1
|
Ergaz B, Goren S, Lesman A. Micropatterning the organization of multicellular structures in 3D biological hydrogels; insights into collective cellular mechanical interactions. Biofabrication 2023; 16:015012. [PMID: 37906963 DOI: 10.1088/1758-5090/ad0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Control over the organization of cells at the microscale level within supporting biomaterials can push forward the construction of complex tissue architectures for tissue engineering applications and enable fundamental studies of how tissue structure relates to its function. While cells patterning on 2D substrates is a relatively established and available procedure, micropatterning cells in biomimetic 3D hydrogels has been more challenging, especially with micro-scale resolution, and currently relies on sophisticated tools and protocols. We present a robust and accessible 'peel-off' method to micropattern large arrays of individual cells or cell-clusters of precise sizes in biological 3D hydrogels, such as fibrin and collagen gels, with control over cell-cell separation distance and neighboring cells position. We further demonstrate partial control over cell position in thez-dimension by stacking two layers in varying distances between the layers. To demonstrate the potential of the micropatterning gel platform, we study the matrix-mediated mechanical interaction between array of cells that are accurately separated in defined distances. A collective process of intense cell-generated densified bands emerging in the gel between near neighbors was identified, along which cells preferentially migrate, a process relevant to tissue morphogenesis. The presented 3D gel micropatterning method can be used to reveal fundamental morphogenetic processes, and to reconstruct any tissue geometry with micrometer resolution in 3D biomimetic gel environments, leveraging the engineering of tissues in complex architectures.
Collapse
Affiliation(s)
- Bar Ergaz
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
| | - Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel
- Center for Chemistry and Physics of Living Systems, Tel Aviv University, Tel-Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel-Aviv, Israel
- Center for Chemistry and Physics of Living Systems, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 2022; 216:114601. [DOI: 10.1016/j.bios.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
|
3
|
Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, Salehi E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr Polym 2021; 273:118631. [PMID: 34561021 DOI: 10.1016/j.carbpol.2021.118631] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023]
Abstract
Over the last years, chitosan has demonstrated unparalleled characteristics for regenerative medicine applications. Beside excellent antimicrobial and wound healing properties, this polysaccharide biopolymer offers favorable characteristics such as biocompatibility, biodegradability, and film and fiber-forming capabilities. Having plentiful active amine groups, chitosan can be also readily modified to provide auxiliary features for growing demands in regenerative medicine, which is constantly confronted with new problems, necessitating the creation of biocompatible, immunogenic and biodegradable film/scaffold composites. A new look at the chitosan composites structure/activity/application tradeoff is the primary focus of the current review, which can help researchers to detect the bottlenecks and overcome the shortcomings that arose from this intersection. In the current review, the most recent advances in chitosan films and scaffolds in terms of preparation techniques and modifying methods for improving their functional properties, in three major biomedical fields i.e., tissue engineering, wound healing, and drug delivery are surveyed and discussed.
Collapse
Affiliation(s)
- Farnoush Sadat Rezaei
- Department of Chemical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Amirhossein Esmaeilkhanian
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
| |
Collapse
|
4
|
Regulating the uptake of poly(N-(2-hydroxypropyl) methacrylamide)-based micelles in cells cultured on micropatterned surfaces. Biointerphases 2021; 16:041002. [PMID: 34261325 DOI: 10.1116/6.0001012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cellular uptake of nanoparticles plays a crucial role in cell-targeted biomedical applications. Despite abundant studies trying to understand the interaction between nanoparticles and cells, the influence of cell geometry traits such as cell spreading area and cell shape on the uptake of nanoparticles remains unclear. In this study, poly(vinyl alcohol) is micropatterned on polystyrene cell culture plates using ultraviolet photolithography to control the spreading area and shape of individual cells. The effects of these factors on the cellular uptake of poly(N-(2-hydroxypropyl)methacrylamide)-based micelles were investigated at a single-cell level. Human carcinoma MCF-7 and A549 cells as well as normal Hs-27 and MRC-5 fibroblasts were cultured on micropatterned surfaces. MCF-7 and A549 cells, both with larger sizes, had a higher total micelle uptake. However, the uptake of Hs-27 and MRC-5 cells decreased with increasing spreading area. In terms of cell shapes, MCF-7 and A549 cells with round shapes showed a higher micelle uptake, while those with a square shape had a lower cellular uptake. On the other hand, Hs-27 and MRC-5 cells showed opposite behaviors. The results indicate that the geometry of cells can influence the nanoparticle uptake and may shed light on the design of functional nanoparticles.
