophysiology of hypertension, and its related disorders. RECENT FINDINGS TRPV1 may be activated by exogenous vanilloid or endo-vanilloid compounds and its function modulated by vasoactive mediators. TRPV1 also interacts with various physiological and pathophysiological systems involved in salt and water homeostasis and cardiovascular homeostasis. Impairment of TRPV1 signaling may contribute to the pathogenesis of diseases such as hypertension, heart failure, atherosclerosis, diabetes, obesity, myocardial ischemia, and stroke. SUMMARY Accumulating evidence implicates TRPV1 as serving a key role in cardiovascular health by regulating cardiovascular function and protecting against cardiovascular injury. Given the large prevalence of hypertension and its related disorders, the possible involvement of TRPV1 makes it a potential target of therapy for cardiovascular disease. Future study of TRPV1 may enhance our understanding of several cardiovascular diseases and may unveil novel pharmacological strategies for treating hypertension.
Collapse
|
12
|
Atrial stretch delays gastric emptying of liquids in awake rats. Life Sci 2013; 92:569-75. [PMID: 23352973 DOI: 10.1016/j.lfs.2013.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/16/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
AIMS We previously reported that mechanical atrial stretch (AS) by balloon distention increased gastric tonus in anesthetized rats. The present study evaluated the effect of AS on the gastric emptying of a liquid test meal in awake rats and its underlying neural mechanisms. MAIN METHODS Anesthetized male rats received a balloon catheter into the right atrium and a gastrostomy cannula. The next day, mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), and cardiac output (CO) were continuously monitored. After the first 20min of monitoring (basal interval), the balloon was either distended or not (control) with 30, 50, or 70μl saline for 5min. Fifteen minutes later, the rats received the test meal (glucose solution with phenol red), and fractional gastric dye retention was determined 10, 20, or 30min later. KEY FINDINGS Heart rate and CVP values were transiently increased by 50 or 70μl AS but not 30μl AS, whereas gastric emptying was slower after 30, 50, or 70μl AS than after sham distention. Subdiaphragmatic vagotomy or splanchnicotomy+celiac ganglionectomy and capsaicin, ondansetron, hexamethonium, L-NAME, and glibenclamide treatment prevented the AS-induced delay in gastric emptying, whereas atropine and guanethidine treatment failed to prevent it. SIGNIFICANCE Atrial stretch inhibited the gastric emptying of liquid via non-adrenergic and non-cholinergic pathways that activate nitric oxide-K(+)ATP channels.
Collapse
|
13
|
Knapp M, Zendzian-Piotrowska M, Błachnio-Zabielska A, Zabielski P, Kurek K, Górski J. Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat. Basic Res Cardiol 2012; 107:294. [PMID: 22961594 PMCID: PMC3505520 DOI: 10.1007/s00395-012-0294-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/04/2012] [Accepted: 07/30/2012] [Indexed: 12/29/2022]
Abstract
Three bioactive sphingolipids, namely sphingosine-1-phosphate (S1P), ceramide (CER) and sphingosine (SPH) were shown to be involved in ischemia/reperfusion injury of the heart. S1P is a powerful cardioprotectant, CER activates apoptosis and SPH in a low dose is cardioprotective whereas in a high dose is cardiotoxic. The aim of the present study was to examine effects of experimental myocardial infarction on the level of selected sphingolipids in plasma, erythrocytes and platelets in the rat. Myocardial infarction was produced in male Wistar rats by ligation of the left coronary artery. Blood was taken from the abdominal aorta at 1, 6 and 24 h after the ligation. Plasma, erythrocytes and platelets were isolated and S1P, dihydrosphingosine-1-phosphate (DHS1P), SPH, dihydrosphingosine (DHS) and CER were quantified by means of an Agilent 6460 triple quadrupole mass spectrometer using positive ion electrospray ionization source with multiple reaction monitoring. The infarction reduced the plasma level of S1P, DHS1P, SPH and DHS but increased the level of total CER. In erythrocytes, there was a sharp elevation in the level of SPH and DHS early after the infarction and a reduction after 24 h whereas the level of S1P, DHS1P and total CER gradually increased. In platelets, the level of each of the examined compounds profoundly decreased 1 and 6 h after the infarction and partially normalized in 24 h. The results obtained clearly show that experimental heart infarction in rats produces deep changes in metabolism of sphingolipids in the plasma, platelets and erythrocytes.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Białystok, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Knapp M, Zendzian-Piotrowska M, Kurek K, Błachnio-Zabielska A. Myocardial infarction changes sphingolipid metabolism in the uninfarcted ventricular wall of the rat. Lipids 2012; 47:847-53. [PMID: 22833182 DOI: 10.1007/s11745-012-3694-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/16/2012] [Indexed: 12/31/2022]
