1
|
Chu Y, Yuan Q, Jiang H, Wu L, Xie Y, Zhang X, Li L. A comprehensive review of the anticancer effects of decursin. Front Pharmacol 2024; 15:1303412. [PMID: 38444945 PMCID: PMC10912667 DOI: 10.3389/fphar.2024.1303412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Cancer is a globally complex disease with a plethora of genetic, physiological, metabolic, and environmental variations. With the increasing resistance to current anticancer drugs, efforts have been made to develop effective cancer treatments. Currently, natural products are considered promising cancer therapeutic agents due to their potent anticancer activity and low intrinsic toxicity. Decursin, a coumarin analog mainly derived from the roots of the medicinal plant Angelica sinensis, has a wide range of biological activities, including anti-inflammatory, antioxidant, neuroprotective, and especially anticancer activities. Existing studies indicate that decursin affects cell proliferation, apoptosis, autophagy, angiogenesis, and metastasis. It also indirectly affects the immune microenvironment and can act as a potential anticancer agent. Decursin can exert synergistic antitumor effects when used in combination with a number of common clinical anticancer drugs, enhancing chemotherapy sensitivity and reversing drug resistance in cancer cells, suggesting that decursin is a good drug combination. Second, decursin is also a promising lead compound, and compounds modifying its structure and formulation form also have good anticancer effects. In addition, decursin is not only a key ingredient in several natural herbs and dietary supplements but is also available through a biosynthetic pathway, with anticancer properties and a high degree of safety in cells, animals, and humans. Thus, it is evident that decursin is a promising natural compound, and its great potential for cancer prevention and treatment needs to be studied and explored in greater depth to support its move from the laboratory to the clinic.
Collapse
Affiliation(s)
- Yueming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Liang Wu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Yutao Xie
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Xiaofen Zhang
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Lin Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Zheng J, Gu A, Kong L, Lu W, Xia J, Hu H, Hong M. Cimifugin Relieves Histamine-Independent Itch in Atopic Dermatitis via Targeting the CQ Receptor MrgprA3. ACS OMEGA 2024; 9:7239-7248. [PMID: 38371844 PMCID: PMC10870393 DOI: 10.1021/acsomega.3c09697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Background: We previously found that cimifugin has a potent antiallergic inflammatory effect in atopic dermatitis (AD). However, whether cimifugin has an antipruritic effect in AD was unknown. Methods: Mouse scratching behavior tests were performed to verify the proposed antipruritic effect of cimifugin on DNFB- or FITC-mediated AD. Chloroquine (CQ)- and compound 48/80-evoked acute itch models were employed to clarify the effect of cimifugin on histamine-dependent or -independent itch. Intracellular calcium changes were assessed in a primary culture of mouse dorsal root ganglia (DRG) in response to pruritogen exposure with or without cimifugin treatment, including CQ, histamine, allyl-isothiocyanate (AITC), and capsaicin. Molecular docking and microscale thermophoresis (MST) assays were performed to predict and verify the binding ability and modes between cimifugin and the CQ receptor MrgprA3, respectively. Results: We found that cimifugin attenuates itch behaviors effectively in FITC-induced AD. Notably, cimifugin significantly alleviated acute itching behaviors induced by CQ but not compound 48/80 in vivo. Moreover, cimifugin remarkably inhibited CQ-evoked calcium influx in DRG cells but had no obvious effect on histamine-induced calcium influx. Nevertheless, cimifugin did not interfere with either AITC-stimulated TRPA1 activation- or capsaicin-stimulated TRPV1 activation-mediated calcium influx in DRG cells. Molecular docking predicted that CQ and cimifugin might share similar binding abilities and binding modes with MrgprA3. MST assay confirmed cimifugin directly targeting MrgprA3. Conclusion: The present study demonstrates that cimifugin has a potent antipruritic effect in AD with a histamine-independent mechanism via targeting the CQ receptor MrgprA3. Thus, cimifugin is a promising candidate antipruritic agent for AD.
Collapse
Affiliation(s)
- Jie Zheng
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Pharmacology, School of Medicine, Nanjing
University of Chinese Medicine, Nanjing 210023, China
| | - Anqi Gu
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Lingxuan Kong
- Department
of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Wenhan Lu
- Department
of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Jingsheng Xia
- Department
of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Huijuan Hu
- Department
of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Min Hong
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Erdenebileg S, Son YJ, Kim M, Oidovsambuu S, Cha KH, Kwon J, Jung DS, Nho CW. Saposhnikovia divaricata root and its major components ameliorate inflammation and altered gut microbial diversity and compositions in DSS-induced colitis. Integr Med Res 2023; 12:100998. [PMID: 38024289 PMCID: PMC10630121 DOI: 10.1016/j.imr.2023.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background The root of Saposhnikovia divaricata (Turcz.) Schischk is a well-known traditional medicinal plant, containing various bioactive compounds with anti-inflammatory, antioxidant, and analgesic properties. However, no scientific studies have validated its clinical use as an anti-inflammatory agent against inflammatory bowel disease (IBD). This study aimed to investigate whether the root extract of S. divaricata ameliorates IBD and induces gut microbial alteration, using a RAW 264.7 cell line and a DSS-induced colitis mouse model. Methods To investigate the anti-inflammatory effects and alleviation of IBD, using a methanol extract of Saposhnikovia divaricata (Turcz.) Schischk. root (MESD), RAW 264.7, murine macrophages and a dextran sodium sulfate (DSS)-induced colitis mouse model were employed. 16S rRNA gene sequencing was conducted to determine the alterations in the gut microbiota of mice with DSS-induced colitis. Results MESD significantly decreased nitric oxide (NO) and inflammatory cytokine levels in lipopolysaccharide (LPS)-induced RAW 264.7 cells in vitro. Oral administration of MESD reduced the expression of inflammatory cytokines in the colons of mice with DSS-induced colitis. Additionally, MESD inhibited the abundance of Clostridium sensu stricto 1 and enhanced the predicted functional pathways, including l-glutamate degradation VIII (to propanoic acid). Seven compounds with anti-inflammatory properties were isolated from the MESD. Among them, 3'-O-acetylhamaudol and 3'-O-angeloylhamaudol exhibited strong anti-inflammatory effects in vitro. Conclusion Overall, MESD may be a potential natural product for the treatment of IBD by lowering inflammatory cytokine levels and altering gut microbiota composition.
Collapse
Affiliation(s)
- Saruul Erdenebileg
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, South Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - Sarangerel Oidovsambuu
- Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - Jaeyoung Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - Da Seul Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
4
|
Gao JW, Zhan Y, Wang YH, Zhao SJ, Han ZM. Advances in Phytochemistry and Modern Pharmacology of Saposhnikovia Divaricata (Turcz.) Schischk. Chin J Integr Med 2023; 29:1033-1044. [PMID: 37733271 DOI: 10.1007/s11655-023-3746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 09/22/2023]
Abstract
Saposhnikovia divaricata (Turcz.) Schischk (S. divaricata, Fangfeng) is a herb in the Apiaceae family, and its root has been used since the Western Han Dynasty (202 B.C.). Chromones and coumarins are the pharmacologically active substances in S. divaricata. Modern phytochemical and pharmacological studies have demonstrated their antipyretic, analgesic, anti-inflammatory, antioxidant, anti-tumor, and anticoagulant activities. Technological and analytical strategy theory advancements have yielded novel results; however, most investigations have been limited to the main active substances-chromones and coumarins. Hence, we reviewed studies related to the chemical composition and pharmacological activity of S. divaricata, analyzed the developing trends and challenges, and proposed that research should focus on components' synergistic effects. We also suggested that, the structure-effect relationship should be prioritized in advanced research.
Collapse
Affiliation(s)
- Jun-Wen Gao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Zhan
- Information Center, Jilin Agricultural University, Changchun, 130118, China
| | - Yun-He Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shu-Jie Zhao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhong-Ming Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
5
|
Ren Y, Wu Q, Liu C, Zhang J, Wang Z, Li Y, Zhang Y. Discovery of a traditional Chinese herbal combination for the treatment of atopic dermatitis: saposhnikoviae radix, astragali radix and cnidium monnieri. Arch Dermatol Res 2023; 315:1953-1970. [PMID: 36862182 DOI: 10.1007/s00403-023-02575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Atopic dermatitis (AD) is a skin disease characterized by pruritus. The present study aimed to discover a herbal combination with anti-allergic and anti-inflammatory activities to treat AD. First, the anti-allergic and anti-inflammatory activities of herbs were evaluated by RBL-2H3 degranulation and HaCaT inflammatory models. Subsequently, the optimal proportion of herbs was determined by uniform design-response surface methodology. The effectiveness and synergistic mechanism was further verified. Cnidium monnieri (CM) suppressed β-hexosaminidase (β-HEX) release, saposhnikoviae radix (SR), astragali radix (AR), and CM inhibited the release of IL-8 and MCP-1. The optimal proportion of herbs was SR∶AR∶CM = 1: 2: 1. The in vivo experiments results indicated that the topical application of combination at high (2 ×) and low (1 ×) doses improved dermatitis score and epidermal thickness, and attenuated mast cell infiltration. Network pharmacology and molecular biology further clarified that the combination resisted AD by regulating the MAPK, JAK signaling pathways, and the downstream cytokines such as IL-6, IL-1β, IL-8, IL-10, and MCP-1. Overall, the herbal combination could inhibit inflammation and allergy, improving AD-like symptoms. The present study discovers a promising herbal combination, worthy of further development as a therapeutic drug for AD.
