1
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Zhang QZ, Zhang JR, Li X, Yin JL, Jin LM, Xun ZR, Xue H, Yang WQ, Zhang H, Qu J, Xing ZK, Wang XM. Fangyukangsuan granules ameliorate hyperuricemia and modulate gut microbiota in rats. Front Immunol 2024; 15:1362642. [PMID: 38745649 PMCID: PMC11091346 DOI: 10.3389/fimmu.2024.1362642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.
Collapse
Affiliation(s)
- Qing-zheng Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Ji-rui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-long Yin
- Department of Food Science and Engineering, Jilin Business and Technology College, Changchun, Jilin, China
| | - Li-ming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China
| | - Zhuo-ran Xun
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Wan-qi Yang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jingyong Qu
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhi-kai Xing
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xu-min Wang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| |
Collapse
|
3
|
Liu Y, Liu X, Wang M, Chen C, Li X, Liang Z, Shan Y, Yin Y, Sun F, Li Z, Li H. Characterizations of microRNAs involved in the molecular mechanisms underlying the therapeutic effects of noni ( Morinda citrifolia L.) fruit juice on hyperuricemia in mice. Front Nutr 2023; 10:1121734. [PMID: 37426193 PMCID: PMC10324520 DOI: 10.3389/fnut.2023.1121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Hyperuricemia is generally defined as the high level of serum uric acid and is well known as an important risk factor for the development of various medical disorders. However, the medicinal treatment of hyperuricemia is frequently associated with multiple side-effects. Methods The therapeutic effect of noni (Morinda citrifolia L.) fruit juice on hyperuricemia and the underlying molecular mechanisms were investigated in mouse model of hyperuricemia induced by potassium oxonate using biochemical and high-throughput RNA sequencing analyses. Results The levels of serum uric acid (UA) and xanthine oxidase (XOD) in mice treated with noni fruit juice were significantly decreased, suggesting that the noni fruit juice could alleviate hyperuricemia by inhibiting the XOD activity and reducing the level of serum UA. The contents of both serum creatinine and blood urine nitrogen of the noni fruit juice group were significantly lower than those of the model group, suggesting that noni fruit juice promoted the excretion of UA without causing deleterious effect on the renal functions in mice. The differentially expressed microRNAs involved in the pathogenesis of hyperuricemia in mice were identified by RNA sequencing with their target genes further annotated based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases to explore the metabolic pathways and molecular mechanisms underlying the therapeutic effect on hyperuricemia by noni fruit juice. Conclusion Our study provided strong experimental evidence to support the further investigations of the potential application of noni fruit juice in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Yue Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Xianjun Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Mengyuan Wang
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Changwu Chen
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Xiaohong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Zhiyong Liang
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- Qingdao Haoda Marine Biotechnology Co., Ltd., Qingdao, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
4
|
Yuan D, Lin L, Peng Y, Zhou Y, Li L, Xiao W, Gong Z. Effects of black tea and black brick tea with fungal growth on lowering uric acid levels in hyperuricemic mice. J Food Biochem 2022; 46:e14140. [PMID: 35352364 DOI: 10.1111/jfbc.14140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Black tea, a traditional drink, can induce urination and quench thirst. Black brick tea with fungal growth, prepared by steaming, pressing, inducing fungal growth, and drying the black tea, is a new type of black tea with different sensory qualities and is suitable for storage. However, the effects of black brick tea with fungal growth on lowering uric acid are still unexplored. Therefore, the potassium oxonate was administered for 7 consecutive days to establish the hyperuricemic mice. Then allopurinol, black tea, and black brick tea with fungal growth were orally administered with hyperuricemic mice for 14 days. Serum uric acid levels, liver xanthine oxidase (XOD) and adenosine deaminase (ADA) activities, and expression of renal urate transporters and inflammatory response were detected. Compared to the model group, both types of black tea lowered serum uric acid by decreasing the uric acid production with inhibiting the activities of XOD and ADA, and increasing uric acid excretion because of downregulating urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expressions, and upregulating organic anion transporter 1 (OAT1), organic anion transporter 3 (OAT3), and organic cation transporter 1 (OCT1) expressions. They could also improve renal injury by suppressing the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, and nuclear factor-κB (NF-κB) signaling, thereby reducing renal proinflammatory cytokine levels. Compared with black tea, black brick tea with fungal growth with a higher content of theabrownins had a better effect on lowering serum uric acid. PRACTICAL APPLICATIONS: Black tea accounts for approximately 78% of the total consumed tea in the world. Black brick tea with fungal growth is a new kind of black tea product with different sensory qualities and is suitable for storage. The study found that black brick tea with fungal growth is superior to black tea in reducing serum uric acid levels, which make a significant contribution to promote people's health and stimulate the production and consumption of black brick tea with fungal growth. In addition, it provides a clue for future research to identify the effective components of black brick tea with fungal growth lowering uric acid.
