1
|
Synthesis of NiFe2O4 Nanoparticles over the MIL-53 (Fe)/NaY Zeolite for the Sonodegradation of Toxic Organic Dyes from Water Solutions. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Nas MS, Kaya H. Synthesis and sonocatalytic performance of bimetallic AgCu@MWCNT nanocatalyst for the degradation of methylene blue under ultrasonic irradiation. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1799406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, Igdir, Turkey
| | - Halis Kaya
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, Igdir, Turkey
| |
Collapse
|
3
|
Siadatnasab F, Farhadi S, Dusek M, Eigner V, Hoseini AA, Khataee A. Sonochemical synthesis and structural characterization of an organic-inorganic nanohybrid based on a copper-dithiocarbamate complex and PMo 12O 403- polyanion as a novel sonocatalyst. ULTRASONICS SONOCHEMISTRY 2020; 64:104727. [PMID: 31810872 DOI: 10.1016/j.ultsonch.2019.104727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A new organic-inorganic nanohybrid compound, ([Cu{(HOCH2CH2)2NCS2}2]3[PMo12O40] (1)), has been prepared by sonochemical technique using copper(II) dithiocarbamate complex and a Keggin-type polyoxomolybdate in this research. FT-IR, XRD, FE-SEM, TEM, EDX, UV-Vis, TGA, BET, and single crystal XRD analyses were applied to describe the properties of the composition of the nanohybrid. Compound (1) is composed of [PMo12O40]3- building blocks and [Cu{(HOCH2CH2)2NCS2}2]1+ cationic moieties, and electrostatic forces and substantial hydrogen-bonding interactions were applied to pack them; and consequently, a three dimensional supramolecular framework was made based on single-crystal X-ray diffraction patterns. FE-SEM and TEM images approved the morphology of the nanohybrid sample to be extremely penetrable. Very good sonocatalytic performance is shown by this supramolecular nanohybrid in the degradation of Rhodamine B (RhB), which is a cationic organic dye. The results showed complete degradation of cationic RhB (25 mg/L) within 70 min with the rate constant of 0.039min-1 in the presence of nanohybrid (1) and H2O2 (4 mmol/L). Also, sonocatalytic activity of the nanohybrid (1) was higher than H3PMo12O40, showing that the combining Cu(DEDTC)2 complex with H3PMo12O40 could be an excellent choice to improve its sonocatalytic activity. The used nanohybrid (1) can be recycled after easily removing from the reaction media by centrifuging, and there was no considerable loss of catalytic activity and retention of the structure.
Collapse
Affiliation(s)
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University, Khoramabad 68151-433, Iran.
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | | | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
4
|
Wang Z, Feng P, Chen H, Yu Q. Photocatalytic performance and dispersion stability of nanodispersed TiO 2 hydrosol in electrolyte solutions with different cations. J Environ Sci (China) 2020; 88:59-71. [PMID: 31862080 DOI: 10.1016/j.jes.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying cations (Na+, K+, Ca 2+, Mg2+, and Al3+). The photocatalysis reactions of nano TiO2 with different dosages of electrolytes were measured by monitoring the degradation of Rhodamine B (RhB) under ultraviolet A (UV-A) irradiation over time. The results showed that the photocatalytic performance of TiO2 was improved by the presence of Al3+, while the performance was impaired by the other tested cations. The negative influences of divalent ions on the photocatalytic performance of TiO2 were more significant than monovalent ions. The TiO2 sol dispersed stable at nano scale at low concentration of electrolyte (<0.01 mol/L) with slight change of pH, and coagulated into micro sizes at high concentration of electrolytes (>0.1 mol/L) with larger increase or decrease of pH. The positive effects of Al3+ on the photodegradation rate of RhB might relate to the strong hydrolytic action of Al3+ in aquatic solutions. The photocatalytic processes of TiO2 in the presence of all ions followed the Langmuir-Hinshelwood model, and the reaction kinetic constant was increased with the decrease of pH caused by different cations. These work suggested a new perspective about the relationship between coagulation and photocatalytic performance of TiO2 hydrosols in electrolyte with hydrolysable cations, which demonstrated that TiO2 hydrosols may be suitable as photocatalysts in aquatic environments.