Collapse
Affiliation(s)
- Yue Ren
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qi Wu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chaoqun Liu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jianing Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zian Wang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yingying Li
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
6
|
Li B, Yang Z, Mao F, Wang Q, Fang H, Gu X, Zheng K, Zheng Y, Zhao Y, Jiang J. Phytochemical profile and biological activities of the essential oils in the aerial part and root of Saposhnikovia divaricata. Sci Rep 2023; 13:8672. [PMID: 37248268 DOI: 10.1038/s41598-023-35656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
The dried root of Saposhnikovia divaricata (Turcz.) Schischk. is popular as a good medicinal material, however the abundant aerial part is often discarded, which caused the waste of resources. In order to exploit resources, the essential oils of the plant aerial part and root were extracted, separately called as VOA and VOR, their chemicals were identified. The tumor necrosis factor-α, interleukin-6, nitric oxide and interleukin-1β were detected to evaluate the oils anti-inflammatory activities. Then, the oils free radical scavenging rates were measured with DPPH, ABTS and hydroxyl free radical. The oils antitumor activities were evaluated with HeLa and HCT-8 cancer cell lines. The results showed the concentrations of VOA and VOR were separately 0.261% and 0.475%. Seventeen components of VOA were identified, accounting for 80.48% of VOA, including phytol, spathulenol, phytone, 4(15),5,10(14)-Germacratrien-1-ol, neophytadiene, etc. Seven components of VOR were determined, representing 90.73% of VOR, consisted of panaxynol, β-bisabolene, etc. VOA and VOR significantly inhibited the secretion of nitric oxide, interleukin-1β, interleukin-6 and tumor necrosis factor-α, effectively scavenged the DPPH, ABTS and hydroxyl free radicals, and showed significant antiproliferative activity against HeLa and HCT-8. The two oils presented important biological activity, which provided a hopeful utilized basis, and helped to reduce the waste of the aerial non-medicinal resources of S. divaricata.
Collapse
Affiliation(s)
- Bing Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
| | - Zhenmin Yang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| | - Fuying Mao
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Qian Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Huiyong Fang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kaiyan Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, 050026, China
| | - Yunsheng Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
7
|
Chen Y, Zhang T, Chen C, Xu Z, Liu C. Transcriptomics explores the potential of flavonoid in non-medicinal parts of Saposhnikovia divaricata (Turcz.) Schischk. FRONTIERS IN PLANT SCIENCE 2023; 14:1067920. [PMID: 36923128 PMCID: PMC10010146 DOI: 10.3389/fpls.2023.1067920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Saposhnikovia divaricata is a traditional Chinese medicine in China, which is widely used in clinic. The root of S. divaricata is often used as medicine, but little research has been done on its other tissues. METHODS In this study, the contents of root and leaf of S. divaricata were determined by HPLC, the differentially expressed genes were screened by transcriptome sequencing at molecular level, and then verified by network pharmacology. RESULTS The results showed that the content of 4'-O-β-D-glucosyl-5-O-methylvisamminol in the leaves was significantly higher than that in the roots, which was about 3 times higher than that in the roots. In addition, 10 differentially expressed key enzyme genes were screened in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthetic pathways. C4H and CYP98A were up-regulated in root, while F3H was down-regulated in root. They can be used as important candidate genes for the mechanism of quality difference of S. divaricata. Finally, network pharmacological validation showed that 5-O-methylvesamitol plays an important role in the treatment of ulcerative colitis. DISCUSSION These findings not only provide insight into flavonoid biosynthesis in S. divaricata associated molecular regulation, but also provide a theoretical basis for the development and utilization of S. divaricata.
Collapse
Affiliation(s)
| | - Tao Zhang
- *Correspondence: Tao Zhang, ; Changbao Chen,
| | | | | | | |
Collapse
|
8
|
Cao S, Shi L, Shen Y, He L, Meng X. Ecological roles of secondary metabolites of Saposhnikovia divaricata in adaptation to drought stress. PeerJ 2022; 10:e14336. [PMID: 36353606 PMCID: PMC9639429 DOI: 10.7717/peerj.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Saposhnikovia divaricata is a traditional Chinese herb that mainly grows in arid grasslands and strongly adapts to various stresses. Drought is not only a major abiotic stress factor but also a typical feature conducive to producing high-quality medicinal material. The present study investigated by treating S. divaricata plants with polyethylene glycol (PEG-6000). Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) identified 146 compounds from the roots of S. divaricata, among which seven primary metabolites and 28 secondary metabolites showed significant changes after drought treatment. UV-Vis spectrophotometer detected the activity of antioxidant enzymes and the content of superoxide anion (O2 -.) and malondialdehyde (MDA). The differential primary metabolites revealed that drought promotes glycolysis, reducing primary metabolism and enhancing secondary metabolism. Meanwhile, the differential secondary metabolites showed an increase in the content of compounds upstream of the secondary metabolic pathway, and other glycosides and increased that of the corresponding aglycones. The activities of antioxidant enzymes and the content of O2 -. and MDA shown different changes duing the drought treatment. These observations indicate that drought promotes the biosynthesis and transformation of the secondary metabolites and activity of antioxidant enzymes, improving plant adaptability. The present study also analyzed a few primary and secondary metabolites of S. divaricata under different degrees and durations of drought and speculated on the metabolic pathways in an arid environment. The findings indicate the biological nature, diversity, and complexity of secondary metabolites and the mechanisms of plant adaptation to ecological stress.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Medical College, Harbin Vocational & Technical College, Harbin, Heilongjiang, China
| | - Lei Shi
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Luwen He
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Bai R, Wang Y, Cao Y, Yu H, Li P, Chai G, Li X, Li W, Cui F, Hu F. Discrimination of three varieties of Codonopsis Radix based on fingerprint profiles of oligosaccharides by high performance liquid chromatography- evaporative light scattering detector combined with multivariate analysis. J Chromatogr A 2022; 1685:463642. [DOI: 10.1016/j.chroma.2022.463642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
10
|
The Effects of Saposhnikovia divaricata Aqueous Extracts on the Inflammation and Intestinal Microflora in Allergic Rhinitis Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1052359. [PMID: 36276863 PMCID: PMC9586736 DOI: 10.1155/2022/1052359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Background Allergic rhinitis (AR) is a type I allergic disease induced by IgE. Traditional Chinese medicine Saposhnikovia divaricata (Turcz.) Schischk (SD) has anti-inflammatory and antiallergic effects. Materials and Methods AR model mice were constructed with ovalbumin (OVA) sensitization to observe the improving effect of SD treatment on AR by counting the number of sneezing and rubbing the nose, hematoxylin-eosin, periodic acid-Schiff, and toluidine blue stains. In addition, the allergy and inflammatory cytokines levels and inflammatory cells were observed by ELISA and Wright's-Giemsa stain. The protein levels of the TLR4/TRAF6/NF-κB and IL-6/ROR-γt/STAT3 pathways were measured by immunohistochemistry, quantitative real-time PCR, and western blot. The intestinal microflora abundance in mice was observed by 16S rDNA high-throughput sequencing. Results SD treatment inhibited the sneezing and rubbing times of the nose, decreased the degree of a dense arrangement of cells and mucosal swelling and the number of goblet and mast cells of nasal lavage fluid, reduced the levels of IgE, histamine, Leukotriene B4, IL-4, IL-5, TNF-α, IL-6, and IL-17, the eosinophils, neutrophils, and lymphocytes number, the LR4, TRAF6, IL-6, ROR-γt, and STAT3 mRNA levels, respectively, while, it increased the IL-2, IL-10, IFN-γ, and TGF-β1 proteins. SD treatment inhibited the NF-κB, p-STAT3, TLR4, TRAF6, and p-IκBα/IκBα proteins. Besides, the effects of OVA and SD treatments were significantly correlated with the abundance of intestinal microflora. The abundances of Cytophagales, Burkholderia, Alteromonadales, Lactococcus, and Clostridiaceae were changed in SD treatment on AR mice. Conclusions This study provides a possibility that the improvement effect of SD treatment on allergies and inflammation in AR mice may be related to the TLR4/TRAF6/NF-κB and IL-6/ROR-γt/STAT3 pathways and intestinal microflora modulation.