Collapse
Affiliation(s)
- Dongyin Yuan
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Guangxi Subtropical Crops Research Institute, Nanning, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yingqi Peng
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yang Zhou
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Li Li
- Hunan Baojiachong Tea Farm Co. Ltd., Yiyang, China
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Zou W, Shi B, Zeng T, Zhang Y, Huang B, Ouyang B, Cai Z, Liu M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front Pharmacol 2021; 12:746208. [PMID: 34912216 PMCID: PMC8666590 DOI: 10.3389/fphar.2021.746208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023] Open
Abstract
The kidneys are a pair of important organs that excretes endogenous waste and exogenous biological agents from the body. Numerous transporters are involved in the excretion process. The levels of these transporters could affect the pharmacokinetics of many drugs, such as organic anion drugs, organic cationic drugs, and peptide drugs. Eleven drug transporters in the kidney (OAT1, OAT3, OATP4C1, OCT2, MDR1, BCRP, MATE1, MATE2-K, OAT4, MRP2, and MRP4) have become necessary research items in the development of innovative drugs. However, the levels of these transporters vary between different species, sex-genders, ages, and disease statuses, which may lead to different pharmacokinetics of drugs. Here, we review the differences of the important transports in the mentioned conditions, in order to help clinicians to improve clinical prescriptions for patients. To predict drug-drug interactions (DDIs) caused by renal drug transporters, the molecular docking method is used for rapid screening of substrates or inhibitors of the drug transporters. Here, we review a large number of natural products that represent potential substrates and/or inhibitors of transporters by the molecular docking method.
Collapse
Affiliation(s)
- Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Birui Shi
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yan Zhang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Ouyang
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Cai
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Liu
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Sung YY, Yuk HJ, Kim DS. Saengmaeksan, a traditional herbal formulation consisting of Panax ginseng, ameliorates hyperuricemia by inhibiting xanthine oxidase activity and enhancing urate excretion in rats. J Ginseng Res 2021; 45:565-574. [PMID: 34803426 PMCID: PMC8587482 DOI: 10.1016/j.jgr.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 10/27/2022] Open
Abstract
Background Saengmaeksan (SMS) is a traditional Korean medicine composed of three herbs, Panax ginseng, Schisandra chinensis, and Liriope platyphylla. SMS is used to treat respiratory and cardiovascular disorders. However, whether SMS exerts antihyperuricemic effects is unknown. Methods Effects of the SMS extract in water (SMS-W) and 30% ethanol (SMS-E) were studied in a rat model of potassium oxonate-induced hyperuricemia. Uric acid concentrations and xanthine oxidase (XO) activities were evaluated in the serum, urine, and hepatic tissue. Using renal histopathology to assess kidney function and uric acid excretion, we investigated serum creatinine and blood urea nitrogen concentrations, as well as protein levels of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), and organic anion transporter 1 (OAT1). The effects of SMS on in vitro XO activity and uric acid uptake were also evaluated. The components of SMS were identified using Ultra Performance Liquid Chromatography (UPLC). Results SMS-E reduced serum uric acid and creatinine concentrations, and elevated urine uric acid excretion. SMS-E lowered XO activities in both the serum and liver, and downregulated the expression of renal URAT1 and GLUT9 proteins. SMS-E reduced renal inflammation and IL-1β levels in both the serum and kidneys. SMS-E inhibited both in vitro XO activity and urate uptake