1
|
Liang L, Bai C, Zhang Y, Komarneni S, Ma J. Weak magnetic field and coexisting ions accelerate phenol removal by ZVI/H 2O 2 system: Their efficiency and mechanism. CHEMOSPHERE 2024; 359:142260. [PMID: 38735488 DOI: 10.1016/j.chemosphere.2024.142260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Human activity and industrial production have led to phenol becoming a significant risk factor. The proper treatment of phenol in wastewater is essential. In this study, the utilization of weak magnetic field (WMF) and zero-valent iron (ZVI) was proposed to activate H2O2 to degrade phenol contaminant. The results show that the weak magnetic field has greatly enhanced the reaction rate of ZVI/H2O2 removal of phenol. The removal rates of phenol by ZVI/H2O2/WMF generally decreased with increasing initial pH and phenol concentrations, and firstly increase and then decrease with increasing Fe0 or H2O2 dosage. When the initial pH is 5.0, ZVI concentration of 0.2 g L-1, H2O2 concentration of 6 mM, and phenol concentration of 100 mg L-1 were used, complete removal of phenol can be achieved within 180 min at 25 °C. The degradation process was consistent with the pseudo-first-order kinetic model when the experimental data was fitted. The ZVI/H2O2/WMF process exhibited a 1.05-2.66-fold enhancement in the removal rate of phenol under various conditions, surpassing its counterpart lacking WMF. It was noticed that the presence of 1-5 mM of Ca2+, Mg2+, Cl-, SO42- ions can significantly enhance the kinetics of phenol removal by ZVI/H2O2 system with or without WMF to 2.22-10.40-fold, but NO3-, CO32-, PO43- inhibited the reaction significantly in the following order: PO43- > CO32- > NO3-. Moreover, pre-magnetization for 3 min could enhance the ZVI/H2O2 process which was valuable in treatment of real wastewater. The hydroxyl radical has been identified as the primary radical species responsible for phenol degradation. The presence of WMF accelerates the corrosion rate of ZVI, thereby promoting the release of Fe2+ ions, which in turn induces an increased production of hydroxyl radicals and facilitates phenol degradation. The compounds hydroquinone, benzoquinone, catechol, maleic acid, and CO2 were identified using GC-MS, and degradation pathways were proposed. Employing WMF in combination with various ions like Ca2+, Mg2+, Cl-, SO42- is a novel method, which can enhance oxidation capacity of ZVI/H2O2 and may lead to economic benefit.
Collapse
Affiliation(s)
- Liping Liang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, China
| | - Chaoqi Bai
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, China
| | - Yuting Zhang
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jianfeng Ma
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Yan B, Dai Y, Xin L, Li M, Zhang H, Long H, Gao X. Research progress in the degradation of printing and dyeing wastewater using chitosan based composite photocatalytic materials. Int J Biol Macromol 2024; 263:130082. [PMID: 38423910 DOI: 10.1016/j.ijbiomac.2024.130082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The surge in economic growth has spurred the expansion of the textile industry, resulting in a continuous rise in the discharge of printing and dyeing wastewater. In contrast, the photocatalytic method harnesses light energy to degrade pollutants, boasting low energy consumption and high efficiency. Nevertheless, traditional photocatalysts suffer from limited light responsiveness, inadequate adsorption capabilities, susceptibility to agglomeration, and hydrophilicity, thereby curtailing their practical utility. Consequently, integrating appropriate carriers with traditional photocatalysts becomes imperative. The combination of chitosan and semiconductor materials stands out by reducing band gap energy, augmenting reactive sites, mitigating carrier recombination, bolstering structural stability, and notably advancing the photocatalytic degradation of printing and dyeing wastewater. This study embarks on an exploration by initially elucidating the technical principles, merits, and demerits of prevailing printing and dyeing wastewater treatment methodologies, with a focal emphasis on the photocatalytic approach. It delineates the constraints encountered by traditional photocatalysts in practical scenarios. Subsequently, it comprehensively encapsulates the research advancements and elucidates the reaction mechanisms underlying chitosan based composite materials employed in treating printing and dyeing wastewater. Finally, this work casts a forward-looking perspective on the future research trajectory of chitosan based photocatalysts, particularly in the realm of industrial applications.