Collapse
|
11
|
Ni Y, Li J, Chen H, Yue J, Chen P, Liu C. Comparative analysis of the chloroplast and mitochondrial genomes of Saposhnikovia divaricata revealed the possible transfer of plastome repeat regions into the mitogenome. BMC Genomics 2022; 23:570. [PMID: 35945507 PMCID: PMC9364500 DOI: 10.1186/s12864-022-08821-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Saposhnikovia divaricata (Turcz.) Schischk. is a perennial herb whose dried roots are commonly used as a source of traditional medicines. To elucidate the organelle-genome-based phylogeny of Saposhnikovia species and the transfer of DNA between organelle genomes, we sequenced and characterised the mitochondrial genome (mitogenome) of S. divaricata. Results The mitogenome of S. divaricata is a circular molecule of 293,897 bp. The nucleotide composition of the mitogenome is as follows: A, 27.73%; T, 27.03%; C, 22.39%; and G, 22.85. The entire gene content is 45.24%. A total of 31 protein-coding genes, 20 tRNAs and 4 rRNAs, including one pseudogene (rpl16), were annotated in the mitogenome. Phylogenetic analysis of the organelle genomes from S. divaricata and 10 related species produced congruent phylogenetic trees. Selection pressure analysis revealed that most of the mitochondrial genes of related species are highly conserved. Moreover, 2 and 46 RNA-editing sites were found in the chloroplast genome (cpgenome) and mitogenome protein-coding regions, respectively. Finally, a comparison of the cpgenome and the mitogenome assembled from the same dataset revealed 10 mitochondrial DNA fragments with sequences similar to those in the repeat regions of the cpgenome, suggesting that the repeat regions might be transferred into the mitogenome. Conclusions In this study, we assembled and annotated the mitogenome of S. divaricata. This study provides valuable information on the taxonomic classification and molecular evolution of members of the family Apiaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08821-0.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China
| | - Jingwen Yue
- College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shang Xiadian Road, Fuzhou, Fujian Province, 350002, P. R. China
| | - Pinghua Chen
- College of Agriculture, Fujian Agriculture and Forestry University, No.15, Shang Xiadian Road, Fuzhou, Fujian Province, 350002, P. R. China.
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, P. R. China.
| |
Collapse
|
12
|
Park KR, Leem HH, Kwon YJ, Kwon IK, Hong JT, Yun HM. Sec-O-glucosylhamaudol promotes the osteogenesis of pre-osteoblasts via BMP2 and Wnt3a signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
The Chloroplast Genome of Wild Saposhnikovia divaricata: Genomic Features, Comparative Analysis, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13050931. [PMID: 35627316 PMCID: PMC9141249 DOI: 10.3390/genes13050931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Saposhnikovia divaricata, a well-known Chinese medicinal herb, is the sole species under the genus Saposhnikovia of the Apiaceae subfamily Apioideae Drude. However, information regarding its genetic diversity and evolution is still limited. In this study, the first complete chloroplast genome (cpDNA) of wild S. divaricata was generated using de novo sequencing technology. Similar to the characteristics of Ledebouriella seseloides, the 147,834 bp-long S. divaricata cpDNA contained a large single copy, a small single copy, and two inverted repeat regions. A total of 85 protein-coding, 8 ribosomal RNA, and 36 transfer RNA genes were identified. Compared with five other species, the non-coding regions in the S. divaricata cpDNA exhibited greater variation than the coding regions. Several repeat sequences were also discovered, namely, 33 forward, 14 reverse, 3 complement, and 49 microsatellite repeats. Furthermore, phylogenetic analysis using 47 cpDNA sequences of Apioideae members revealed that L. seseloides and S. divaricata clustered together with a 100% bootstrap value, thereby supporting the validity of renaming L. seseloides to S. divaricata at the genomic level. Notably, S. divaricata was most closely related to Libanotis buchtormensis, which contradicts previous reports. Therefore, these findings provide a valuable foundation for future studies on the genetic diversity and evolution of S. divaricata.
Collapse
|
14
|
Quality Evaluation of Saposhnikovia divaricata (Turcz.) Schischk from Different Origins Based on HPLC Fingerprint and Chemometrics. J CHEM-NY 2022. [DOI: 10.1155/2022/1155650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A valid and encyclopedic evaluation method for assessing the quality of Saposhnikovia divaricata has been set up based on the analysis of a high-performance liquid chromatography (HPLC) fingerprint combined with the cluster analysis (CA), principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and similarity analysis. 15 peaks of the common model were obtained and used for the similarity analysis, CA analysis, PCA analysis, and PLS-DA analysis. The fingerprint of S. divaricata was established, and 15 common peaks were calibrated. The four common peaks were identified as prim-o-glucosylcimifugin, 4-O-β-D-glucosyl-5-O-methylvisamminol, cimifugin, and sec-o-glucosylhamaudol by comparison with the reference substance. The similarity of the fingerprints of the 33 batches of S. divaricata is above 0.9. Cluster analysis divides the 33 batches of S. divaricata into 2 categories. Principal component analysis (PCA) roughly divides them into 4 categories. Partial least squares method-discriminant analysis (PLS-DA) screened to obtain 2 differential markers, the different components were designated by the reference substance as 4-O-β-D-glucosyl-5-O-methylvisamminol and cimifugin. The fingerprint established by this study combined with chemometrics analysis is reasonable, effective, accurate, and simple, which makes the information more comprehensive and can provide a scientific basis and reference for quality control and quality evaluation of S. divaricata.
Collapse
|
15
|
Tang R, Peng X, Zhou X, Zheng Z, Yin J, Liu H. Mechanism of the Treatment of Irritable Bowel Syndrome with Sini Powder and Tong Xie Yao Fang Decoction Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3598856. [PMID: 35399629 PMCID: PMC8993579 DOI: 10.1155/2022/3598856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
This study used a network pharmacology approach to investigate the potential active ingredients of Sini Powder and Tong xie yao fang decoction and the underlying mechanisms in irritable bowel syndrome (IBS) treatment. The potential active ingredients of Sini Powder and Tong xie yao fang decoction were obtained from TCMSP databases, and the potential targets of the active ingredients were predicted and analyzed by using the Swiss Target Prediction database. T Genecard, DisGeNET, and OMIM databases were processed to screen the potential therapeutic targets in IBS. The interaction of overlapped candidates between the potential biotarget of herb extracts and the potential therapeutic target of IBS were analyzed by STRING website and visualized by the Cytoscape V3.8.0 software. Gene ontology (GO) analysis and Kyoto Genomics and Genomics Encyclopedia (KEGG) pathway were processed to categorize and map the potential biofunctions and effects of these candidates by using David database. Result. There were 139 predicted active components and 248 related biotargets of Sini Powder and Tong xie yao fang decoction which were involved in IBS treatment, and 522 annotations and 101 related pathways are obtained by enrichment analysis (P < 0.01, FDR < 0.05). The underlying mechanisms of Sini Powder and Tong xie yao fang decoction may be related to neuroactive ligand-receptor interaction, calcium, cAMP, and HIF-1 signaling pathways. In conclusion, our results showed that the effect and mechanism of Sini Powder and Tong xie yao fang decoction in IBS treatment were in multi-ingredient, multitargets and multipathways, which would provide several potential and promising strategies for the further research and development of Sini Powder and Tong xie yao fang decoction on IBS treatment.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road 1, Guangzhou 510180, Guangdong, China
| | - Xiaoqing Peng
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road 1, Guangzhou 510180, Guangdong, China
| | - Xiaohong Zhou
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road 1, Guangzhou 510180, Guangdong, China
| | - Zhimin Zheng
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road 1, Guangzhou 510180, Guangdong, China
| | - Jiayu Yin
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road 1, Guangzhou 510180, Guangdong, China
| | - Hong Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou 510080, Guangdong, China
| |
Collapse
|
16
|
Jin X, Xu H, Huang C, Ma H, Xiong X, Cheng L, Wang F, Feng Y, Zhang G. A Traditional Chinese Medicine Formula Danshen Baibixiao Ameliorates Imiquimod-Induced Psoriasis-Like Inflammation in Mice. Front Pharmacol 2021; 12:749626. [PMID: 34925011 PMCID: PMC8678074 DOI: 10.3389/fphar.2021.749626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Danshen Baibixiao (DB) is a traditional Chinese medicine formula, which has been used to treat psoriasis for decades. Although DB shows good efficacy in clinical practice, the pharmacological effects and underlying mechanisms of DB remain elusive. This study aimed to evaluate the anti-psoriatic effects of DB and explore its underlying mechanisms in an imiquimod (IMQ)-induced psoriasis-like mouse model. Materials and methods: DB was orally administered on IMQ-induced psoriatic mice. Psoriasis area severity index (PASI) was used to evaluate the severity of the inflammation in skin, and histological changes were evaluated by hematoxylin and eosin (H and E) staining. Levels of inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-17A, IL-23, IL-6, IL-1β and IL-22 in serum were assessed by enzyme-linked immunosorbent assay (ELISA). mRNA expressions of IL-17A, IL-23, IL-6 and IL-22 were determined by real-time polymerase chain reaction (PCR). Expression levels of proteins related to NF-κB, STAT3 and MAPKs signaling pathways were measured by western blotting (WB). Results: DB significantly ameliorated the psoriatic symptoms in IMQ-induced mice. The serum levels of inflammatory cytokines (TNF-α, IL-17A, IL-23, IL-6, IL-1β and IL-22) were decreased, and mRNA expressions of IL-17A, IL-23, IL-6 and IL-22 in skin tissues were down-regulated. Moreover, WB analysis indicated that DB inhibited the activation of NF-κB, STAT3 and MAPKs signaling pathways. Conclusion: This study confirms the anti-psoriatic activity of DB in IMQ-induced psoriasis-like mice. The possible mechanism may relate to the activities of regulating the IL-23/TH-17 axis and suppressing the activation of NF-κB, STAT3 and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Xiaoqi Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongfeng Xu