in URAT1-expressing oocytes. Using UPLC, 25 ginsenosides were identified, all of which were present in higher levels in SMS-E than in SMS-W. Conclusion SMS-E exhibited antihyperuricemic effects by regulating XO activity and renal urate transporters, providing the first evidence of its applicability in the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Sung YY, Kim DS. Eggshell Membrane Ameliorates Hyperuricemia by Increasing Urate Excretion in Potassium Oxonate-Injected Rats. Nutrients 2021; 13:3323. [PMID: 34684325 PMCID: PMC8540004 DOI: 10.3390/nu13103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022] Open
Abstract
Hyperuricemia is the primary cause of gouty arthritis and other metabolic disorders. Eggshell membrane (EM) is an effective and safe supplement for curing pain and stiffness connected with osteoarthritis. However, the effect of EM on hyperuricemia is unclear. This study determines the effects of EM on potassium oxonate-injected hyperuricemia. Uric acid, creatinine, blood urea nitrogen concentrations in the serum, and xanthine oxidase activity in the liver are measured. Protein levels of renal urate transporter 1 (URAT1), organic anion transporters 1 (OAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette transporter G2 (ABCG2) in the kidney are determined with renal histopathology. The results demonstrate that EM reduces serum uric acid levels and increases urine uric acid levels in hyperuricemic rats. Moreover, EM downregulates renal URAT1 protein expression, upregulates OAT1 and ABCG2, but does not change GLUT9 expression. Additionally, EM does not change xanthine oxidase activity in the liver or the serum. EM also decreases uric acid uptake into oocytes expressing hURAT1. Finally, EM markedly reduces renal inflammation and serum interleukin-1β levels. These findings suggest that EM exhibits antihyperuricemic effects by promoting renal urate excretion and regulating renal urate transporters. Therefore, EM may be useful in the prevention and treatment of gout and hyperuricemia.
Collapse
Affiliation(s)
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| |
Collapse
|
8
|
Fan N, Yu Y, Li L, Xia H, Dong X, Li Y, Chen H, Duan W. Uricase deficiency causes mild and multiple organ injuries in rats. PLoS One 2021; 16:e0256594. [PMID: 34437605 PMCID: PMC8389383 DOI: 10.1371/journal.pone.0256594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/10/2021] [Indexed: 01/29/2023] Open
Abstract
Uricase-deficient rats could be one of the optimal model animals to study hyperuricemia. The present study aimed to find the biological differences between uricase-deficient (Kunming-DY rats) and wild-type male rats. Uricase-deficient rats and wild-type rats were commonly bred. Their body weight, water and food consumption, 24-h urine and feces, uric acid in serum and organs, and serum indexes were recorded or assayed. Organs, including the heart, liver, spleen, lung, kidney, thymus, stomach, duodenum, and ileum, were examined using a routine hematoxylin-eosin staining assay. We found that the growth of male uricase-deficient rats was retarded. These rats excreted more urine than the wild-type rats. Their organ indexes (organ weight body weight ratio), of the heart, liver, kidney, and thymus significantly increased, while those of the stomach and small intestine significantly decreased. The uricase-deficient rats had a significantly higher level of serum uric acid and excreted more uric acid via urine at a higher concentration. Except for the liver, uric acid increased in organs and intestinal juice of uricase-deficient rats. Histological examination of the uricase-deficient rats showed mild injuries to the heart, liver, spleen, lung, kidney, thymus, stomach, duodenum, and ileum. Our results suggest that uricase-deficient rats have a different biological pattern from the wild-type rats. Uricase deficiency causes growth retardation of young male rats and the subsequent increase in serum uric acid results in mild organs injuries, especially in the kidney and liver.