Collapse
Affiliation(s)
- Boting Yan
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Yiming Dai
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Lili Xin
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Mingyang Li
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hao Zhang
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hongming Long
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Xiangpeng Gao
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China.
| |
Collapse
|
3
|
Zhao ZA, Mao J, Lu C, Yang S, Qian Q, Chen Q, Xue H, Sun X, Yang MQ. Design and fabrication of self-suspending aluminum-plastic/semiconductor photocatalyst devices for solar energy conversion. J Environ Sci (China) 2024; 136:615-625. [PMID: 37923470 DOI: 10.1016/j.jes.2023.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 11/07/2023]
Abstract
The design and synthesis of self-suspending photocatalyst device with easy recyclability is important for practical application. Here, this work utilizes aluminum-plastic package waste as raw material to prepare an aluminum-plastic supported TiO2 (AP-TiO2) photocatalyst device through 3D printing design and surface deposition method. A series of characterizations were carried out to explore the structure, morphology and performance of the AP-TiO2 device. Under UV light illumination, the AP-TiO2-50 efficiently degrade 93.6% tetracycline hydrochloride (THC) after 4 hr, which increases by 8.3% compared with that of TiO2 powder suspension system with the same catalyst amount. Based on it, AP-ZnO, AP-CdS, AP-g-C3N4 and AP-Pt-TiO2 are also fabricated, and applied in photocatalytic degradation and hydrogen evolution, which all exhibit higher photoactivities than powder suspension systems. This work provides a new avenue for the fabrication of advanced recyclable photocatalyst device. Moreover, the work offers a novel sight for the high-value utilization of aluminum-plastic package waste, which has positive implications for environmental protection.
Collapse
Affiliation(s)
- Zhi-Ang Zhao
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Jingyun Mao
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Chengjing Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Qinghua Chen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Hun Xue
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| | - Xiaoli Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
4
|
Zhong H, Lu C, Sun XL, Luo Y, Qian Q, Xue H, Yang MQ. Visible-Light-Driven Photocatalytic Dehydrogenation of Alcohols on TiO 2 via Ligand-to-Metal Charge Transfer for Coproduction of H 2 and Aldehydes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486250 DOI: 10.1021/acsami.3c06701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Developing visible-light-driven photocatalysts for the catalytic dehydrogenation of organics is of great significance for sustainable solar energy utilization. Here, we first report that aromatic alcohols could be efficiently split into H2 and aldehydes over TiO2 under visible-light irradiation through a ligand-to-metal charge transfer (LMCT) mechanism. A series of TiO2 catalysts with different surface contents of the hydroxyl group (-OH) have been synthesized by controlling the hydrothermal and calcination synthesis methods. An optimal H2 production rate of 18.6 μmol h-1 is obtained on TiO2 synthesized from the hydrothermal method with a high content of surface -OH. Experimental characterizations and comparison studies reveal that the surface -OH markedly influences the formation of LMCT complexes and thus changes the visible-light-driven photocatalytic performance. This work is anticipated to inspire further research endeavors in the design and fabrication of visible-light-driven photocatalyst systems based on the LMCT mechanism to realize the simultaneous synthesis of clean fuel and fine chemicals.