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Chuanqi Huang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Haoran Ma
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Xin Xiong
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Lu Cheng
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yan Feng
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Geng Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
17
|
Sun J, Su X, Zhang Z, Hu D, Hou G, Zhao F, Sun J, Cong W, Wang C, Li H. Separation of three chromones from Saposhnikovia divaricata using macroporous resins followed by preparative high-performance liquid chromatography. J Sep Sci 2021; 44:3287-3294. [PMID: 34240798 DOI: 10.1002/jssc.202100345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 07/04/2021] [Indexed: 11/11/2022]
Abstract
Prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside are three major chromone derivatives of Saposhnikovia divaricata that have many pharmacological activities, such as anti-inflammatory and antitumor activities. In the present work, an effective method for the simultaneous separation of prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside with high purities was established using HPD-300 resin coupled with preparative high-performance liquid chromatography. The adsorption kinetics curves of the three compounds on the HPD-300 resin were studied and found to fit well according to the pseudo-second-order equation. The adsorption isotherm results indicated that the adsorption process of the three compounds was exothermic. After a one-run treatment with the resin, the contents of prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside increased from 0.29, 0.06, and 0.37% to 13.07, 2.83, and 16.91% with recovery yields of 76.38, 78.25, and 76.73%, respectively. Finally, the purities of the three compounds were found to reach more than 95% after further separation using preparative high-performance liquid chromatography. The method developed in this study was effective and could simultaneously separate three chromones from Saposhnikovia divaricate. The experimental results also showed that the HPD-300 resin is suitable for the separation of chromone derivatives.
Collapse
Affiliation(s)
- Jiajia Sun
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Xiangyi Su
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Zhe Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Dexiang Hu
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Guige Hou
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Feng Zhao
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Jufeng Sun
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Wei Cong
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Chunhua Wang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| | - Hongjuan Li
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, P. R. China
| |
Collapse
|
18
|
Sun Y, Sun YP, Liu Y, Pan J, Guan W, Li XM, Liu Y, Naseem A, Yang BY, Kuang HX. Four new polyacetylenes from the roots of Saposhnikovia divaricata. Nat Prod Res 2021; 36:3579-3586. [PMID: 33930280 DOI: 10.1080/14786419.2020.1869973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Four new polyacetylene substances, sadivaethynes A-D, were isolated from the ethanol extract of the roots of Saposhnikovia divaricata (Turcz.) Schischk using repeated column chromatography. Structural elucidation of compounds 1-4 was established by 1D and 2D NMR spectra referring to the literature, together with high-resolution mass spectrometric analysis. All compounds were evaluated for cytotoxicity against two human cancer cell lines (MGC-803, Ishikawa) in vitro.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yan-Ping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xiao-Mao Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Anam Naseem
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
19
|
Yue X, Xu F, Lv P, Yang H, Bao H, Xu Y. Analysis of Antioxidant Capacity of Chromones in Saposhnikoviae Radix Obtained by Ultrasonic-Assisted Deep Eutectic Solvents Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8875788. [PMID: 33489418 PMCID: PMC7803113 DOI: 10.1155/2020/8875788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this paper, ultrasonic-assisted deep eutectic solvent (DES) extraction was applied to the acquisition of chromones (cimicifugin, prim-o-glucosylcimifugin, and 5-o-methylvisamminoside) from Saposhnikoviae radix (SR). The extraction effects of 11 prepared DESs were screened taking contents of chromones as indexes. Furthermore, the optimum extraction conditions were confirmed using a single-factor test and response surface optimization test. Scavenging activities of DPPH anion and ABTS cation radicals of different SR extracts (DES, methanol, and ethanol) were studied. The analysis results of best extraction conditions optimized by Design-Expert software were as follows: extraction time (40 min), extraction temperature (60°C), and the solid/liquid ratio (32 mL/g). Scavenging rates of the DES extract for DPPH anion radical and ABTS cation radical were found to be 75.31% and 65.71%, which were higher than those of methanol and ethanol extracts. In conclusion, the developed extraction method can be regarded as a safe, green, and more effective approach for the extraction of chromones in SR.
Collapse
Affiliation(s)
- Xianwen Yue
- College of Pharmacy, Baicheng Medical College, Baicheng 137000, China
| | - Fangfei Xu
- Plant Chemistry Laboratory, Chinese Institute of Jilin Ginseng, Changchun 130033, China
| | - Peng Lv
- College of Pharmacy, Baicheng Medical College, Baicheng 137000, China
| | - Huailei Yang
- Pharmaceutical Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Huiwei Bao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Xu
- College of Pharmacy, Baicheng Medical College, Baicheng 137000, China
- School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
20
|
Khan T, Khan MA, Mashwani ZUR, Ullah N, Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020; 31:101890. [PMID: 33520034 PMCID: PMC7831775 DOI: 10.1016/j.bcab.2020.101890] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of \suitable candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of phytomedicine against COVID-19. The main aim is to review the mechanistic aspects of most important phytochemical compounds that have showed potential against coronaviruses. Glycyrrhizin from the roots of Glycyrrhiza glabra has shown promising potential against the previously epidemic coronavirus, SARS-CoV. Other important plants such as Artemisia annua, Isatis indigotica, Lindera aggregate, Pelargonium sidoides, and Glychirrhiza spp. have been employed against SARS-CoV. Active ingredients (e.g. emodin, reserpine, aescin, myricetin, scutellarin, apigenin, luteolin, and betulonic acid) have shown promising results against the coronaviruses. Phytochemicals have demonstrated activity against the coronaviruses through mechanisms such as viral entry inhibition, inhibition of replication enzymes and virus release blockage. However, compared to synthetic drugs, phytomedicine are mechanistically less understood and should be properly evaluated before application. Nonetheless, phytochemicals reduce the tedious job of drug discovery and provide a less time-consuming alternative for drug testing. Therefore, along with other drugs currently tested against COVID-19, plant-based drugs should be included for speedy development of COVID-19 treatment.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, KP, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | | | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | - Akhtar Nadhman
- Department of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
21
|
Fu J, Zeng Z, Zhang L, Wang Y, Li P. 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways. ACTA ACUST UNITED AC 2020; 53:e10109. [PMID: 33146282 PMCID: PMC7643925 DOI: 10.1590/1414-431x202010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022]
Abstract
Psoriasis is a chronic inflammatory skin disorder in humans, and the inflammatory reaction plays an important role in development and onset of psoriasis. 4'-O-β-D-glucosyl-5-O-methylvisamminol (4GMV) is one of the major active chromones isolated from Saposhnikoviae divaricata (Turcz.) Schischk, which has been reported to exhibit excellent anti-inflammatory activities. However, the possible therapeutic effect on psoriasis and underlying mechanism has not been reported. Thus, the aim of this study was to investigate the protective effect of 4GMV on the imiquimod (IMQ)-induced psoriasis-like lesions in BALB/c mice and the anti-inflammatory effect on the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. The results demonstrated that 4GMV decreased IMQ-induced keratinocyte proliferation and inflammatory cell infiltration. Moreover, 4GMV treatment significantly inhibited the production of NO, PEG 2, and cytokines such as interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and IL-22 in LPS-stimulated RAW264.7 macrophages. 4GMV also suppressed the LPS-upregulated protein expressions of iNOS and COX-2 in a dose-dependent manner. Furthermore, qRT-PCR analysis showed that 4GMV down-regulated the mRNA level of IL-1β and IL-6 expression. Further studies by western blot indicated that 4GMV inhibited the activation of upstream mediator NF-κB by suppressing the expression of TLR4 and the phosphorylation of IκBα and p65. The phosphorylation of JNK, p38, and ERK were also markedly reversed by 4GMV in LPS-treated RAW264.7 macrophages. Taken together, these results demonstrated that 4GMV showed a protective effect in IMQ-induced psoriasis-like mice and inhibited inflammation through the NF-κB and MAPK signaling pathways, indicating that 4GMV might be a potential therapeutic drug for psoriasis.