Collapse
Affiliation(s)
- Nan Fan
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yun Yu
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Lvyu Li
- The Third Affiliated Hospital, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Heng Xia
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Xiangxian Dong
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yongkun Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Huan Chen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Weigang Duan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
9
|
Xu Y, Cao X, Zhao H, Yang E, Wang Y, Cheng N, Cao W. Impact of Camellia japonica Bee Pollen Polyphenols on Hyperuricemia and Gut Microbiota in Potassium Oxonate-Induced Mice. Nutrients 2021; 13:nu13082665. [PMID: 34444825 PMCID: PMC8401623 DOI: 10.3390/nu13082665] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Camellia japonica bee pollen is one of the major types of bee pollen in China and exhibits antioxidant and anti-inflammatory activities. The aims of our study were to evaluate the effects and the possible mechanism of Camellia japonica bee pollen polyphenols on the treatment of hyperuricemia induced by potassium oxonate (PO). The results showed that Camellia japonica bee pollen ethyl acetate extract (CPE-E) owned abundant phenolic compounds and strong antioxidant capabilities. Administration with CPE-E for two weeks greatly reduced serum uric acid and improved renal function. It inhibited liver xanthine oxidase (XOD) activity and regulated the expression of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporter 1 (OAT1), organic cation transporter 1 (OCT1) and ATP-binding cassette superfamily gmember 2 (ABCG2) in kidneys. Moreover, CPE-E suppressed the activation of the toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathway and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in PO-treated mice, and related inflammatory cytokines were reduced. CPE-E also modulated gut microbiota structure, showing that the abundance of Lactobacillus and Clostridiaceae increased in hyperuicemic mice. This study was conducted to explore the protective effect of CPE-E on hyperuricemia and provide new thoughts for the exploitation of Camellia japonica bee pollen.
Collapse
Affiliation(s)
- Yuanyuan Xu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Xirong Cao
- College of Clinical Medicine, Jilin University, 828 XinMin Street, Changchun 130021, China;
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Erlin Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Yue Wang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
- Correspondence:
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| |
Collapse
|
10
|
Chen L, Luo Z, Wang M, Cheng J, Li F, Lu H, He Q, You Y, Zhou X, Kwan HY, Zhao X, Zhou L. The Efficacy and Mechanism of Chinese Herbal Medicines in Lowering Serum Uric Acid Levels: A Systematic Review. Front Pharmacol 2021; 11:578318. [PMID: 33568990 PMCID: PMC7868570 DOI: 10.3389/fphar.2020.578318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background. Chinese herbal medicines are widely used to lower serum uric acid levels. However, no systemic review summarizes and evaluates their efficacies and the underlying mechanisms of action. Objectives. To evaluate the clinical and experimental evidences for the effectiveness and the potential mechanism of Chinese herbal medicines in lowering serum uric acid levels. Methods. Four electronic databases PubMed, Wed of Science, the Cochrane Library and Embase were used to search for Chinese herbal medicines for their effects in lowering serum uric acid levels, dated from 1 January 2009 to 19 August 2020. For clinical trials, randomized controlled trials (RCTs) were included; and for experimental studies, original articles were included. The methodological quality of RCTs was assessed according to the Cochrane criteria. For clinical trials, a meta-analysis of continuous variables was used to obtain pooled effects. For experimental studies, lists were used to summarize and integrate the mechanisms involved. Results. A total of 10 clinical trials and 184 experimental studies were included. Current data showed that Chinese herbal medicines have promising clinical efficacies in patients with elevated serum uric acid levels (SMD: −1.65, 95% CI: −3.09 to −0.22; p = 0.024). There was no significant difference in serum uric acid levels between Chinese herbal medicine treatments and Western medicine treatments (SMD: −0.13, 95% CI: −0.99 to 0.74; p = 0.772). Experimental studies revealed that the mechanistic signaling pathways involved in the serum uric acid lowering effects include uric acid synthesis, uric acid transport, inflammation, renal fibrosis and oxidative stress. Conclusions. The clinical studies indicate that Chinese herbal medicines lower serum uric acid levels. Further studies with sophisticated research design can further demonstrate the efficacy and safety of these Chinese herbal medicines in lowering serum uric acid levels and reveal a comprehensive picture of the underlying mechanisms of action.