Collapse
|
5
|
Singhal J, Verma S, Kumar S, Mehrotra D. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. Mol Biotechnol 2021; 63:339-362. [PMID: 33638110 DOI: 10.1007/s12033-021-00306-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Nanotechnology-based miniaturized devices have been a breakthrough in the pre-clinical and clinical research areas, e.g. drug delivery, personalized medicine. They have revolutionized the discovery and development of biomarker-based diagnostic devices for detection of various diseases such as tuberculosis, malaria and cancer. Nanomaterials (NMs) hold tremendous diagnostic potential due to their high surface-to-volume ratio and quantum confinement phenomenon, improving the detection limit of clinically relevant biomolecules in bio-fluids. Thus, they are helpful in the translation of bench-on platform to point-of-care (POC) screening device. The nanomaterial-based biosensor fabrication technology has also simplified and improved oral cancer (OC) or oral squamous cell carcinomas (OSCC) diagnosis. The fabrication of nano-bio sensors involves application specific modifications of NMs. The unique properties functionalized NMs have augmented their application on the nano-biosensing platform for the detection of clinically relevant biomolecules in bio-fluids. Therefore, this article summarizes the recent advancements in the process of fabrication of nano-biosensors for detection of OC.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Saurabh Verma
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Sumit Kumar
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Divya Mehrotra
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India. .,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
6
|
Weydert S, Girardin S, Cui X, Zürcher S, Peter T, Wirz R, Sterner O, Stauffer F, Aebersold MJ, Tanner S, Thompson-Steckel G, Forró C, Tosatti S, Vörös J. A Versatile Protein and Cell Patterning Method Suitable for Long-Term Neural Cultures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2966-2975. [PMID: 30767535 DOI: 10.1021/acs.langmuir.8b03730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we present an easy-to-use protein and cell patterning method relying solely on pipetting, rinsing steps and illumination with a desktop lamp, which does not require any expensive laboratory equipment, custom-built hardware or delicate chemistry. This method is based on the adhesion promoter poly(allylamine)-grafted perfluorophenyl azide, which allows UV-induced cross-linking with proteins and the antifouling molecule poly(vinylpyrrolidone). Versatility is demonstrated by creating patterns with two different proteins and a polysaccharide directly on plastic well plates and on glass slides, and by subsequently seeding primary neurons and C2C12 myoblasts on the patterns to form islands and mini-networks. Patterning characterization is done via immunohistochemistry, Congo red staining, ellipsometry, and infrared spectroscopy. Using a pragmatic setup, patterning contrasts down to 5 μm and statistically significant long-term stability superior to the gold standard poly(l-lysine)-grafted poly(ethylene glycol) could be obtained. This simple method can be used in any laboratory or even in classrooms and its outstanding stability is especially interesting for long-term cell experiments, e.g., for bottom-up neuroscience, where well-defined microislands and microcircuits of primary neurons are studied over weeks.