Collapse
Affiliation(s)
- Jing Fu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Zuping Zeng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Lu Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| |
Collapse
|
22
|
Ding J, Guo Y, Jiang X, Li Q, Li K, Liu M, Fu W, Cao Y. Polysaccharides Derived from Saposhnikovia divaricata May Suppress Breast Cancer Through Activating Macrophages. Onco Targets Ther 2020; 13:10749-10757. [PMID: 33132702 PMCID: PMC7592155 DOI: 10.2147/ott.s267984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Saposhnikovia divaricata (SD) has been used in traditional Chinese medicine to treat pain, inflammation, and arthritis. Recently, it has been reported that SD extract may inhibit tumor growth, but the mechanism involved is elusive. The aim of this study was to investigate the anti-tumor activity of polysaccharides derived from SD in breast cancer and the underlying mechanisms. Materials and Methods Polysaccharides isolated from SD were analyzed using Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Their effects on cell growth of U937, MCF-7, and MDA-MB-231, and tumor growth in a mouse MDA-MB 231 xenograft model were examined. Their role in U937 activation, MCF-7, and MDA-MB 231 cytokine release profiles were also tested. Results In vitro studies showed that SD polysaccharides (SDPs) promoted U937 cell growth dose-dependently, with no obvious effect on growth of breast cancer cell lines MCF-7 and MDA-MB-231. SDP also showed an antagonistic effect against the growth inhibition of U937 by the culture supernatants of MCF-7 and MDA-MB-231, and reversed the polarization status of U937. Treatment of SCID mice bearing MDA-MB-231-derived xenograft tumors with SDP significantly reduced tumor growth. At all tested concentrations, no obvious toxic side-effects were recorded. Discussion We tentatively concluded that SDPs potently promote the growth of U937 and activate it to inhibit the tumor growth of SCID mice bearing MDA-MB-231-derived xenograft tumors indirectly, with no obvious growth inhibition effects on MCF-7 and MDA-MB-231 in vitro. Our finding indicated that SDP could be a potential anticancer agent for breast cancer.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330003, China
| | - Xiaoliu Jiang
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Qingge Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Kai Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Min Liu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Wenbing Fu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| | - Yali Cao
- Department of Breast Surgery, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330025, China
| |
Collapse
|
23
|
Babich O, Sukhikh S, Prosekov A, Asyakina L, Ivanova S. Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals (Basel) 2020; 13:E313. [PMID: 33076514 PMCID: PMC7602650 DOI: 10.3390/ph13100313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The development of new effective anti-coronavirus drugs and therapies is important, but it requires significant human, financial and, most importantly, time expenditures. The current pandemic is neither the first nor the last. Humanity has already accumulated considerable survival experience. We cannot do without prevention and epidemiological protection measures. This study reviews medicinal plants that grow in Northeast Asia and whose antioxidant, antiviral, anti-inflammatory and immunomodulatory characteristics are already known, also in the framework of the prevention and treatment of pneumonia of various etiologies. The need for a comprehensive approach to maintaining immunodefences, including functional foods and positive emotions, is emphasized. In the period of pandemics, it is important to research various areas that allow to us accumulate a critical mass of information and cope with the next global disease.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Lyudmila Asyakina
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia
| |
Collapse
|
24
|
Batsukh Z, Toume K, Javzan B, Kazuma K, Cai SQ, Hayashi S, Atsumi T, Yoshitomi T, Uchiyama N, Maruyama T, Kawahara N, Komatsu K. Characterization of metabolites in Saposhnikovia divaricata root from Mongolia. J Nat Med 2020; 75:11-27. [PMID: 32740706 DOI: 10.1007/s11418-020-01430-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 02/03/2023]
Abstract
Saposhnikoviae Radix (SR), derived from the dried root and rhizome of Saposhnikovia divaricata, is a popular crude drug used in traditional Chinese and Japanese medicine. To evaluate the metabolites of S. divaricata roots from Mongolia and to investigate their geographical variation, we developed the HPLC method, determined the contents of 9 chromones and 4 coumarins, and conducted multivariate statistical analysis. All Mongolian specimens contained prim-O-glucosylcimifugin (1) and 4'-O-β-D-glucosyl-5-O-methylvisamminol (3), and their total amount (5.04-25.06 mg/g) exceeded the criterion assigned in the Chinese Pharmacopoeia. Moreover, the content of 1 (3.98-20.79 mg/g) was significantly higher in the Mongolian specimens than in Chinese SR samples. The specimens from Norovlin showed the highest contents of 1 and 3. The total levels of dihydropyranochromones were higher in the specimens from Bayan-Uul. The orthogonal partial least squares-discriminant analysis revealed that the Mongolian specimens tended to be separated into three groups based on growing regions, in which several chromones contributed to each distribution. Furthermore, 1H NMR analysis revealed that Mongolian specimens had less amount of sucrose and a substantial amount of polyacetylenes. Thus, in this study, the chemical characteristics of Mongolian S. divaricata specimens were clarified and it was found that the specimens from the northeast part of Mongolia, including Norovlin, had the superior properties due to higher amounts of major chromones.
Collapse
Affiliation(s)
- Zolboo Batsukh
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| | - Batkhuu Javzan
- School of Engineering and Applied Sciences, National University of Mongolia, P.O.B-617/46A, Ulaanbaatar, 14201, Mongolia
| | - Kohei Kazuma
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Shao-Qing Cai
- School of Pharmaceutical Sciences, Peking University, 38 Xue-yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Shigeki Hayashi
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Toshiyuki Atsumi
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshinocho, Nobeoka, Miyazaki, 882-8508, Japan
| | - Taichi Yoshitomi
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Nahoko Uchiyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takuro Maruyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Katsuko Komatsu
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
25
|
Zhong Y, Li M, Zhang X, Chen L, Wang Y, Xu Y. Dissecting Chemical Composition and Cardioprotective Effects of Fuzhengkangfu Decoction against Doxorubicin-Induced Cardiotoxicity by LC-MS and Bioinformatics Approaches. ACS OMEGA 2020; 5:14051-14060. [PMID: 32566871 PMCID: PMC7301600 DOI: 10.1021/acsomega.0c01494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Cardiotoxicity of doxorubicin (DOX) has gained increasing attention in clinical application. Fuzhengkangfu (FZK) decoction, a traditional Chinese herbal formula of replenishing Qi strengthening spleen, has been used to treat various cardiovascular diseases. However, the chemical composition, the protective effects of FZK, and the underlying mechanisms are yet unclear. In this study, an high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method was established for the structural identification of constituents in FZK extracts. Target prediction and enrichment analysis of the identified ingredients were performed. The cell viability was measured via (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (MTT) assay. The protective effects of FZK on cell survival, mitochondrial membrane potential, intracellular calcium homeostasis, and cell apoptosis were detected. The level of relevant proteins was measured by Western blot. The effect of FZK on the antitumor activity of DOX was evaluated in HeLa cells. A total of 42 major chemical constituents were identified in FZK extracts by HPLC-MS. A comprehensive target prediction of these constituents retrieved 46 pathways, of which several key pathways were related to mitochondrial dysfunction, including metabolic pathways and calcium signaling pathways. Furthermore, FZK ameliorated DOX-induced H9C2 cell apoptosis and increased the Bcl-2/Bax ratio. Also, it moderated the loss of mitochondrial membrane potential and reduced the intracellular calcium overload, which are the major targets of DOX-induced injury. These results confirmed that FZK ameliorates DOX-induced cardiotoxicity via antiapoptotic and mitochondrial protection but does not affect the antitumor activity of DOX.
Collapse
Affiliation(s)
- Yigang Zhong
- Department
of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Miaofu Li
- Affiliated
Hangzhou Hospital of Nanjing Medical University, Hangzhou 310058, China
| | - Xiaohui Zhang
- Pharmaceutical
Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liuying Chen
- Zhejiang
Chinese Medical University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical
Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Xu
- Department
of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Affiliated
Hangzhou Hospital of Nanjing Medical University, Hangzhou 310058, China
| |
Collapse
|
26
|
Evaluation of the synergetic effect of Yupingfeng san and Flos Sophorae Immaturus based on free radical scavenging capacity. Biomed Pharmacother 2020; 128:110265. [PMID: 32425327 PMCID: PMC7233259 DOI: 10.1016/j.biopha.2020.110265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
Decocting YPS and FSI together can better extract flavonoids and polysaccharides. DPPH assay confirmed that MYP had the synergistic antioxidant effect in vitro. Measuring the level of oxidation factors can determine the antioxidant ability of MYP. MYP had a better free radical scavenging effect in vivo than YPS.
