1
|
Song S, Hu J, Wang C, Luo M, Wang X, Zhai F, Zheng J. Pt 3(CoNi) Ternary Intermetallic Nanoparticles Immobilized on N-Doped Carbon Derived from Zeolitic Imidazolate Frameworks for Oxygen Reduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4775. [PMID: 39410345 PMCID: PMC11477947 DOI: 10.3390/ma17194775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.
Collapse
Affiliation(s)
- Shiqi Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junhua Hu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chupeng Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingsheng Luo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxia Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengxia Zhai
- Sushui Energy Technology (Shanghai) Co., Ltd., Shanghai 200444, China
| | - Jianyong Zheng
- Institute of Artificial Intelligence, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
2
|
Yuehuan Z, Yuan Q. Atomic Ru-Pt dual sites boost the mass activity and cycle life of alkaline hydrogen evolution. Chem Commun (Camb) 2024; 60:7188-7191. [PMID: 38904413 DOI: 10.1039/d4cc02382j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The development of highly efficient and ultrastable electrocatalysts for hydrogen generation from water/real seawater faces huge challenges. Herein, porous carbon-supported amorphous RuPt nanoclusters (Ru5.67Pt/PC) achieve mass activities of 42.28/10.93 A mgPt-1 and ultralong cycling stability in alkaline water/seawater because of the unique cluster structure and atomic Ru-Pt dual sites.
Collapse
Affiliation(s)
- Zhang Yuehuan
- Center for R&D of Fine Chemicals, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou province 550025, P. R. China.
| | - Qiang Yuan
- Center for R&D of Fine Chemicals, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou province 550025, P. R. China.
| |
Collapse
|
3
|
Liu X, Xing Q, Song J, Xiao Z, Wang F, Yang T, Yu J, Chen W, Li X, Chen Y. A facile strategy to prepare FeN x decorated PtFe intermetallic with excellent acidic oxygen reduction reaction activity and stability. J Colloid Interface Sci 2023; 645:241-250. [PMID: 37149998 DOI: 10.1016/j.jcis.2023.04.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
The construction of low-Pt-content intermetallic on carbon supports has been verified as a promising method to promote the activity of the oxygen reduction reaction (ORR). In this study, we have developed a simple and effective strategy to obtain a well-designed CNT-PtFe-PPy precursor. This precursor contains modulated Pt- and Fe-based content dispersed in polypyrrole (PPy) chain segments, which are in-situ generated on the templates of carbon nanotubes (CNTs). Subsequent pyrolysis of the CNT-PtFe-PPy precursor produces a CNT-PtFe@FeNC catalyst, which contains both Fe-Nx and PtFe intermetallic active sites. Due to the highly efficient dispersion of active species, the CNT-PtFe@FeNC electrocatalyst displays a 9.5 times higher specific activity (SA) and 8.5 times higher mass activity (MA) than those of a commercial Pt/C catalyst in a 0.1 M HClO4 solution. Additionally, these results, combined with excellent durability (the SA and MA maintained 94 % and 91 % of initial activity after a 10-k cycle accelerated durability test), represent among the best performance achieved so far for Pt-based ORR electrocatalysts. Furthermore, density functional theory (DFT) calculations revealed that the presence of Fe-N4 species reduces the adsorption energy between the PtFe intermetallic compound and OH*, accelerating the ORR process.