Collapse
Affiliation(s)
- Zixiao Wang
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Department of the Built Environment, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Pan Feng
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210008, China.
| | - Heng Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qingliang Yu
- Department of the Built Environment, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands; School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Andani AM, Tabatabaie T, Farhadi S, Ramavandi B. MIL-101(Cr)–cobalt ferrite magnetic nanocomposite: synthesis, characterization and applications for the sonocatalytic degradation of organic dye pollutants. RSC Adv 2020; 10:32845-32855. [PMID: 35516469 PMCID: PMC9056608 DOI: 10.1039/d0ra04945j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
In this study, for the first time, a novel magnetically recyclable MIL-101(Cr)/CoFe2O4 nanocomposite was prepared via a facile solvothermal method. The morphology, structural, magnetic and optical properties of the nanocomposite were characterized via field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), UV-visible spectroscopy (UV-visible) and BET surface area analysis. Furthermore, the sonocatalytic activity of the MIL-101(Cr)-based magnetic nanocomposite was explored for the degradation of organic dye pollutants such as Rhodamine B (RhB) and methyl orange (MO) under ultrasound irradiation in the presence of H2O2. Under optimized conditions, the degradation efficiency reached 96% for RhB and 88% for MO. The sonocatalytic activity of MIL-101(Cr)/CoFe2O4 was almost 12 and 4 times higher than that of the raw MIL-101(Cr) and pure CoFe2O4, respectively. The improved sonocatalytic performance of the as-prepared binary nanocomposite can be attributed to the relatively high specific surface area of MIL-101(Cr) and magnetic property of CoFe2O4, as well as the fast generation and separation of charge carriers (electrons and holes) in MIL-101(Cr) and CoFe2O4. In addition, the trapping tests demonstrated that ·OH radicals are the main active species in the dye degradation process. Moreover, the most influencing factors on the sonocatalytic activity such as the H2O2 amount, initial dye concentration and catalyst dosage were investigated. Finally, the nanocomposite was magnetically separated and reused without any observable change in its structure and performance even after four consecutive runs. A magnetically separable MIL-101(Cr)/CoFe2O4 binary nanocomposite was prepared via a hydrothermal route and applied as a sonocatalyst for the efficient degradation of organic dyes.![]()
Collapse
Affiliation(s)
| | - Tayebeh Tabatabaie
- Department of Environment
- Bushehr Branch
- Islamic Azad University
- Bushehr
- Iran
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khoramabad 68151-433
- Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering
- Faculty of Health and Nutrition
- Bushehr University of Medical Sciences
- Bushehr
- Iran
| |
Collapse
|
6
|
Sadeghi M, Farhadi S, Zabardasti A. Magnetic separable zeolite-type ZSM-5/CdS nanorods/MoS 2 nanoflowers/MnFe 2O 4 quaternary nanocomposites: synthesis and application of sonocatalytic activities. NEW J CHEM 2020. [DOI: 10.1039/d0nj04056h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic zeolite-type ZSM-5/CdS nanorods/MoS2 nanoflowers/MnFe2O4 quaternary nanocomposites were synthesized and used for the sonocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Meysam Sadeghi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | | |
Collapse
|
7
|
Siadatnasab F, Farhadi S, Hoseini AA, Sillanpää M. Synthesis and characterization of a novel manganese ferrite–metal organic framework MIL-101(Cr) nanocomposite as an efficient and magnetically recyclable sonocatalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj03441j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A magnetic MnFe2O4/MIL-101(Cr) nanocomposite was synthesized and applied as a novel sonocatalyst for enhanced degradation of organic dye pollutants.
Collapse
Affiliation(s)
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khorramabad 68151-44316
- Iran
| | | | - Mika Sillanpää
- Institute of Research and Development and Faculty of Environment and Chemical Engineering
- Duy Tan University
- Da Nang 550000
- Vietnam
| |
Collapse
|
8
|
Lee G, Chu KH, Al-Hamadani YAJ, Park CM, Jang M, Heo J, Her N, Kim DH, Yoon Y. Fabrication of graphene-oxide/β-Bi 2O 3/TiO 2/Bi 2Ti 2O 7 heterojuncted nanocomposite and its sonocatalytic degradation for selected pharmaceuticals. CHEMOSPHERE 2018; 212:723-733. [PMID: 30179837 DOI: 10.1016/j.chemosphere.2018.08.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
A graphene-oxide (GO)/β-Bi2O3/TiO2/Bi2Ti2O7 heterojuncted nanocomposite, designated as GBT, was synthesized via a two-step hydrothermal process. The sonocatalytic activity of the GBT was evaluated at several frequencies (28, 580, and 970 kHz) and compared with Bi-doped GO (GB) and Ti-doped GO (GT). Transmission electron microscopy images showed heterojuncted crystal structures of Bi and Ti on GO, and X-ray diffraction patterns verified that the crystal structures consisted of β-Bi2O3, TiO2, and Bi2Ti2O7 nanocomposites. Energy-dispersive X-ray spectroscopy revealed a higher proportion of metal on GBT surfaces compared with GB and GT surfaces. The energy band gaps of GT, GB, and GBT were 3.0, 2.8, and 2.5 eV, respectively. Two pharmaceuticals (PhACs; carbamazepine [CBZ] and acetaminophen [ACE]) were selected and treated under sonolytic conditions at frequencies of 28, 580, and 970 kHz at a power level of 180 W L-1. The selected pharmaceuticals, present at initial concentrations of 20 μM, were reduced by over 99% by ultrasonic irradiation in the presence of GBT. The 580 kHz treatment achieved the most rapid organic removal among the frequencies tested. The removal kinetic of CBZ was higher than that of ACE owing to its relatively high hydrophobicity. High sonocatalytic activity of GBT was observed through measurement of H2O2 in solution. Because of its low band gaps and high surface activity, GBT exhibited higher sonolytic activity in removing selected PhACs than GT or GB.