Objective This study aimed to determine the optimal extraction process and examine whether the combination of Flos Sophorae Immaturus (FSI) and Yupingfeng san (YPS) has a synergistic effect on free radical scavenging capacity. Design and methods The time of immersion and extraction and the ratios (material/solvent) of the combination of YPS and FSI were optimized on the basis of polysaccharide and flavonoid yields via orthogonal design. The optimal result was used in the 1,1-diphenyl-1-picrylhydrazyl (DPPH) assay and animal experiments to test the antioxidant activity, which is reflected by superoxide dismutase, malondialdehyde, glutathione peroxidase, and total antioxidant capacity serum levels. The optimal extraction process was determined using various ingredients to obtain complex extracts with high active ingredient content and antioxidant activity. DPPH assay results showed that the optimized ingredients have antioxidant effects, and the combination had better antioxidation function than YPS in vitro. The combination also showed synergistic antioxidant activity compared with YPS in vivo. Conclusions The combination of YPS and FSI had a synergistic antioxidant effect in vitro. The optimized extracts had antioxidant effects in vivo. These results indicated that YPS could be used with FSI to improve its antioxidant capacity in the body on the basis of free radical scavenging capacity.
Collapse
|
27
|
Chinese Herbal Medicines for Rheumatoid Arthritis: Text-Mining the Classical Literature for Potentially Effective Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7531967. [PMID: 32419824 PMCID: PMC7206865 DOI: 10.1155/2020/7531967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by multijoint swelling, pain, and destruction of the synovial joints. Treatments are available but new therapies are still required. One source of new therapies is natural products, including herbs used in traditional medicines. In China and neighbouring countries, natural products have been used throughout recorded history and are still in use for RA and its symptoms. This study used text-mining of a database of classical Chinese medical books to identify candidates for future clinical and experimental investigations of therapeutics for RA. Methods The database Encyclopaedia of Traditional Chinese Medicine (Zhong Hua Yi Dian) includes the full texts of over 1,150 classical books. Eight traditional terms were searched. All citations were assessed for relevance to RA. Results and Conclusions. After removal of duplications, 3,174 citations were considered. After applying the exclusion and inclusion criteria, 548 citations of traditional formulas were included. These derived from 138 books written from 206 CE to 1948. These formulas included 5,018 ingredients (mean, 9 ingredients/formula) comprising 243 different natural products. When these text-mining results were compared to the 18 formulas recommended in a modern Chinese Medicine clinical practice guideline, 44% of the herbal formulas were the same. This suggests considerable continuity in the clinical application of these herbs between classical and modern Chinese medicine practice. Of the 15 herbs most frequently used as ingredients of the classical formulas, all have received research attention, and all have been reported to have anti-inflammatory effects. Two of these 15 herbs have already been developed into new anti-RA therapeutics—sinomenine from Sinomenium acutum (Thunb.) Rehd. & Wils and total glucosides of peony from Paeonia lactiflora Pall. Nevertheless, there remains considerable scope for further research. This text-mining approach was effective in identifying multiple natural product candidates for future research.
Collapse
|
28
|
Yang M, Wang CC, Wang WL, Xu JP, Wang J, Zhang CH, Li MH. Saposhnikovia divaricata-An Ethnopharmacological, Phytochemical and Pharmacological Review. Chin J Integr Med 2020; 26:873-880. [PMID: 32328867 PMCID: PMC7176574 DOI: 10.1007/s11655-020-3091-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Saposhnikovia divaricata (Turcz.) Schischk., a perennial herb belonging to the family Umbelliferae, is widely distributed in Northeast Asia. Its dried root (Radix Saposhnikoviae) is used as a Chinese herbal medicine for the treatment of immune system, nervous system, and respiratory diseases. Phytochemical and pharmacological studies have shown that the main constituents of S. divaricata are chromones, coumarins, acid esters, and polyacetylenes, and these compounds exhibited significant anti-inflammatory, analgesic, antioxidant, antiproliferative, antitumor, and immunoregulatory activities. The purpose of this review is to provide comprehensive information on the botanical characterization and distribution, traditional use and ethnopharmacology, phytochemistry, and pharmacology of S. divaricata for further study concerning its mechanism of action and development of better therapeutic agents and health products from S. divaricata.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Cong-Cong Wang
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Wen-le Wang
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Jian-Ping Xu
- Inner Mongolia Key Laboratory of Traditional Chinese Medicine Resources, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Jie Wang
- Inner Mongolia Key Laboratory of Traditional Chinese Medicine Resources, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Chun-Hong Zhang
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China.,Inner Mongolia Key Laboratory of Traditional Chinese Medicine Resources, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Min-Hui Li
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China. .,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, 010020, China. .,Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China. .,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
29
|
Sun X, Zhang T, Zhao Y, Cai E, Zhu H, Liu S. Panaxynol from Saposhnikovia diviaricata exhibits a hepatoprotective effect against lipopolysaccharide + D-Gal N induced acute liver injury by inhibiting Nf-κB/IκB-α and activating Nrf2/HO-1 signaling pathways. Biotech Histochem 2020; 95:575-583. [PMID: 32295432 DOI: 10.1080/10520295.2020.1742932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We investigated the mechanism of action of panaxynol (PAL) extract from the root of Saposhnikovia diviaricata (Turcz.) Schischk for treating acute liver injury caused by lipopolysaccharide (LPS) and D-galactosamine (D-Gal N) in mice. A mouse model of acute liver failure induced by LPS/D-Gal N was established. Mice were divided randomly into three equal groups: control group, LPS/D-Gal N group and PAL group. After seven days of continuous PAL administration, all animals except controls were injected with 50 μg/kg LPS and 800 mg/kg D-Gal N; blood and liver samples were collected after 8 h. Compared to the LPS/D-Gal N group, the levels of catalase, glutathione and superoxide dismutase were increased in the liver of the PAL group. The inflammatory response index indicated that PAL attenuated LPS/D Gal N-induced liver pathological injury and decreased levels of hepatic malondialdehyde, serum alanine aminotransferase, aspartate transaminase, tumor necrosis factor-α, and interleukins 1β and 6. PAL also inhibited LPS/D-Gal N induced nuclear factor-kappa B (Nf-κB), inhibitor kappa B-α (IκB-α) activation, and up-regulated Nrf2 and heme oxygenase-1 (HO-1) expression. PAL can prevent LPS/D-Gal N induced acute liver injury by activating Nrf2/HO-1 to stimulate antioxidant defense and inhibit the IkB-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xialin Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Tingwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Application, Jilin Agricultural University , Changchun, Jilin, China
| |
Collapse
|
30
|
Zhang J, Chen L, Qiu J, Zhang Y, Wang L, Jiang L, Jiang Y, Liu B. Simultaneous Determination of Six Chromones in Saposhnikoviae Radix via Quantitative Analysis of Multicomponents by Single Marker. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:7867046. [PMID: 32351756 PMCID: PMC7178536 DOI: 10.1155/2020/7867046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 05/14/2023]
Abstract
A method, quantitative analysis of multicomponents by single marker (QAMS), was established and fully verified based on high-performance liquid chromatography (HPLC) for simultaneous determination of six chromone indicators of Saposhnikoviae Radix (SR). In the present study, cimifugin (C), 5-O-methylvisamminol (V), hamaudol (H), and their corresponding glycosides, prim-O-glucosylcimifugin (GC), 4'-O-β-D-glucosyl-5-O-methylvisamminol (GV), and sec-O-glucosylhamaudol (GH), were selected as bioactive constituents and indicators for the quality evaluation of SR. GV was chosen as the unique reference standard, and relative correction factors (RCF) between GV and the other five chromones were calculated. The feasibility of QAMS for the analysis of chromones was investigated by comparing with the traditional external standard method (ESM). Furthermore, the method was proven to have accuracy (96.98%-102.50%), repeatability (RSD <3%), stability (RSD <3%), precision (RSD <3%), and desirable linearity (R 2 ≧0.9999). Subsequently, 55 batches of commercial SR from different regions were determined by QAMS, and their contents were analyzed by principal component analysis (PCA), correlation analysis, and hierarchical cluster analysis (HCA), respectively. Based on the results, a more refined quality standard of commercial SR was proposed: SR was qualified when the total contents of six chromones were greater than 3 mg·g-1. Furthermore, SR could initially be regarded as a superior medicine when it satisfied both conditions at the same time: the total content of GC, C, GV, V, GH, and H was greater than 8 mg·g-1, and the proportion of the total content of C, V, and H was greater than 10%. This study demonstrated that the quality of SR could be successfully evaluated by the developed QAMS method; meanwhile, valuable information was provided for improving the quality standard of SR.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Luxiao Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Junna Qiu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lijuan Jiang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanyan Jiang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bin Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
31
|
Sun Y, Yang AWH, Lenon GB. Phytochemistry, Ethnopharmacology, Pharmacokinetics and Toxicology of Cnidium monnieri (L.) Cusson. Int J Mol Sci 2020; 21:E1006. [PMID: 32028721 PMCID: PMC7037677 DOI: 10.3390/ijms21031006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/30/2023] Open
Abstract
Cnidium monnieri (L.) Cusson (CMC) is a traditional Chinese herbal medicine that has been widely grown and used in Asia. It is also known as "She chuang zi" in China (Chinese: ), "Jashoshi" in Japan, "Sasangia" in Korea, and "Xa sang tu" in Vietnam. This study aimed to provide an up-to-date review of its phytochemistry, ethnopharmacology, pharmacokinetics, and toxicology. All available information on CMC was collected from the Encyclopedia of Traditional Chinese Medicines, PubMed, EMBASE, ScienceDirect, Scopus, Web of Science, and China Network Knowledge Infrastructure. The updated chemical structures of the compounds are those ones without chemical ID numbers or references from the previous review. A total of 429 chemical constituents have been elucidated and 56 chemical structures have been firstly identified in CMC with traceable evidence. They can be categorized as coumarins, volatile constituents, liposoluble compounds, chromones, monoterpenoid glucosides, terpenoids, glycosides, glucides, and other compounds. CMC has demonstrated impressive potential for the management of various diseases in extensive preclinical research. Since most of the studies are overly concentrated on osthole, more research is needed to investigate other chemical constituents.