Collapse
Affiliation(s)
- Xue Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qianli Xing
- Department of Materials Science and Engineering, Tufts University, Medford 02155, MA, USA
| | - Jie Song
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zuoxu Xiao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fuling Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Tianle Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinshi Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
4
|
Wang W, Li X, Cheng Y, Zhang M, Zhao K, Liu Y. An effective PtPdAuCuFe/C high-entropy-alloy applied to direct ethylene glycol fuel cells. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Ou Y, Li S, Wang F, Duan X, Yuan W, Yang H, Zhang Z, Wang Y. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Liu X, Wang F, Meng Y, Zhao L, Shi W, Wang X, He Z, Chao J, Li C. Electrochemical/visual microfluidic detection with a covalent organic framework supported platinum nanozyme-based device for early diagnosis of pheochromocytoma. Biosens Bioelectron 2022; 207:114208. [PMID: 35344731 DOI: 10.1016/j.bios.2022.114208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/08/2023]
Abstract
The development of smart, portable, and sensitive devices for the monitoring of circulating tumor cells (CTCs) is essential to diagnose several diseases, including pheochromocytoma (PCC). Therefore, in this study, a dual-mode (electrochemical/visual) microfluidic device was designed for the rapid and sensitive detection of PCC-CTCs using a microfluidic chip for automatic cell sampling and detection and a smartphone-based three-dimensional-printed accessory for signal output analysis. The device was employed to capture and identify PCC-CTCs via specific immunogenic binding to the norepinephrine transporter and somatostatin receptor, which are overexpressed on the surface of PCC cells. Specifically, targeted-modified magnetic particles were used to capture and separate PCC-CTCs from peripheral blood; then, similarly modified covalent organic framework based nanozymes (COF@Pt) were used as peroxidase mimics to amplify the electrochemical response from H2O2 reduction and catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine by hydroxyl radicals in the presence of the PCC cells to enable visual quantification. Using the prepared microfluidic device, a low detection limit of 1 cell mL-1 at a signal-to-noise ratio of 3 and a wide linear range of 2 to 105 cells mL-1 were achieved. Overall, this work demonstrates a portable, sensitive, and visual platform for PCC diagnostics that meets the requirement for quick and precise point-of-care diagnostics.
Collapse
Affiliation(s)
- Xiaoya Liu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Meng
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Liping Zhao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjing Shi
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Xun Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Zikang He
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
He W, Xiang Y, Xin M, Qiu L, Dong W, Zhao W, Diao Y, Zheng A, Xu G. Investigation of multiple commercial electrocatalysts and electrocatalyst degradation for fuel cells in real vehicles. RSC Adv 2022; 12:32374-32382. [DOI: 10.1039/d2ra05682h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022] Open
Abstract
The coalescence of Pt nanoparticles during operation in a real vehicle is considered to be the main reason to weaken the ORR. The trajectories of oriented attachment were disclosed by observing the coalescence events of Pt NPs using in situ TEM.
Collapse
Affiliation(s)
- Wenhui He
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yanjuan Xiang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Mudi Xin
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Limei Qiu
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Wenyan Dong
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Wenhui Zhao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yuxia Diao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Aiguo Zheng
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Guangtong Xu
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| |
Collapse
|
8
|
Talebi A, Omrani A, Rostami H, Jamshidi Roodbari N. Modification of commercial Pt/C catalyst by cobalt for enhanced electro-oxidation of ethanol. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ali Talebi
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Abdollah Omrani
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Hussein Rostami
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
9
|
Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Feng W, Song Y, Zhang X, Lv H, Liu Q, Wang G, Bao X. Platinum-Decorated Ceria Enhances CO 2 Electroreduction in Solid Oxide Electrolysis Cells. CHEMSUSCHEM 2020; 13:6290-6295. [PMID: 32459062 DOI: 10.1002/cssc.202001002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
CO2 electroreduction by solid oxide electrolysis cells (SOECs) can not only attenuate the greenhouse effect, but also convert surplus electrical energy into chemical energy. The adsorption and activation of CO2 on the cathode play an important role in the SOEC performance. La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ -Ce0.8 Sm0.2 O2-δ (LSCF-SDC; SDC=samarium-doped ceria) is a promising SOEC cathode. However, its electrocatalytic activity still needs to be improved. In this study, Pt/SDC interfaces are constructed by decorating Pt nanoparticles onto the SDC surface. Electrochemical measurements indicate that the polarization resistance of the SOEC is decreased from 0.308 to 0.120 Ω cm2 , and the current density is improved from 0.913 to 1.420 A cm-2 at 1.6 V and 800 °C. Physicochemical characterizations suggest that construction of the Pt/SDC interfaces increases the oxygen vacancy concentration on the cathode and boosts CO2 adsorption and dissociation, which leads to enhanced CO2 electroreduction performance in SOECs.