Collapse
Affiliation(s)
- Huiling Zhong
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Chengjing Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Li Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yongjin Luo
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hun Xue
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
5
|
Hoai PTT, Huong NTM. Latest avenues on titanium oxide-based nanomaterials to mitigate the pollutants and antibacterial: Recent insights, challenges, and future perspectives. CHEMOSPHERE 2023; 324:138372. [PMID: 36905998 DOI: 10.1016/j.chemosphere.2023.138372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Titanium oxide-based nanomaterials (TiOBNs) have been widely utilized as potential photocatalysts for various applications such as water remediation, oxidation, carbon dioxide reduction, antibacterial, food packing, etc. The benefits from TiOBNs for each application above have been determined as producing the quality of treated water, hydrogen gas as green energy, and valuable fuels. It also acts as potential material protecting foods (inactivation of bacteria and removal of ethylene) and increases shelf life for food storage. This review focuses on recent applications, challenges and future perspectives of TiOBNs to inhibit pollutants and bacteria. Firstly, the application of TiOBNs to treat emerging organic contaminants in wastewater was investigated. In particular, the photodegradation of antibiotics pollutants and ethylene using TiOBNs are described. Secondly, applying TiOBNs for antibacterial to reduce disease, disinfection, and food spoiling has been discussed. Thirdly, the photocatalytic mechanisms of TiOBNs to mitigate organic pollutants and antibacterial were determined. Finally, the challenges for different applications and future perspectives have been outlined.
Collapse
Affiliation(s)
- Pham Thi Thu Hoai
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Viet Nam.
| | - Nguyen Thi Mai Huong
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Viet Nam
| |
Collapse
|
6
|
Wang C, Liu Y, Li Y, Sun X, Xu L, Huang W. Facile defect construction of TiO2 nanotube for excellent photocatalytic degradation of tetracycline under visible light. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Pt-Chitosan-TiO2 for Efficient Photocatalytic Hydrogen Evolution via Ligand-to-Metal Charge Transfer Mechanism under Visible Light. Molecules 2022; 27:molecules27154673. [PMID: 35897848 PMCID: PMC9330878 DOI: 10.3390/molecules27154673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Pt-chitosan-TiO2 charge transfer (CT) complex was synthesized via the sol-gel and impregnation method. The synthesized photocatalysts were thoroughly characterized, and their photocatalytic activity were evaluated toward H2 production through water reduction under visible-light irradiation. The effect of the preparation conditions of the photocatalysts (the degree of deacetylation of chitosan, addition amount of chitosan, and calcination temperature) on the photocatalytic activity was discussed. The optimal Pt-10%DD75-T200 showed a H2 generation rate of 280.4 μmol within 3 h. The remarkable visible-light photocatalytic activity of Pt-chitosan-TiO2 was due to the CT complex formation between chitosan and TiO2, which extended the visible-light absorption and induced the ligand-to-metal charge transfer (LMCT). The photocatalytic mechanism of Pt-chitosan-TiO2 was also investigated. This paper outlines a new and facile pathway for designing novel visible-light-driven photocatalysts that are based on TiO2 modified by polysaccharide biomass wastes that are widely found in nature.
Collapse
|
8
|
Maamoun AA, El-Wakil AA, El-Basheer TM. Enhancement of the mechanical and acoustical properties of flexible polyurethane foam/waste seashell composites for industrial applications. J CELL PLAST 2022. [DOI: 10.1177/0021955x221088392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of this work is the use of waste seashells WSS (5, 10, 15, 20, 25, and 30 wt.%) as a bio-filler to enhance the mechanical and acoustical characteristics of flexible polyurethane foam (FPU). Petroleum-based polyol was partially replaced by 25% castor oil resulting in high renewable content. The WSS was characterized by X-ray photoelectron spectroscopy (XPS). The chemical structure and morphological features for castor oil-based flexible polyurethane waste seashells (CO-FPU-WSS) composites were detected using Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) techniques, respectively. Besides, the mechanical, non-acoustical and acoustical properties were investigated. The results indicated that bio-based FPU composites possessed better compressive strength than neat FPU foam. In addition, FPU composites enhance the sound absorption below 500 Hz. A 6 cm air gap behind the sample shifted the absorption toward 400 Hz (0.85) for CO-FPU-WSS 25% composite with a broader band. Thus, the FPU foam composite is considered a promising candidate for sound absorption applications such as for the automotive and building industries.