Collapse
Affiliation(s)
| | | | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia; (Y.S.); (A.W.H.Y.)
| |
Collapse
|
32
|
Bao Z, Zhu Z, Zhang H, Zhong Y, Wang W, Zhang J, Wu J. The complete chloroplast genome of Saposhnikovia divaricata. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 5:360-361. [PMID: 33366556 PMCID: PMC7748531 DOI: 10.1080/23802359.2019.1704200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Saposhnikovia divaricata (Trucz.) Schischk. is a traditional Chinese herbal medicine widely distributed in Eastern Siberia and Northern Asia. In this research, we assembled and characterized the complete chloroplast genome sequence of S. divaricata from high-throughput sequencing data. The chloroplast genome was 147,834 bp in length, consisting of large single-copy (LSC) and small single-copy (SSC) regions of 93,202 bp and 17,324 bp, respectively, which were separated by a pair of 18,654 bp inverted repeat (IR) regions. The genome is expected to contain 129 genes, including 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The total GC content of the genome is 37.5%. A phylogenetic tree reconstructed by 40 chloroplast genomes reveals that S. divaricata is mostly related to Ledebouriella seseloides.
Collapse
Affiliation(s)
- Zhenzhen Bao
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, P. R. China
| | - Ziyan Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haijiang Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, PR China
| | - Yuan Zhong
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, P. R. China
| | - Weiqi Wang
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, P. R. China
| | - Jingzheng Zhang
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, P. R. China
| | - Jie Wu
- School of pharmacy, Jiangsu Health Vocational College, Nanjing, P. R. China
| |
Collapse
|
33
|
Sun Y, Lenon GB, Yang AWH. Rumex japonicus Houtt.: A phytochemical, pharmacological, and pharmacokinetic review. Phytother Res 2019; 34:1198-1215. [PMID: 31849133 DOI: 10.1002/ptr.6601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
Rumex japonicus Houtt. (RJH-Yang Ti) RJH has been used as a folk medicine in East Asian countries for thousands of years. It has a wide range of therapeutic effects in terms of anti-microorganic, anti-oxidant, anti-inflammatory, and antitumor effects. Therefore, it is urgent to thoroughly review the existing knowledge for this herb from phytochemical, pharmacological, and pharmacokinetic perspectives. "Yang Ti" and its English, botanical and pharmaceutical names used as keywords to perform database search which included the Encyclopaedia of traditional Chinese Medicines, PubMed, EMBASE, AMED, CINAHL, Cochrane Library, MEDLINE, Science Direct, Scopus, Web of Science, and China Network Knowledge Infrastructure. Forty-five compounds identified from RJH. Besides, the therapeutic effects of RJH have been summarized as well. The root of RJH contains derivatives of anthraquinones, phytosterols, nepodin, oxanthrone c-glycosides, phenolic acid, cinnamic acid, flavonoid, epoxynaphthoquinol, triterpenoids, methoxynaphthalene, trihydroxybenzene, anthracene-9,10-dione, and other compounds. The extract of RJH and its chemical compounds showed the potentials as a complementary agent to exert antioxidant, antimicrobial, antisepsis, anticancer, anti-haematological disease, anti-dermatological disease, and antidiabetic activities. For the record, there is no study conducted on RJH regarding its pharmacokinetic aspect. Notably, Emodin may require additional attention due to its multiple organ toxicity concerns.
Collapse
Affiliation(s)
- Yue Sun
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - George B Lenon
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Angela W H Yang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Kim CW, Sung JH, Kwon JE, Ryu HY, Song KS, Lee JK, Lee SR, Kang SC. Toxicological Evaluation of Saposhnikoviae Radix Water Extract and its Antihyperuricemic Potential. Toxicol Res 2019; 35:371-387. [PMID: 31636848 PMCID: PMC6791657 DOI: 10.5487/tr.2019.35.4.371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
Although the dried root of Saposhnikovia divaricata (Turcz.) Schischk. (Umbelliferae) is a popular medicinal plant in East Asia, there has been no systemic toxicological evaluation of a water extract of Saposhnikoviae Radix (SRE). In this experiment, an oral acute and 13-week subchronic toxicological evaluations of SRE (500–5,000 mg/ kg body weight) were performed in both sexes of Crl:CD(SD) rats. Based on the results from mortality, clinical signs, effects on body weight and organ weight, clinical biochemistry, hematology, urinalysis, and histopathology, significant acute, 4-week repeated dose range finding (DRF) and 13-week subchronic toxicity of SRE was not observed in either sex of rats; thus, the no observed adverse effect level (NOAEL) was 5,000 mg (kg/day). To identify anti-hyperuricemia potential of SRE, the suppressive effect of SRE was determined in mice challenged with potassium oxonate (PO; 250 mg/kg) via intraperitoneal injection for 8 days (each group; n = 7). SRE supplementation suppressed the uric acid level in urine through significant xanthine oxidase (XO) inhibitory activity. Kidney dysfunctions were observed in PO-challenged mice as evidenced by an increase in serum creatinine level. Whereas, SRE supplementation suppressed it in a dose-dependent manner. Collectively, SRE was safe up to 5,000 mg (kg/day) based on NOAEL found from acute and 13-week subchronic toxicological evaluations. SRE had anti-hyperuricemia effect and lowered the excessive level of uric acid, a potential factor for gout and kidney failure.
Collapse
Affiliation(s)
- Chang Won Kim
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin, Korea
| | | | - Jeong Eun Kwon
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin, Korea
| | | | | | - Jin Kyu Lee
- Korea Conformity Laboratories, Incheon, Korea
| | - Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Korea
| | - Se Chan Kang
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin, Korea
| |
Collapse
|
35
|
Batsukh Z, Toume K, Javzan B, Kazuma K, Cai SQ, Hayashi S, Kawahara N, Maruyama T, Komatsu K. Metabolomic profiling of Saposhnikoviae Radix from Mongolia by LC-IT-TOF-MS/MS and multivariate statistical analysis. J Nat Med 2019; 74:170-188. [PMID: 31578667 DOI: 10.1007/s11418-019-01361-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Saposhnikoviae Radix (SR) is a commonly used crude drug that is obtained from the root and rhizome of Saposhnikovia divaricata which is distributed throughout China, Korea, Mongolia, and Russia. To evaluate the quality of Mongolian S. divaricata, metabolomic profiling of 43 plant specimens from different regions of Mongolia, as well as 8 SR samples and 2 plant specimens from China, were conducted by liquid chromatography-ion-trap-time-of-flight-mass spectrometer (LC-IT-TOF-MS). LC-MS profiles of the specimens showed uniformity and 30 compounds were tentatively identified, including 13 chromones and 17 coumarins. Among them, 16 compounds were isolated and unambiguously verified by comparing them with the spectroscopic data of standard compounds. Orthogonal partial least squares-discriminant analysis (OPLS-DA) based on LC-MS data from 7 Mongolian specimens and 8 Chinese SR samples as well as 2 plant specimens revealed that these 2 groups were clearly distinguishable and that Mongolian specimens were characterized by an abundance of prim-O-glucosylcimifugin (1). Moreover, the OPLS-DA of the Mongolian specimens showed that they can be discriminated by their growing regions based on the content of 8 chromones. The total content of dihydrofurochromones 1-3 was relatively higher in the specimens from Khalkhgol in the far eastern part of Mongolia, while contents of 10, 11, 15, and 16 were higher in those from Holonbuir in the eastern part. Based on this research, the roots of S. divaricata from Mongolia have potential as a new resource of SR in Kampo medicine.