Collapse
Affiliation(s)
- Liqian Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhengmao Luo
- Department of Nephrology, General Hospital of Southern Theatre Command, PLA, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Traditional Chinese Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Hanqi Lu
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol Cell Biochem 2021; 476:1377-1386. [PMID: 33389490 DOI: 10.1007/s11010-020-03997-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Hyperuricemic nephropathy (HN) is a common clinical complication of hyperuricemia. High-serum uric acid can trigger renal inflammation. The inflammasome family has several members and shows a significant effect on inflammatory responses. NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) senses the stimuli signal of excessive uric acid and then it recruits apoptosis-related specular protein (ASC) as well as aspartic acid-specific cysteine protease (caspase)-1 precursor to form NLRP3 inflammasome. NLRP3 inflammasome is activated in acute kidney injury (AKI), chronic kidney diseases (CKD), diabetic nephropathy (DN), and HN. This review focuses on important role for the involvement of NLRP3 inflammasome and associated signaling pathways in the pathogenesis of hyperuricemia-induced renal injury and the potential therapeutic implications. Additionally, several inhibitors targeting NLRP3 inflammasome are under development, most of them for experiment. Therefore, researches into NLRP3 inflammasome modulators may provide novel therapies for HN.
Collapse
|
12
|
Pan J, Shi M, Ma L, Fu P. Mechanistic Insights of Soluble Uric Acid-related Kidney Disease. Curr Med Chem 2020; 27:5056-5066. [PMID: 30526453 DOI: 10.2174/0929867326666181211094421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Hyperuricemia, defined as the presence of elevated serum uric acid (sUA), could lead to urate deposit in joints, tendons, kidney and other tissues. Hyperuricemia as an independent risk factor was common in patients during the causation and progression of kidney disease. Uric acid is a soluble final product of endogenous and dietary purine metabolism, which is freely filtered in kidney glomeruli where approximately 90% of filtered uric acid is reabsorbed. Considerable studies have demonstrated that soluble uric acid was involved in the pathophysiology of renal arteriolopathy, tubule injury, tubulointerstitial fibrosis, as well as glomerular hypertrophy and glomerulosclerosis. In the review, we summarized the mechanistic insights of soluble uric acid related renal diseases.
Collapse
Affiliation(s)
- Jing Pan
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Shi
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Lu YH, Chang YP, Li T, Han F, Li CJ, Li XY, Xue M, Cheng Y, Meng ZY, Han Z, Sun B, Chen LM. Empagliflozin Attenuates Hyperuricemia by Upregulation of ABCG2 via AMPK/AKT/CREB Signaling Pathway in Type 2 Diabetic Mice. Int J Biol Sci 2020; 16:529-542. [PMID: 32015688 PMCID: PMC6990905 DOI: 10.7150/ijbs.33007] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022] Open
Abstract
Hyperuricemia (HUA) is a metabolic disease characterized by elevated serum uric acid (SUA). Empagliflozin, a kind of sodium-glucose cotransporter 2 inhibitors, has recently emerged as a new antidiabetic agent by facilitating glucose excretion in urine. Moreover, there was evidence of SUA reduction following treatment with empagliflozin in addition to glycaemic control, while the molecular mechanisms remain unknown. To investigate the potential mechanisms, the model of type 2 diabetes (T2DM) with HUA was established by combination of peritoneal injection of potassium oxonate and intragastric administration of hypoxanthine in KK-Ay mice. A series of method such as RT-PCR, western blot, immunochemistry, immunofluorescence were conducted to explore the mechanism. Our results showed that empagliflozin significantly ameliorated the levels of SUA and blood glucose in T2DM mice with HUA. Furthermore, in both kidney and ileum, empagliflozin obviously promoted protein expression of uric acid (UA) transporter ABCG2, p-AMPK, p-AKT and p-CREB. The same trend was observed in human tubular epithelial (HK-2) cells. Additionally, through application of an AMPK inhibitor (Compound C), it was further confirmed empagliflozin exerted its anti-hyperuricemic effects in an AMPK dependent manner. Meanwhile, with the help of ChIP assay and luciferase reporter gene assay, we found that CREB further activated ABCG2 via binding to the promoter of ABCG2 to induce transcription. Taken together, our study demonstrated that empagliflozin treatment played an essential role in attenuating HUA by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway.