Collapse
Affiliation(s)
- Gooyong Lee
- Green Technology Center, NamsanSquare Bldg., 173, Toegye-ro, Jung-gu, Seoul, 04554, Republic of Korea
| | - Kyoung Hoon Chu
- School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yasir A J Al-Hamadani
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1Wolgye-Dong Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk, 38900, Republic of Korea
| | - Namguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk, 38900, Republic of Korea
| | - Do-Hyung Kim
- Korea Environmental Industry & Technology Institute, 215 Jinheungno, Eunpyeong-gu, Seoul, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Copper ferrite nanoparticles supported on MIL-101/reduced graphene oxide as an efficient and recyclable sonocatalyst. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Catalytic performance of ZnFe2O4 nanoparticles prepared from the [ZnFe2O(CH3COO)6(H2O)3]·2H2O complex under microwave irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3607-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Siadatnasab F, Farhadi S, Khataee A. Sonocatalytic performance of magnetically separable CuS/CoFe 2O 4 nanohybrid for efficient degradation of organic dyes. ULTRASONICS SONOCHEMISTRY 2018; 44:359-367. [PMID: 29680621 DOI: 10.1016/j.ultsonch.2018.02.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The sonocatalytic activity of the magnetic CuS/CoFe2O4 (CuS/CFO) nanohybrid was studied through the H2O2-assisted system for degradation of water soluble organic pollutants such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). The CuS/CFO nanohybrid was fabricated at 200 °C by hydrothermal method. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray microanalysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, magnetic measurements, and Brunauere-Emmette-Teller (BET) were employed for the characterizing the structure and morphology of the so-synthesized nanohybrid. Compared with sonolysis/H2O2, the higher degradation of MB (25 mg/L) was achieved via sonocatalytic process. The degradation efficiency of sonolysis/H2O2, sonocatalysis using CuS/H2O2, CFO/H2O2 and CuS/CFO/H2O2 systems was 6%, 62%, 23% and 100% within reaction time of 30 min for MB, respectively. The integration of H2O2 and catalyst dosage intensified the sonocatalytic degradation of MB. On the other hand, adding a hydroxyl radical (OH) scavenger (tert-butyl alcohol) and a hole scavenger (disodium ethylenediaminetetraacetate) decreased the degradation efficiency from 100% to 35% and 72% within 30 min, indicating the OH radicals as prominent oxidizing agent of this process. Furthermore, the magnetic property of the sample helped for easier separation of the nanohybrid, made it recyclable with a negligible decline in the performance even after four consecutive runs.
Collapse
Affiliation(s)
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University, 68135-465 Khoramabad, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
12
|
Hassani A, Karaca C, Karaca S, Khataee A, Açışlı Ö, Yılmaz B. Enhanced removal of basic violet 10 by heterogeneous sono-Fenton process using magnetite nanoparticles. ULTRASONICS SONOCHEMISTRY 2018; 42:390-402. [PMID: 29429684 DOI: 10.1016/j.ultsonch.2017.11.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/25/2017] [Accepted: 11/25/2017] [Indexed: 06/08/2023]
Abstract
The removal of basic violet 10 (BV10), which is known as a cationic dye, from aqueous solution was studied by employing a heterogeneous sono-Fenton process over the nano-sized magnetite (Fe3O4) which had been prepared by the milling of magnetite mineral using a high-energy planetary ball milling process. The magnetite samples were characterized using the X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), and inductively couple plasma mass spectrometer (ICP-MS). It was found that the catalytic activity of the ball-milled magnetite sample was enhanced along with the improvement in its physicochemical properties; also, the ball-milled magnetite of 6 h displayed the highest catalytic activity in BV10 removal by the heterogeneous sono-Fenton process as compared with that for 4 h (66.12% after 120 min) and 2 h (48% after 120 min).The effect of operational parameters, namely, pH solution, catalyst dosage, the initial H2O2 concentration, ultrasonic power and the initial BV10 concentration, on the removal efficiency (RE%) of BV10 was investigated. The optimum conditions for the BV10 RE% were: the pH value of 3, the catalyst dosage of 1.5 g L-1, the initial H2O2 concentration of 36 mM, the ultrasonic power of 450 W L-1, and the initial BV10 concentration of 30 mg L-1. The RE% of BV10 was 75.94% at these conditions after the reaction time of 120 min. The trapping experiments revealed that OH radicals were the dominant oxidative species, but O2-/HO2 radicals also had a partial role in the removal of BV10.The reusability of the magnetite nanoparticles revealed about 28% decrease in the removal efficiency within five consecutive runs. The results obtained through GC-MS analysis also confirmed the efficient removal of BV10 molecules in the aqueous solution during the process.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey; Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Canan Karaca
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Semra Karaca
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Özkan Açışlı
- Department of Petroleum and Natural Gas Engineering, Oltu Faculty of Earth Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Bilal Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University 25240 Erzurum, Turkey
| |
Collapse
|
13
|
Areerob Y, Cho JY, Jang WK, Oh WC. Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe 3O 4-graphene/ZnO@SiO 2 nanocomposites. ULTRASONICS SONOCHEMISTRY 2018; 41:267-278. [PMID: 29137751 DOI: 10.1016/j.ultsonch.2017.09.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
Fe3O4-graphene/ZnO@mesoporous-SiO2 (MGZ@SiO2) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60min, 11, 50mg/L, 1.00g/L, and 40W/m2, respectively. The MGZ@SiO2 showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO2 can be applied asa novel-design catalyst for the removal of organic pollutants from aqueous solutions.