Collapse
Affiliation(s)
- Serge Weydert
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Sophie Girardin
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Xinnan Cui
- Department of Chemical Engineering, Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Stefan Zürcher
- SuSoS AG , Lagerstrasse 14 , 8600 Dübendorf , Switzerland
| | - Thomas Peter
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Ronny Wirz
- Bruker Optics GmbH , Industriestrasse 26 , 8117 Fällanden , Switzerland
| | - Olof Sterner
- SuSoS AG , Lagerstrasse 14 , 8600 Dübendorf , Switzerland
| | - Flurin Stauffer
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Stefanie Tanner
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | | | - János Vörös
- Laboratory of Biosensors and Bioelectronics , ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| |
Collapse
|
7
|
Saftics A, Türk B, Sulyok A, Nagy N, Gerecsei T, Szekacs I, Kurunczi S, Horvath R. Biomimetic Dextran-Based Hydrogel Layers for Cell Micropatterning over Large Areas Using the FluidFM BOT Technology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2412-2421. [PMID: 30653328 DOI: 10.1021/acs.langmuir.8b03249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Micropatterning of living single cells and cell clusters over millimeter-centimeter scale areas is of high demand in the development of cell-based biosensors. Micropatterning methodologies require both a suitable biomimetic support and a printing technology. In this work, we present the micropatterning of living mammalian cells on carboxymethyl dextran (CMD) hydrogel layers using the FluidFM BOT technology. In contrast to the ultrathin (few nanometers thick in the dry state) CMD films generally used in label-free biosensor applications, we developed CMD layers with thicknesses of several tens of nanometers in order to provide support for the controlled adhesion of living cells. The fabrication method and detailed characterization of the CMD layers are also described. The antifouling ability of the CMD surfaces is demonstrated by in situ optical waveguide lightmode spectroscopy measurements using serum modeling proteins with different electrostatic properties and molecular weights. Cell micropatterning on the CMD surface was obtained by printing cell adhesion mediating cRGDfK peptide molecules (cyclo(Arg-Gly-Asp-d-Phe-Lys)) directly from aqueous solution using microchanneled cantilevers with subsequent incubation of the printed surfaces in the living cell culture. Uniquely, we present cell patterns with different geometries (spot, line, and grid arrays) covering both micrometer and millimeter-centimeter scale areas. The adhered patterns were analyzed by phase contrast microscopy and the adhesion process on the patterns was real-time monitored by digital holographic microscopy, enabling to quantify the survival and migration of cells on the printed cRGDfK arrays.
Collapse
Affiliation(s)
- Andras Saftics
- Faculty of Chemical Technology and Biotechnology , Budapest University of Technology and Economics , Műegyetem rkp. 3 , Budapest 1111 , Hungary
| | - Barbara Türk
- Faculty of Chemical Technology and Biotechnology , Budapest University of Technology and Economics , Műegyetem rkp. 3 , Budapest 1111 , Hungary
| | | | | | - Tamás Gerecsei
- Department of Biological Physics , Eötvös Loránd University , Pázmány Péter stny. 1A , Budapest 1117 , Hungary
| | | | | | | |
Collapse
|
8
|
Duffy P, McMahon S, Wang X, Keaveney S, O'Cearbhaill ED, Quintana I, Rodríguez FJ, Wang W. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater Sci 2019; 7:4912-4943. [DOI: 10.1039/c9bm00246d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Implantable tubular devices known as nerve guidance conduits (NGCs) have drawn considerable interest as an alternative to autografting in the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Patrick Duffy
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Seán McMahon
- Ashland Specialties Ireland Ltd
- Synergy Centre
- Dublin
- Ireland
| | - Xi Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Shane Keaveney
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Eoin D. O'Cearbhaill
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Iban Quintana
- IK4-Tekniker
- Surface Engineering and Materials Science Unit
- Eibar
- Spain
| | | | - Wenxin Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| |
Collapse
|
9
|
Flora T, de Torre IG, Quintanilla L, Alonso M, Rodríguez-Cabello JC. Spatial control and cell adhesion selectivity on model gold surfaces grafted with elastin-like recombinamers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ermis M, Antmen E, Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact Mater 2018; 3:355-369. [PMID: 29988483 PMCID: PMC6026330 DOI: 10.1016/j.bioactmat.2018.05.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
| | - Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
| |
Collapse
|
11
|
Baker QB, Podgorski GJ, Vargis E, Flann NS. A computational study of VEGF production by patterned retinal epithelial cell colonies as a model for neovascular macular degeneration. J Biol Eng 2017; 11:26. [PMID: 28775765 PMCID: PMC5540422 DOI: 10.1186/s13036-017-0063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Background The configuration of necrotic areas within the retinal pigmented epithelium is an important element in the progression of age-related macular degeneration (AMD). In the exudative (wet) and non-exudative (dry) forms of the disease, retinal pigment epithelial (RPE) cells respond to adjacent atrophied regions by secreting vascular endothelial growth factor (VEGF) that in turn recruits new blood vessels which lead to a further reduction in retinal function and vision. In vitro models exist for studying VEGF expression in wet AMD (Vargis et al., Biomaterials 35(13):3999–4004, 2014), but are limited in the patterns of necrotic and intact RPE epithelium they can produce and in their ability to finely resolve VEGF expression dynamics. Results In this work, an in silico hybrid agent-based model was developed and validated using the results of this cell culture model of VEGF expression in AMD. The computational model was used to extend the cell culture investigation to explore the dynamics of VEGF expression in different sized patches of RPE cells and the role of negative feedback in VEGF expression. Results of the simulation and the cell culture studies were in excellent qualitative agreement, and close quantitative agreement. Conclusions The model indicated that the configuration of necrotic and RPE cell-containing regions have a major impact on VEGF expression dynamics and made precise predictions of VEGF expression dynamics by groups of RPE cells of various sizes and configurations. Coupled with biological studies, this model may give insights into key molecular mechanisms of AMD progression and open routes to more effective treatments.
Collapse
Affiliation(s)
| | - Gregory J Podgorski
- Biology Department, Utah State University, Logan, 84322 USA.,Center for Integrated BioSystems, Utah State University, Logan, 84322 USA
| | - Elizabeth Vargis
- Biological Engineering Department, Utah State University, Logan, 84322 USA
| | - Nicholas S Flann
- Synthetic Biomanufacturing Institute, Logan, 84322 USA.,Institute for Systems Biology, Seattle, 98109 USA.,Computer Science Department, Utah State University, Logan, 84335 USA
| |
Collapse
|
12
|
Wang N, Tang L, Zheng W, Peng Y, Cheng S, Lei Y, Zhang L, Hu B, Liu S, Zhang W, Jiang X. A strategy for rapid and facile fabrication of controlled, layered blood vessel-like structures. RSC Adv 2016. [DOI: 10.1039/c6ra12768a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With the aid of fibrin glue, we wrap thin films into multi-layered tubes with a precisely-arranged cell distribution within 70 min.
Collapse
|
13
|
Ye F, Jiang J, Chang H, Xie L, Deng J, Ma Z, Yuan W. Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA). BIOMICROFLUIDICS 2015; 9:044106. [PMID: 26339307 PMCID: PMC4514715 DOI: 10.1063/1.4926807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/02/2015] [Indexed: 05/16/2023]
Abstract
Cell studies at the single-cell level are becoming more and more critical for understanding the complex biological processes. Here, we present an optimization study investigating the positioning of single cells using micromolding in capillaries technology coupled with the cytophobic biomaterial poly (2-hydroxyethyl methacrylate) (poly (HEMA)). As a cytophobic biomaterial, poly (HEMA) was used to inhibit cells, whereas the glass was used as the substrate to provide a cell adhesive background. The poly (HEMA) chemical barrier was obtained using micromolding in capillaries, and the microchannel networks used for capillarity were easily achieved by reversibly bonding the polydimethylsiloxane mold and the glass. Finally, discrete cell adhesion regions were presented on the glass surface. This method is facile and low cost, and the reagents are commercially available. We validated the cytophobic abilities of the poly (HEMA), optimized the channel parameters for higher quality and more stable poly (HEMA) patterns by investigating the effects of changing the aspect ratio and the width of the microchannel on the poly (HEMA) grid pattern, and improved the single-cell occupancy by optimizing the dimensions of the cell adhesion regions.