Collapse
Affiliation(s)
- Yun-Hong Lu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China.,Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308
| | - Yun-Peng Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China.,Department of Endocrinology and Metabolism, the Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Chun-Jun Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Xiao-Yu Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Ying Cheng
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Zi-Yu Meng
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Zhe Han
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Li-Ming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
14
|
Siwu Granules and Erythropoietin Synergistically Ameliorated Anemia in Adenine-Induced Chronic Renal Failure Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5832105. [PMID: 31915448 PMCID: PMC6931032 DOI: 10.1155/2019/5832105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 12/27/2022]
Abstract
Objective Renal anemia in patients with end-stage chronic kidney disease is closely related to the deterioration of cardiac function, renal function, and quality of life. This study involved adenine-induced renal anemic rat models and evaluated the treatment effect of Siwu granules and/or erythropoietin (EPO). Methods Fifty SD rats were randomly divided into 5 groups: control, model, Siwu, EPO, and Siwu plus EPO groups. The expression levels of NO, MDA, SOD, CAT, IL-6, TNF-α, EPO, EPOR, α-SMA, and TGF-β1 were detected in rats after 8 weeks of treatment with Siwu granules and/or EPO. Results After modeling, 47 rats entered the stage of treatment. Siwu plus EPO treatment significantly increased the rat hemoglobin content (p < 0.05) and reduced blood urea nitrogen (p < 0.05) and serum creatinine (p < 0.001). Compared with the control group, the expression of EPO and EPOR in the kidney of rats with renal failure was significantly decreased (p < 0.05). Moreover, the Siwu plus EPO group improved the level of oxidative stress in rats with chronic renal failure and reduced the expression of inflammatory factors. The expression of α-SMA and TGF-β1 in rats with renal failure was higher, but there was no expression in the control group. Conclusion Combined treatment of Siwu granules with EPO increased the expression of EPO and EPOR in the renal tissues and inhibited oxidative stress and inflammatory factors, improving the renal function and anemia.
Collapse
|
15
|
He Y, Gao T, Li J, Chen Z, Wang L, Zhang J, Gao F, Fu C. Metabonomics study on the effect of Siwu Decoction for blood deficiency syndrome in rats using UPLC-Q/TOF-MS analysis. Biomed Chromatogr 2019; 33:e4617. [PMID: 31207665 DOI: 10.1002/bmc.4617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 01/01/2023]
Abstract
Siwu decoction (SWD), a traditional Chinese medicinal formula with over 1000 years of clinical history, is widely used for gynecological disease, especially blood deficiency syndrome, which is similar to anemia in modern medicine. In view of metabonomics being useful approach to investigate the potential mechanisms of action from the point of view of systems biology, in this study an ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry method was employed for a holistic evaluation of SWD on a blood-deficiency rat model induced by N-acetylphenylhydrazine and cyclophosphamide via plasma metabonomics study. Routine blood examination results showed that SWD could significantly improve the declining hemogram indices. Meanwhile, the plasma metabonomics profiles in different groups were analyzed and differentiating metabolites were primarily visualized through chemometric analysis. Seven biomarkers were identified in plasma samples of blood-deficiency rat model compared with the normal group. Five main metabolism pathways were suggested using the Kyoto Encyclopedia of Genes and Genomes Pathway Analysis and Pathway Activity Profiling algorithm analysis. This indicated that SWD played a therapeu role in blood deficiency by regulating the aberrant endogenous metabolites. To sum up, this study provides clear evidence that a metabonomics study could serve as a useful tool to elucidate the systematic therapeutic profiles and mechanisms for blood deficiency syndrome of Chinese herbal medicines.