Collapse
Affiliation(s)
- AA Maamoun
- Department of Physics and Mathematics, Chemistry Division, Ain Shams University, Cairo, Egypt
| | - AA El-Wakil
- Department of Polymer Metrology and Technology, National Institute of Standards (NIS), El-Giza, Egypt
| | - Tarek M El-Basheer
- Department of Acoustics, Mass and Force Metrology Division, National Institute of Standards (NIS), El-Giza, Egypt
| |
Collapse
|
9
|
Wang L, Ma X, Huang G, Lian R, Huang J, She H, Wang Q. Construction of ternary CuO/CuFe 2O 4/g-C 3N 4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight. J Environ Sci (China) 2022; 112:59-70. [PMID: 34955223 DOI: 10.1016/j.jes.2021.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/14/2023]
Abstract
In this study, a graphitic carbon nitride (g-C3N4) based ternary catalyst CuO/CuFe2O4/g-C3N4 (CCCN) is successfully prepared thorough calcination method. After confirming the structure and composition of CCCN, the as-synthesized composites are utilized to activate persulfate (PS) for the degradation of organic contaminant. While using tetracycline hydrochloride (TC) as pollutant surrogate, the effects of initial pH, PS and catalyst concentration on the degradation rate are systematically studied. Under the optimized reaction condition, CCCN/PS is able to give 99% degradation extent and 74% chemical oxygen demand removal in assistance of simulated solar light, both of which are apparently greater than that of either CuO/CuFe2O4 and pristine g-C3N4. The great improvement in degradation can be assignable to the effective separation of photoinduced carriers thanks to the integration between CuO/CuFe2O4 and g-C3N4, as well as the increased reaction sites given by the g-C3N4 substrate. Moreover, the scavenging trials imply that the major oxidative matters involved in the decomposition are hydroxyl radicals (•OH), superoxide radicals (•O2-) and photo-induced holes (h+).
Collapse
Affiliation(s)
- Lei Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaolei Ma
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofang Huang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rui Lian
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingwei Huang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Houde She
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qizhao Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
10
|
Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Pulsed discharge plasma on water surface coupled with CaFe2O4/Bi2O3 composites for synergistic degradation of aqueous tetracycline hydrochloride. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Yang WC, Chen CY, Li JF, Wang ZL. Radical denitrogenative transformations of polynitrogen heterocycles: Building C–N bonds and beyond. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63814-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhang L, Zhang R, Wang W, Han S, Xiao P. UV-enhanced nano-nickel ferrite-activated peroxymonosulfate for the degradation of chlortetracycline hydrochloride in aqueous solution. RSC Adv 2021; 11:20580-20590. [PMID: 35479907 PMCID: PMC9033989 DOI: 10.1039/d1ra02358f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, nano-nickel ferrite (NiFe2O4) was successfully prepared by hydrothermal synthesis and applied to the oxidative removal of chlortetracycline hydrochloride (CTH) in the presence of ultraviolet radiation (UV) and peroxymonosulfate (PMS). Several characterization methods were used to reveal the morphology and surface properties of nano-NiFe2O4, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared absorption (FTIR) spectroscopy. The removal efficiency of CTH, the factors affecting the reaction process and the reaction mechanism of PMS activated by UV combined with nano-NiFe2O4 (UV + nano-NiFe2O4/PMS) in aqueous solution were systematically studied. The results showed that the UV + nano-NiFe2O4/PMS system led to a higher removal efficiency of CTH than other parallel systems. The results also showed that the CTH removal efficiency was enhanced under optimal conditions ([nano-NiFe2O4] = 1 g L-1, [PMS] = 1 g L-1, [UV wavelength] = 254 nm and [pH] = 11) and that a removal efficiency of 96.98% could be achieved after 60 min. In