1
|
Gerson J, Erdal MK, McDonough MH, Ploense KL, Dauphin-Ducharme P, Honeywell KM, Leung KK, Arroyo-Curras N, Gibson JM, Emmons NA, Meiring W, Hespanha JP, Plaxco KW, Kippin TE. High-precision monitoring of and feedback control over drug concentrations in the brains of freely moving rats. SCIENCE ADVANCES 2023; 9:eadg3254. [PMID: 37196087 PMCID: PMC10191434 DOI: 10.1126/sciadv.adg3254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Knowledge of drug concentrations in the brains of behaving subjects remains constrained on a number of dimensions, including poor temporal resolution and lack of real-time data. Here, however, we demonstrate the ability of electrochemical aptamer-based sensors to support seconds-resolved, real-time measurements of drug concentrations in the brains of freely moving rats. Specifically, using such sensors, we achieve <4 μM limits of detection and 10-s resolution in the measurement of procaine in the brains of freely moving rats, permitting the determination of the pharmacokinetics and concentration-behavior relations of the drug with high precision for individual subjects. In parallel, we have used closed-loop feedback-controlled drug delivery to hold intracranial procaine levels constant (±10%) for >1.5 hours. These results demonstrate the utility of such sensors in (i) the determination of the site-specific, seconds-resolved neuropharmacokinetics, (ii) enabling the study of individual subject neuropharmacokinetics and concentration-response relations, and (iii) performing high-precision control over intracranial drug levels.
Collapse
Affiliation(s)
- Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Murat Kaan Erdal
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Matthew H. McDonough
- Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, USA
| | - Kyle L. Ploense
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Kevin M. Honeywell
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Kaylyn K. Leung
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Netzahualcoyotl Arroyo-Curras
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jenny M. Gibson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Nicole A. Emmons
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Wendy Meiring
- Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, USA
| | - Joao P. Hespanha
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Kevin W. Plaxco
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Zou D, Wang W, Lei D, Yin Y, Ren P, Chen J, Yin T, Wang B, Wang G, Wang Y. Penetration of blood-brain barrier and antitumor activity and nerve repair in glioma by doxorubicin-loaded monosialoganglioside micelles system. Int J Nanomedicine 2017; 12:4879-4889. [PMID: 28744122 PMCID: PMC5511015 DOI: 10.2147/ijn.s138257] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood–brain barrier (BBB). The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time.
Collapse
Affiliation(s)
- Dan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Wei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Daoxi Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Ying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Peng Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Jinju Chen
- School of Mechanical and System Engineering, Newcastle University, Newcastle Upon Tyne, UK
| | - Tieying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Taskin E, Dursun N. Recovery of adriamycin induced mitochondrial dysfunction in liver by selenium. Cytotechnology 2014; 67:977-86. [PMID: 25322894 DOI: 10.1007/s10616-014-9736-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/19/2014] [Indexed: 11/27/2022] Open
Abstract
Adriamycin (ADR) is a chemotherapeutic drug. Its toxicities may associate with mitochondriopathy. Selenium (Se) is a trace element for essential intracellular antioxidant enzymes. However, there is lack of data related to the effect of selenium on the liver tissue of ADR-induced mitochondrial dysfunction. The study was to investigate whether Se could restore mitochondrial dysfunction of liver-exposed ADR. Rats were divided into four groups as a control, ADR, Se, co-treated ADR with Se groups. The biochemical measurements of the liver were made in mitochondrial and cytosol. ATP level and mitochondria membrane potential (MMP) were measured. Total oxidant (TOS), total antioxidant (TAS) status were determined and oxidative stress index (OSI) was calculated by using TOS and TAS. ADR increased TOS in mitochondria and also oxidative stress in mitochondria. ADR sligtly decreased MMP, and ATP level. Partial recovery of MMP by Se was able to elevate the ATP production in cotreatment of ADR with Se. TOS in mitochondria and cytosol was diminished, as well as OSI. We concluded that selenium could potentially be used against oxidative stress induced by ADR in liver, resulting from the restoration of MMP and ATP production and prevention of mitochondrial damage in vivo.
Collapse
Affiliation(s)
- E Taskin
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Bilim University, Yazarlar Sokak No: 17, Esentepe-Şişli, 34394, Istanbul, Turkey.
| | - N Dursun
- Department of Physiology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|