Collapse
Affiliation(s)
- Yao He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tianhui Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhejie Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lijuan Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fei Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Effect and Mechanism of ShiZhiFang on Uric Acid Metabolism in Hyperuricemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6821387. [PMID: 30046344 PMCID: PMC6036841 DOI: 10.1155/2018/6821387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/18/2018] [Indexed: 01/17/2023]
Abstract
Objective To explore the effect and mechanism of ShiZhiFang on uric acid metabolism. Methods 40 rats were divided into normal group, model group, ShiZhiFang group, and benzbromarone group. The hyperuricemic rat model was induced by yeast gavage at 15 g/kg and potassium oxonate intraperitoneal injection at 600 mg/kg for two weeks. During the next two weeks, ShiZhiFang group rats were given ShiZhiFang by gavage, and benzbromarone group rats were given benzbromarone by gavage. The serum uric acid, creatinine, blood urea nitrogen, XOD activity, urinary uric acid, urinary β2-MG, and histopathological changes were observed in the rats of each group after treatment. Results The hyperuricemic model was established successfully and did not show the increase of serum creatinine and blood urea nitrogen. Compared with the model group, the serum uric acid, serum XOD activity, and urinary β2-MG were significantly decreased (p < 0.05), and 24 h urinary uric acid excretion was significantly decreased (p < 0.01) in ShiZhiFang group, whereas the two treatment groups were of no statistical significant in above indicators (p > 0.05); renal histopathology showed that the lesions in two treatment groups were reduced compared to the model groups. The gene and protein expression of uric acid anion transporters rOAT1 and rOAT3 in the kidney was significantly higher than that in model group (p < 0.01). Conclusion The model is suitable for the study of primary hyperuricemia. The mechanisms of ShiZhiFang on uric acid metabolism in hyperuricemic rats may be involved in reducing the activity of serum XOD and promoting the transcription and expression of rOAT1 and rOAT3 in the kidney.
Collapse
|
17
|
Qin Z, Wang S, Lin Y, Zhao Y, Yang S, Song J, Xie T, Tian J, Wu S, Du G. Antihyperuricemic effect of mangiferin aglycon derivative J99745 by inhibiting xanthine oxidase activity and urate transporter 1 expression in mice. Acta Pharm Sin B 2018; 8:306-315. [PMID: 29719791 PMCID: PMC5925220 DOI: 10.1016/j.apsb.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
A mangiferin aglycon derivative J99745 has been identified as a potent xanthine oxidase (XOD) inhibitor by previous in vitro study. This study aimed to evaluate the hypouricemic effects of J99745 in experimental hyperuricemia mice, and explore the underlying mechanisms. Mice were orally administered 600 mg/kg xanthine once daily for 7 days and intraperitoneally injected 250 mg/kg oxonic acid on the 7th day to induce hyperuricemia. Meanwhile, J99745 (3, 10, and 30 mg/kg), allopurinol (20 mg/kg) or benzbromarone (20 mg/kg) were orally administered to mice for 7 days. On the 7th day, uric acid and creatinine in serum and urine, blood urea nitrogen (BUN), malondialdehyde (MDA) content and XOD activities in serum and liver were determined. Morphological changes in kidney were observed using hematoxylin and eosin (H&E) staining. Hepatic XOD, renal urate transporter 1 (URAT1), glucose transporter type 9 (GLUT9), organic anion transporter 1 (OAT1) and ATP-binding cassette transporter G2 (ABCG2) were detected by Western blot and real time polymerase chain reaction (PCR). The results showed that J99745 at doses of 10 and 30 mg/kg significantly reduced serum urate, and enhanced fractional excretion of uric acid (FEUA). H&E staining confirmed that J99745 provided greater nephroprotective effects than allopurinol and benzbromarone. Moreover, serum and hepatic XOD activities and renal URAT1 expression declined in J99745-treated hyperuricemia mice. In consistence with the ability to inhibit XOD, J99745 lowered serum MDA content in hyperuricemia mice. Our results suggest that J99745 exerts urate-lowering effect by inhibiting XOD activity and URAT1 expression, thus representing a promising candidate as an anti-hyperuricemia agent.
Collapse
|
18
|
Su Q, Su H, Nong Z, Li D, Wang L, Chu S, Liao L, Zhao J, Zeng X, Ya Q, He F, Lu W, Wei B, Wei G, Chen N. Hypouricemic and Nephroprotective Effects of an Active Fraction from Polyrhachis Vicina Roger On Potassium Oxonate-Induced Hyperuricemia in Rats. Kidney Blood Press Res 2018; 43:220-233. [DOI: 10.1159/000487675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
|