addition, the influence of the PMS concentration, CTH concentration, dosage of added nano-NiFe2O4 and pH on the PMS activation efficiency and CTH oxidative degradation effect was studied. Inorganic anions such as Cl-, HCO3 -, CO3 2- and NO3 - increased the removal efficiency of CTH by 21.29%, 27.17%, 25.32% and 5.96% respectively, while H2PO4 - inhibited CTH removal, and the removal efficiency of CTH decreased 6.08% after 60 min. Free radical identification tests detected SO4 -˙, OH˙ and 1O2 and showed that these species participated in the degradation reaction of CTH. The results of LC-MS and TOC analysis showed that CTH was degraded in the UV + nano-NiFe2O4/PMS system through hydroxylation, demethylation, deamination, and dehydration reaction and finally mineralized into CO2. These findings confirmed that nano-NiFe2O4 is a green and efficient heterogeneous catalyst for activation of PMS and demonstrates potential applicability in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Lingxing Zhang
- College of Forestry, Northeast Forestry University Harbin 150040 China
| | - Rui Zhang
- College of Forestry, Northeast Forestry University Harbin 150040 China
| | - Wenna Wang
- College of Forestry, Northeast Forestry University Harbin 150040 China
| | - Shuang Han
- College of Forestry, Northeast Forestry University Harbin 150040 China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University Harbin 150040 China
| |
Collapse
|
14
|
Yang S, Feng Y, Gao D, Wang X, Suo N, Yu Y, Zhang S. Electrocatalysis degradation of tetracycline in a three-dimensional aeration electrocatalysis reactor (3D-AER) with a flotation-tailings particle electrode (FPE): Physicochemical properties, influencing factors and the degradation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124361. [PMID: 33246816 DOI: 10.1016/j.jhazmat.2020.124361] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Novel particle electrodes, i.e. flotation tailings particle electrode (FPE), were prepared using flotation tailings, garden soil, and soluble starch with a mass ratio of 16:3:1, and then used in tetracycline wastewater treatment. The physicochemical properties of FPE were systematically characterized using SEM, XRD, FT-IR and XRF. Tetracycline adsorption and its adsorption mechanism onto FPE was explored for the first time. Parameters affecting FPE's degradation efficiency and energy consumption such as current density, electrolysis time, initial concentration, initial pH and aeration rate were examined. The electrocatalytic degradation of tetracycline shows that the degradation of tetracycline meets the pseudo-first-order kinetics. Moreover, the numbers of •OH produced on the surfaces of the cathode, anode and particle electrode were compared. Results showed that the adsorption-saturated FPE can be regenerated by electrochemical action to induce further absorption and form in-situ electrocatalysis. In order to find out the transformation products in water and degradation pathways of Tetracycline, UHPLC method was used to obtain the degradation pathways for Tetracycline. So, this work could provide a fabrication of high-efficiency and low-cost electrocatalytic for removal of pharmaceuticals pollutants from waste water as well as deeper insight into electrocatalytic mechanism, transformation products, and degradation pathways of Tetracycline in water.
Collapse
Affiliation(s)
- Shumin Yang
- School of Civil Engineering and Architecture,University of Jinan, Jinan 250022, China
| | - Yan Feng
- School of Civil Engineering and Architecture,University of Jinan, Jinan 250022, China.
| | - Dong Gao
- Weifang Municipal Engineering Design and ResearchInstitute Company Limited, Weifang 261000, China
| | - Xinwei Wang
- China Urban Construction Design & Research Institute Co. Ltd (Shan Dong), Jinan 250022, China
| | - Ning Suo
- School of Civil Engineering and Architecture,University of Jinan, Jinan 250022, China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture,University of Jinan, Jinan 250022, China; School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, China
| | - Shoubin Zhang
- School of Civil Engineering and Architecture,University of Jinan, Jinan 250022, China.