Collapse
Affiliation(s)
- Yonrapach Areerob
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungcheongnam-do, 31962, South Korea
| | - Ju Yong Cho
- Department of Electronic Engineering, Hanseo University, Seosan-si, Chungcheongnam-do, 31962, South Korea
| | - Won Kweon Jang
- Department of Electronic Engineering, Hanseo University, Seosan-si, Chungcheongnam-do, 31962, South Korea
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungcheongnam-do, 31962, South Korea.
| |
Collapse
|
14
|
Nidheesh PV. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27047-27069. [PMID: 29081041 DOI: 10.1007/s11356-017-0481-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/13/2017] [Indexed: 05/27/2023]
Abstract
Advanced oxidation processes (AOPs) received much attention in the field of water and wastewater treatment due to its ability to mineralize persistent organic pollutants from water medium. The addition of graphene-based materials increased the efficiency of all AOPs significantly. The present review analyzes the performance of graphene-based materials that supported AOPs in detail. Recent developments in this field are highlighted. A special focus has been awarded for the performance enhancement mechanism of AOPs in the presence of graphene-based materials.
Collapse
|
15
|
Farhadi S, Siadatnasab F, Khataee A. Ultrasound-assisted degradation of organic dyes over magnetic CoFe 2O 4@ZnS core-shell nanocomposite. ULTRASONICS SONOCHEMISTRY 2017; 37:298-309. [PMID: 28427637 DOI: 10.1016/j.ultsonch.2017.01.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 06/07/2023]
Abstract
Magnetic CoFe2O4@ZnS core-shell nanocomposite was successfully synthesized via one-step hydrothermal decomposition of zinc(II) diethanoldithiocarbamate complex over CoFe2O4 nanoparticles at low temperature of 200°C. The obtained nanocomposite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, magnetic measurements, and Brunauere-Emmette-Teller. The results confirmed the formation of CoFe2O4@ZnS nanocomposite with the average crystallite size of 18nm. The band gap of 3.4eV was obtained using UV-vis absorption of CoFe2O4@ZnS nanocomposite, which made it a suitable candidate for sono-/photo catalytic processes. This nanocomposite was applied as a novel sonocatalyst for the degradation of organic pollutants under ultrasound irradiation. The results showed complete degradation of methylene blue (MB) (25mg/L) within 70min in the presence of CoFe2O4@ZnS nanocomposite and H2O2 (4mM). The trapping experiments indicated that OH radicals are the main active species in dye degradation. In addition, sonocatalytic activity of the CoFe2O4@ZnS nanocomposite was higher than those of pure ZnS and CoFe2O4, showing that the combining ZnS with magnetic CoFe2O4 could be an excellent choice to improve its sonocatalytic activity. The nanocomposite could be magnetically separated and reused without any observable change in its structure and performance even after five consecutive runs.
Collapse
Affiliation(s)
- Saeed Farhadi
- Department of Chemistry, Lorestan University, 68135-465 Khorramabad, Iran.
| | | | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
16
|
Farhadi S, Siadatnasab F. CoFe2O4/CdS nanocomposite: Preparation, characterisation, and application in sonocatalytic degradation of organic dye pollutants. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62473-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Zhou M, Yang H, Xian T, Yang Y, Zhang Y. Sonocatalytic activity of LuFeO3 crystallites synthesized via a hydrothermal route. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)60941-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Zou S, Fu Z, Xiang C, Wu W, Tang S, Liu Y, Yin D. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)60827-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|