Collapse
Affiliation(s)
- Weicheng Feng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Yuefeng Song
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Xiaomin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Houfu Lv
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Qingxue Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P.R. China
| |
Collapse
|
11
|
Wang W, Zhao X, Shi H, Liu L, Deng H, Xu Z, Tian F, Miao X. Shape inducer-free polygonal angle platinum nanoparticles in graphene oxide as oxygen reduction catalyst derived from gamma irradiation. J Colloid Interface Sci 2020; 575:1-15. [DOI: 10.1016/j.jcis.2020.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
12
|
Wang F, Zhang Q, Rui Z, Li J, Liu J. High-Loading Pt-Co/C Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction through Surface Au Modification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30381-30389. [PMID: 32469505 DOI: 10.1021/acsami.0c06951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon-supported Pt-Co (Pt-Co/C) nanoparticles with a high Pt loading are regarded as promising cathode catalysts for practical applications of proton exchange membrane fuel cells (PEMFCs). Unfortunately, with high loading, it is difficult to improve the catalytic durability while maintaining the particle size between 2 and 5 nm to ensure the initial catalytic activity. Thus, it is of great significance to prepare high-loading Pt-Co/C catalysts with enhanced activity and durability. Herein, we proposed an efficient way to prepare high-Pt-loading (>50 wt %) Pt-Co/C catalysts without using any further surfactants. Furthermore, due to the one-step selective acid etching and surface Au modification, the as-prepared catalysts only need to undergo thermal treatment at as low as 150 °C to achieve a surface structure rich of Pt and Au. The average particle size of the as-prepared Au-Pt-Co/C-0.015 is 3.42 nm, and the Pt loading of it is up to 50.2 wt %. The atomic ratio of Pt, Co, and Au is 94:5:1. The mass activity (MA) is nearly 1.9 times that of Pt/C (60 wt %, JM) and the specific activity is also improved. The MA loss after the 30,000-cycle accelerated degradation test (ADT) is only 9.4%. The remarkable durability is mainly due to the surface Au modification, which can restrict the dissolution of Pt and Co. This research provides an effective synthesis strategy to prepare high-loading carbon-supported Pt-based catalysts beneficial to practical PEMFC applications.
Collapse
Affiliation(s)
- Feng Wang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, 210093 Nanjing, P.R. China
| | - Qi Zhang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, 210093 Nanjing, P.R. China
| | - Zhiyan Rui
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, 210093 Nanjing, P.R. China
| | - Jia Li
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, 210093 Nanjing, P.R. China
| | - Jianguo Liu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, 210093 Nanjing, P.R. China
| |
Collapse
|
13
|
Li Z, Wang X, Zhang Z, Hu J, Liu Z, Sun D, Tang Y. Concave PtCo nanooctahedra with high-energy {110} facets for the oxygen reduction reaction. CrystEngComm 2020. [DOI: 10.1039/c9ce01488h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For the first time, iminodiacetic acid serves as a morphology control agent for the synthesis of concave PtCo nanooctahedra.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Xiaoru Wang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Zhenbo Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Jinrui Hu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Zhenyuan Liu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
14
|
Zhao H, Hu ZP, Zhu YP, Ge L, Yuan ZY. P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63363-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Anwar MT, Yan X, Asghar MR, Husnain N, Shen S, Luo L, Cheng X, Wei G, Zhang J. MoS2-rGO hybrid architecture as durable support for cathode catalyst in proton exchange membrane fuel cells. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63365-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|