1
|
Kim S, Lee CW, Park SY, Asolkar RN, Kim H, Kim GJ, Oh SJ, Kim Y, Lee EY, Oh DC, Yang I, Paik MJ, Choi H, Kim H, Nam SJ, Fenical W. Acremonamide, a Cyclic Pentadepsipeptide with Wound-Healing Properties Isolated from a Marine-Derived Fungus of the Genus Acremonium. JOURNAL OF NATURAL PRODUCTS 2021; 84:2249-2255. [PMID: 34387477 DOI: 10.1021/acs.jnatprod.1c00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acremonamide (1) was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was established using MS, UV, and NMR spectroscopic data analyses. Acremonamide (1) was found to contain N-Me-Phe, N-Me-Ala, Val, Phe, and 2-hydroxyisovaleric acid. The absolute configurations of the four aforementioned amino acids were determined through acid hydrolysis followed by the advanced Marfey's method, whereas the absolute configuration of 2-hydroxyisovaleric acid was determined through GC-MS analysis after formation of the O-pentafluoropropionylated derivative of the (-)-menthyl ester of 2-hydroxyisovaleric acid. As an intrinsic biological activity, acremonamide (1) did not exert cytotoxicity to cancer and noncancer cells and increased the migration and invasion. Based on these activities, the wound healing properties of acremonamide (1) were confirmed in vitro and in vivo.
Collapse
Affiliation(s)
- Sojeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Wook Lee
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Ratnakar N Asolkar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093-0204, United States
| | - Haerin Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Republic of Korea
| | - Song Jin Oh
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Youngbae Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Inho Yang
- Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093-0204, United States
| |
Collapse
|
2
|
Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 2019; 24:227-238. [PMID: 31758267 DOI: 10.1007/s00792-019-01148-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.
Collapse
|
3
|
Yang MY, Yang JK, Yang JK, Hu LD, Zhu HJ, Cao F. New Oxygenated Steroid from the Marine-Derived Fungus Aspergillus flavus. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One new oxygenated steroid, named aspersteroid A (1), and three known analogues (2–4) were isolated from the marine-derived fungus Aspergillus flavus collected from the Bohai Sea. Their structures were elucidated by spectroscopic analyses and by comparison with previously reported data. The absolute configuration of tetracyclic nucleus in 1 was assigned by quantum chemical calculation of the electronic circular dichroism (ECD) spectrum. All the compounds were evaluated for their cytotoxic and antibacterial activities.
Collapse
Affiliation(s)
- Meng-Yue Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jian-Kun Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jin-Kai Yang
- Department of Emergency, the 252nd Hospital of PLA, Baoding, 071000, China
| | - Lian-Dong Hu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Hua-Jie Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
5
|
Fouillaud M, Venkatachalam M, Llorente M, Magalon H, Cuet P, Dufossé L. Biodiversity of Pigmented Fungi Isolated from Marine Environment in La Réunion Island, Indian Ocean: New Resources for Colored Metabolites. J Fungi (Basel) 2017; 3:jof3030036. [PMID: 29371553 PMCID: PMC5715948 DOI: 10.3390/jof3030036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Marine ecosystems cover about 70% of the planet surface and are still an underexploited source of useful metabolites. Among microbes, filamentous fungi are captivating organisms used for the production of many chemical classes of secondary metabolites bound to be used in various fields of industrial application. The present study was focused on the collection, isolation, screening and genotyping of pigmented filamentous fungi isolated from tropical marine environments around La Réunion Island, Indian Ocean. About 150 micromycetes were revived and isolated from 14 marine samples (sediments, living corals, coral rubble, sea water and hard substrates) collected in four different locations. Forty-two colored fungal isolates belonging to 16 families, 25 genera and 31 species were further studied depending on their ability to produce pigments and thus subjected to molecular identification. From gene sequence analysis, the most frequently identified colored fungi belong to the widespread Penicillium, Talaromyces and Aspergillus genera in the family Trichocomaceae (11 species), then followed by the family Hypocreaceae (three species). This study demonstrates that marine biotopes in La Réunion Island, Indian Ocean, from coral reefs to underwater slopes of this volcanic island, shelter numerous species of micromycetes, from common or uncommon genera. This unstudied biodiversity comes along with the ability for some fungal marine inhabitants, to produce a range of pigments and hues.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de La Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de La Réunion, France.
| | - Melissa Llorente
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de La Réunion, France.
| | - Helene Magalon
- UMR ENTROPIE and LabEx CORAIL, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de La Réunion, France.
| | - Pascale Cuet
- UMR ENTROPIE and LabEx CORAIL, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de La Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de La Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de La Réunion, France.
| |
Collapse
|