Collapse
Affiliation(s)
- Zolboo Batsukh
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Batkhuu Javzan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar-46, Mongolia
| | - Kohei Kazuma
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shao-Qing Cai
- School of Pharmaceutical Sciences, Peking University, 38 Xue-yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Shigeki Hayashi
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Takuro Maruyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Katsuko Komatsu
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
36
|
Matusiewicz M, Bączek KB, Kosieradzka I, Niemiec T, Grodzik M, Szczepaniak J, Orlińska S, Węglarz Z. Effect of Juice and Extracts from Saposhnikovia divaricata Root on the Colon Cancer Cells Caco-2. Int J Mol Sci 2019; 20:ijms20184526. [PMID: 31547375 PMCID: PMC6770654 DOI: 10.3390/ijms20184526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer ranks 3rd in terms of cancer incidence. Growth and development of colon cancer cells may be affected by juice and extracts from Saposhnikovia divaricata root. The objective of the research was to analyze the effect of S. divaricata juice and extracts on the viability, membrane integrity and types of cell death of Caco-2 cells. Juice and extracts were analyzed using Ultra-High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and in respect of the presence of antioxidants, total carbohydrates, protein, fat and polyphenols. The contents of cimifugin β-D-glucopyranoside, cimifugin, 4′-O-glucopyranosyl-5-O-methylvisamminol, imperatorin and protein were the highest in juice. 50% Hydroethanolic extract had the greatest antioxidant potential, concentration of polyphenols and fat. Water extract was characterized by the highest content of glutathione. Juice and 75% hydroethanolic extract contained the most carbohydrates. After the application of juice, 50% extract and the juice fraction containing the molecules with molecular weights >50 kDa, a decrease of the cell viability was noted. Juice and this extract exhibited the protective properties in relation to the cell membranes and they induced apoptosis. The knowledge of further mechanisms of anticancer activity of the examined products will allow to consider their use as part of combination therapy.
Collapse
Affiliation(s)
- Magdalena Matusiewicz
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Katarzyna Barbara Bączek
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Iwona Kosieradzka
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Tomasz Niemiec
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jarosław Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Sylwia Orlińska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Zenon Węglarz
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
37
|
Fritillariae Thunbergii Bulbus: Traditional Uses, Phytochemistry, Pharmacodynamics, Pharmacokinetics and Toxicity. Int J Mol Sci 2019; 20:ijms20071667. [PMID: 30987173 PMCID: PMC6479889 DOI: 10.3390/ijms20071667] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022] Open
Abstract
Fritillariae Thunbergii Bulbus (FTB) has been widely used as an antitussive herb for thousands of years in China. However, FTB's traditional uses, chemical compounds and pharmacological activities have not been systematically reviewed. This study aimed to review its traditional uses, phytochemistry, pharmacodynamics, pharmacokinetics and toxicity. We searched the Encyclopedia of Traditional Chinese Medicine to explore the historical records which indicate that it acts to clear heat, resolve phlegm, relieve cough, remove toxicity and disperse abscesses and nodules. We searched 11 databases to identify potential phytochemical or pharmacological studies. Characteristics of its chemical constituents, pharmacological effects, pharmacokinetic and toxicity were descriptively summarized. A total of 9706 studies were identified and 83 of them were included. As a result, 134 chemical constituents were identified, including 26 alkaloids, 29 compounds found in essential oils, 13 diterpenoids, two carbohydrates, two sterols, 18 amino acids, six nucleosides, four nucleobases, four fatty acids, three lignans, and 27 elements. Thirteen pharmacological effects of FTB were identified, including anti-cancer, tracheobronchial relaxation, antitussive, expectorant, anti-muscarinic, anti-inflammation, anti-thyroid, regulation of blood rheology, antiulcer, anti-diarrhea, pain suppression, antioxidation and neuroprotection. These pharmacological activities may be mainly attributed to the alkaloids in FTB. Further phytochemical, pharmacological and network pharmacological studies are recommended.
Collapse
|
38
|
Phellodendri Cortex: A Phytochemical, Pharmacological, and Pharmacokinetic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7621929. [PMID: 31057654 PMCID: PMC6463642 DOI: 10.1155/2019/7621929] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 12/24/2022]
Abstract
Background Phellodendri Cortex (PC) or Huang Bai. According to the scientific database of China Plant Species and Chinese pharmacopeia 2015 edition, PC has two main species which are Phellodendron amurense Rupr (PAR) or “Guan Huang bai” in Chinese and Phellodendron chinense Schneid (PCS) or “Chuan Huang bai” in Chinese. The crude drugs of PAR and PCS are also called Phellodendri amurensis cortex (PAC) and Phellodendri chinense cortex (PCC), respectively. The medicinal part of the plant is the dried trunk bark. PC has comprehensive therapeutic effects which include anti-inflammatory, antimicrobial, anticancer, hypotensive, antiarrhythmic, antioxidant, and antipyretic agents. The exact ingredients in PC and its species are not fully summarised. Aim of the Study This study was designed to review and evaluate the pharmacological actions of compounds and to explore the pharmacokinetic knowledge of PC and its species and to also identify the chemical compound(s) with a potential therapeutic effect on atopic dermatitis. Methods “Huang Bai” and its English, botanical, and pharmaceutical names were used as keywords to perform database search in Encyclopaedia of traditional Chinese Medicines, PubMed, EMBASE, MEDLINE, Science Direct, Scopus, Web of Science, and China Network Knowledge Infrastructure. The data selection criteria included all the studies that were related to the phytochemical, pharmacological, and pharmacokinetic perspectives of PC and its species or their active constituents. More importantly, the voucher number has been provided to ensure the genuine bark of PC used as the medicinal part in the studies. Results 140 compounds were summarized from PC and its species: specifically, 18 compounds from PCC, 44 compounds from PCS, 34 compounds from PAC, and 84 compounds from PAR. Obacunone and obaculactone are probably responsible for antiatopic dermatitis effect. PC and its species possess a broad spectrum of pharmacological actions including anti-inflammatory effect, antibacterial effect, antiviral effect, antitumor effect, antigout effect, antiulcer effect, neuroprotective effect, and antiatopic dermatitis effect. PC could widely distribute in plasma, liver, spleen, kidney, and brain. Berberine may be responsible for the toxic effect on the susceptible users with hemolytic disease or in the peripartum and neonatal period. Conclusions The compounds of the crude bark of PC and its subspecies have showcased a wide range of pharmacological effects. Pharmacological efficacies of PC are supported by its diverse class of alkaloid, limonoid, phenolic acid, quinic acid, lignan, and flavonoid. Obacunone and obaculactone could be the bioactive compounds for atopic dermatitis management. PC and its subspecies are generally safe to use but extra care is required for certain conditions and group of people.
Collapse
|
39
|
Cai H, Xu Y, Xie L, Duan Y, Zhou J, Liu J, Niu M, Zhang Y, Shen L, Pei K, Cao G. Investigation on Spectrum-Effect Correlation between Constituents Absorbed into Blood and Bioactivities of Baizhu Shaoyao San before and after Processing on Ulcerative Colitis Rats by UHPLC/Q-TOF-MS/MS Coupled with Gray Correlation Analysis. Molecules 2019; 24:molecules24050940. [PMID: 30866532 PMCID: PMC6429276 DOI: 10.3390/molecules24050940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Baizhu Shaoyao San (BSS) is a crucial traditional Chinese medicinal formula widely applied for the treatment of painful diarrhea, diarrhea-predominant irritable bowel syndrome, ulcerative colitis, and some other gastrointestinal diseases. Corresponding to the clinical medication, the three medicinal herbs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, and Citri Reticulatae Pericarpium) included in BSS should be processed using some specific methods of stir-frying. To find the underlying correlations between serum chemical profiles and curative effects of crude and processed BSS on ulcerative colitis rats, and further explore for the effective material basis of processing, an UHPLC/Q-TOF-MS/MS technique coupled with gray correlation analysis (GCA) was developed. A total of 134 compounds were identified in rat sera after oral administration of BSS, among which 24 compounds were prototypes and 110 compounds were metabolites. Meanwhile, an ulcerative colitis model was established in rats by enema with 2,4,6-trinitrobenzene sulfonic acid, and the pharmacodynamic indicators for drug efficacies were evaluated as well. According to the results, processed BSS showed better efficacy than crude BSS. The top 10 potential effective components with high degree of correlation were identified based on GCA results, which were thought to be the crucial compounds that contributed to the enhancement of therapeutic effects in BSS after processing.
Collapse
Affiliation(s)
- Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yangyang Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Li Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yu Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jia Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Minjie Niu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yating Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lin Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|