Collapse
Affiliation(s)
- Fang Ye
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Jin Jiang
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Honglong Chang
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Li Xie
- Key Laboratory of Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Jinjun Deng
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Zhibo Ma
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | - Weizheng Yuan
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| |
Collapse
|
14
|
Liu W, Xing S, Yuan B, Zheng W, Jiang X. Change of laminin density stimulates axon branching via growth cone myosin II-mediated adhesion. Integr Biol (Camb) 2014; 5:1244-52. [PMID: 23959160 DOI: 10.1039/c3ib40131f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Axon branching enables neurons to contact with multiple targets and respond to their microenvironment. Owing to its importance in neuronal network formation, axon branching has been studied extensively during the past decades. The chemical properties of extracellular matrices have been proposed to regulate axonal development, but the effects of their density changes on axon branching are not well understood. Here, we demonstrate that both the sharp broadening of substrate geometry and the sharp change of laminin density stimulate axon branching by using microcontact printing (μCP) and microfluidic printing (μFP) techniques. We also found that the change of axon branching stimulated by laminin density depends on myosin II activity. The change of laminin density induces asymmetric extensions of filopodia on the growth cone, which is the precondition for axon branching. These previously unknown mechanisms of change of laminin density-stimulated axon branching may explain how the extracellular matrices regulate axon branching in vivo and facilitate the establishment of neuronal networks in vitro.
Collapse
Affiliation(s)
- Wenwen Liu
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Ortiz R, Moreno-Flores S, Quintana I, Vivanco M, Sarasua J, Toca-Herrera J. Ultra-fast laser microprocessing of medical polymers for cell engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:241-50. [DOI: 10.1016/j.msec.2013.12.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/11/2013] [Accepted: 12/27/2013] [Indexed: 01/20/2023]
|
16
|
Mu X, Zheng W, Sun J, Zhang W, Jiang X. Microfluidics for manipulating cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:9-21. [PMID: 22933509 DOI: 10.1002/smll.201200996] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/05/2012] [Indexed: 05/02/2023]
Abstract
Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.
Collapse
Affiliation(s)
- Xuan Mu
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for NanoScience and Technology, No. 11, Beiyitiao, ZhongGuanCun, Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
17
|
Arumugam S, Popik VV. Attach, remove, or replace: reversible surface functionalization using thiol-quinone methide photoclick chemistry. J Am Chem Soc 2012; 134:8408-11. [PMID: 22568774 DOI: 10.1021/ja302970x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A very facile reaction between photochemically generated o-naphthoquinone methides (oNQMs) and thiols is employed for reversible light-directed surface derivatization and patterning. A thiol-functionalized glass slide is covered with an aqueous solution of a substrate conjugated to 3-(hydroxymethyl)-2-naphthol (NQMP). Subsequent irradiation via shadow mask results in the efficient conversion of NQMP into reactive oNQM species in the exposed areas. The latter react with thiol groups on the surface, producing thioether links between the substrate and the surface. Unreacted oNQM groups are rapidly hydrated to regenerate NQMP. The short lifetime of oNQM in aqueous solution prevents its migration from the site of irradiation, thus allowing for the spatial control of the surface derivatization. A two-step procedure was employed for protein patterning: photobiotinylation of the surface with an NQMP-biotin conjugate followed by staining with FITC-avidin. The orthogonality of oNQM-thiol and azide click chemistry allowed for the development of a sequential click strategy, which might be useful for the immobilization of light-sensitive compounds. The thioether linkage produced by the reaction of oNQM and a thiol is stable under ambient conditions but can be cleaved by UV irradiation, regenerating the free thiol. This feature allows for the removal or replacement of immobilized substrates.
Collapse
|
18
|
Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Oliveira MB, Mano JF. Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog 2011; 27:897-912. [PMID: 21584949 DOI: 10.1002/btpr.618] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/21/2011] [Indexed: 12/11/2022]
Abstract
Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self-assembly of hydrogel microblocks and the use of leachable particles in three-dimensional (3D) layer-by-layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed.
Collapse
Affiliation(s)
- Mariana B Oliveira
- 3Bs Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, Caldas das Taipas, Guimarães 4806-909, Portugal
| | | |
Collapse
|
20
|
WANG Y, SHEN YD, XU ZL, LEI HT, WANG H, SUN YM. Production and Identification of Monoclonal Antibody Against Flumequine and Development of Indirect Competitive Enzyme-Linked Immunosorbent Assay. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60029-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|