| |
Collapse
|
15
|
Huang Z, Wang J, Yang MQ, Qian Q, Liu XP, Xiao L, Xue H. Construction of TiO 2-Eggshell for Efficient Degradation of Tetracycline Hydrochloride: Sunlight Induced In-Situ Formation of Carbonate Radical. MATERIALS 2021; 14:ma14071598. [PMID: 33805939 PMCID: PMC8036644 DOI: 10.3390/ma14071598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/23/2022]
Abstract
Photocatalytic degradation of an antibiotic by utilizing inexhaustible solar energy represents an ideal solution for tackling global environment issues. The target generation of active oxidative species is highly desirable for the photocatalytic pollutants degradation. Herein, aiming at the molecular structure of tetracycline hydrochloride (TC), we construct sunlight-activated high-efficient catalysts of TiO2-eggshell (TE). The composite ingeniously utilizes the photoactive function of TiO2 and the composition of eggshell, which can produce oxidative ·CO3− species that are especially active for the degradation of aromatic compounds containing phenol or aniline structures. Through the synergistic oxidation of the··CO3− with the traditional holes (h+), superoxide radicals (·O2−) and hydroxyl radicals (·OH) involved in the photocatalytic process, the optimal TE photocatalyst degrades 92.0% TC in 30 min under solar light, which is higher than TiO2 and eggshell. The photocatalytic degradation pathway of TC over TE has been proposed. The response surface methodology is processed by varying four independent parameters (TC concentration, pH, catalyst dosage and reaction time) on a Box–Behnken design (BBD) to optimize the experimental conditions. It is anticipated that the present work can facilitate the development of novel photocatalysts for selective oxidation based on ·CO3−.
Collapse
Affiliation(s)
- Zhuquan Huang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (Z.H.); (J.W.); (M.-Q.Y.); (Q.Q.); (X.-P.L.)
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Jiaqi Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (Z.H.); (J.W.); (M.-Q.Y.); (Q.Q.); (X.-P.L.)
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (Z.H.); (J.W.); (M.-Q.Y.); (Q.Q.); (X.-P.L.)
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (Z.H.); (J.W.); (M.-Q.Y.); (Q.Q.); (X.-P.L.)
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Xin-Ping Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (Z.H.); (J.W.); (M.-Q.Y.); (Q.Q.); (X.-P.L.)
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Liren Xiao
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (Z.H.); (J.W.); (M.-Q.Y.); (Q.Q.); (X.-P.L.)
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
- Correspondence: (L.X.); (H.X.)
| | - Hun Xue
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (Z.H.); (J.W.); (M.-Q.Y.); (Q.Q.); (X.-P.L.)
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
- Correspondence: (L.X.); (H.X.)
| |
Collapse
|
16
|
Spectroscopic Measurements of Dissolved O3, H2O2 and OH Radicals in Double Cylindrical Dielectric Barrier Discharge Technology: Treatment of Methylene Blue Dye Simulated Wastewater. PLASMA 2020. [DOI: 10.3390/plasma3020007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Advanced oxidation technologies (AOTs) focusing on nonthermal plasma induced by dielectric barrier discharge are adequate sources of diverse reactive oxygen species (ROS) beneficial for water and wastewater treatment. In this study, indigo, peroxytitanyl sulphate and terephthalic acid methods were used to approximate the concentrations of O3, H2O2 and OH produced in a double cylindrical dielectric barrier discharge (DCDBD) plasma configuration. The effect of pH and scavengers as well as the amount of chemical probes on the generation of oxidants was investigated. The efficiency of the DCDBD reactor was further evaluated using methylene blue (MB) as model pollutant. The results demonstrated that the formation of oxidants O3, H2O2 and OH in the DCDBD reactor was pH-dependent. Furthermore, the presence of scavengers such as phosphates, bicarbonates and carbonates in the solution diminished the amount of OH in the system and hence could impact upon the degree of detoxification of targeted pollutants during water and wastewater treatment. The MB simulated dye was totally decomposed into H2O, dissolved CO2 and simpler aqueous entities. Herein the DCDBD design is an adequate AOT that can be used worldwide for effective decontamination of water and wastewater.
Collapse
|