Abstract
It is known that the ratio, the level of sphingosine-1-phosphate (S1P)/the level of ceramide (CER) determines survival of the cells. The aim of the present study was to examine the effect of myocardial infarction on the level of different sphingolipids in the uninfarcted area. The experiments were carried out on male Wistar rats: 1, control; 2, after ligation of the left coronary artery (infarct) and 3, sham operated. Samples of the uninfarcted area of the left ventricle were taken in 1, 6 and 24 h after the surgery. The level of sphingolipids, S1P, CER, sphingosine (SPH), sphinganine-1-phosphate (SPA1P) and sphinganine (SPA) was determined. The control values were (ng/mg), S1P-0.33 ± 0.03, SPH-1.02 ± 0.13, SPA1P-0.11 ± 0.01, SPA-0.28 ± 0.04, total CER-20.3 ± 1.8. In infarct, the level of S1P in the uninfarcted area was reduced by ~3 times in 1 and 6 h and decreased further in 24 h. The level of SPH decreased in 1 h and returned to the control thereafter. The total level of CER decreased in 6 h after the infarction. Sham surgery also produced changes in the level of certain sphingolipids. The ratio, the level of S1P/the level of CER was markedly reduced at each time point after the infarction. It is concluded that the reduction in the S1P/CER ratio could be responsible for increased apoptosis in the uninfarcted area after the myocardial infarction in the rat.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Białystok, Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| | | | | | | |
Collapse
|
15
|
Malinowska B, Baranowska-Kuczko M, Schlicker E. Triphasic blood pressure responses to cannabinoids: do we understand the mechanism? Br J Pharmacol 2012; 165:2073-88. [PMID: 22022923 DOI: 10.1111/j.1476-5381.2011.01747.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cannabinoids comprise three major classes of substances, including compounds derived from the cannabis plant (e.g. Δ(9) -tetrahydrocannabinol and the chemically related substances CP55940 and HU210), endogenously formed (e.g. anandamide) and synthetic compounds (e.g. WIN55212-2). Beyond their psychotropic effects, cannabinoids have complex effects on blood pressure, including biphasic changes of Δ(9) -tetrahydrocannabinol and WIN55212-2 and an even triphasic effect of anandamide. The differing pattern of blood pressure changes displayed by the three types of compounds is not really surprising since, although they share an agonistic effect at cannabinoid CB(1) and CB(2) receptors, some compounds have additional effects. In particular, anandamide is known for its pleiotropic effects, and there is overwhelming evidence that anandamide influences blood pressure via (i) CB(1) receptors, (ii) TRPV1 receptors, (iii) endothelial cannabinoid receptors and (iv) degradation products. This review is dedicated to the description of the effects of externally added cannabinoids on cardiovascular parameters in vivo. First, the cardiovascular effects of cannabinoids in anaesthetized animals will be highlighted since most data have been generated in experiments of that type. The text will follow the three phases of anandamide on blood pressure, and we will check to which extent cardiovascular changes elicited by other cannabinoids show overlap with those effects or differ. The second part will be dedicated to the cardiovascular effects of the cannabinoids in conscious animals. In the third part, cardiovascular effects in humans will be discussed, and similarities and differences with respect to the data from animals will be examined.
Collapse
Affiliation(s)
- Barbara Malinowska
- Zakład Fizjologii i Patofizjologii Doświadczalnej, Uniwersytet Medyczny w Białymstoku, ul. Mickiewicza 2A, Białystok, Poland
| | | | | |
Collapse
|
16
|
Ichinose TK, Minic Z, Li C, O'Leary DS, Scislo TJ. Activation of NTS A(1) adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex. Am J Physiol Regul Integr Comp Physiol 2012; 303:R539-50. [PMID: 22814665 DOI: 10.1152/ajpregu.00164.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes integrated in the NTS.
Collapse
Affiliation(s)
- Tomoko K Ichinose
- Department of Physiology, Wayne State University School of Medicine Detroit, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
17
|
Rudź R, Schlicker E, Baranowska U, Marciniak J, Karabowicz P, Malinowska B. Acute Myocardial Infarction Inhibits the Neurogenic Tachycardic and Vasopressor Response in Rats via Presynaptic Cannabinoid Type 1 Receptor. J Pharmacol Exp Ther 2012; 343:198-205. [DOI: 10.1124/jpet.112.196816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|