1
|
Huang S, Wang F, Li Y, Wang Z, Zhang R, Li J, Li C. Identification of Dwarfing Candidate Genes in Brassica napus L. LSW2018 through BSA-Seq and Genetic Mapping. PLANTS (BASEL, SWITZERLAND) 2024; 13:2298. [PMID: 39204735 PMCID: PMC11359780 DOI: 10.3390/plants13162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Plant height, as a crucial component of plant architecture, exerts a significant influence on rapeseed (Brassica napus L.) lodging resistance, photosynthetic efficiency, yield, and mechanized harvest level. A previous study identified dwarf rapeseed LSW2018. In this study, LSW2018 (dwarf parent (PD)) was crossed with 389 (high parent (PH)) to establish the F2 population, and 30 extremely dwarf (bulk-D) and high (bulk-H) plants in the F2 population were respectively selected to construct two bulked DNA pools. Whole-genome sequencing and variation analysis (BSA-seq) were performed on these four DNA pools (PD, PH, bulk-D, and bulk-H). The BSA-seq results revealed that the genomic region responsible for the dwarf trait spanned from 19.30 to 22.19 Mb on chromosome A03, with a length of 2.89 Mb. After fine mapping with simple sequence repeat (SSR) markers, the gene was narrowed to a 0.71 Mb interval. Within this region, a total of 113 genes were identified, 42 of which contained large-effect variants. According to reference genome annotation and qRT-PCR analysis, there are 17 differentially expressed genes in this region between high and dwarf individuals. This study preliminarily reveals the genetic basis of LSW2018 dwarfing and provides a theoretical foundation for the molecular marker-assisted breeding of dwarf rapeseed.
Collapse
Affiliation(s)
- Sha Huang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
| | - Fang Wang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yang Li
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Zhuanzhuan Wang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ruimao Zhang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jijun Li
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Chao Li
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Zeng D, Si C, Teixeira da Silva JA, Shi H, Chen J, Huang L, Duan J, He C. Uncovering the involvement of DoDELLA1-interacting proteins in development by characterizing the DoDELLA gene family in Dendrobium officinale. BMC PLANT BIOLOGY 2023; 23:93. [PMID: 36782128 PMCID: PMC9926750 DOI: 10.1186/s12870-023-04099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | | | - Hongyu Shi
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Influence of Light of Different Spectral Compositions on Growth Parameters, Photosynthetic Pigment Contents and Gene Expression in Scots Pine Plantlets. Int J Mol Sci 2023; 24:ijms24032063. [PMID: 36768383 PMCID: PMC9917036 DOI: 10.3390/ijms24032063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The photoreceptors of red light (phytochromes) and blue light (cryptochromes) impact plant growth and metabolism. However, their action has been barely studied, especially in coniferous plants. Therefore, the influence of blue (maximum 450 nm), red (maximum 660 nm), white light (maxima 450 nm + 575 nm), far-red light (maximum 730 nm), white fluorescent light and dark on seed germination, growth, chlorophyll and carotenoid contents, as well as the transcript levels of genes involved in reception, photosynthesis, light and hormonal signaling of Scots pine plantlets, was investigated. The highest values of dry weight, root length and photosynthetic pigment contents were characteristic of 9-day-old plantlets grown under red light, whereas in the dark plantlet length, seed vigor, seed germination, dry weight and pigment contents were decreased. Under blue and white lights, the main studied morphological parameters were decreased or close to red light. The cotyledons were undeveloped under dark conditions, likely due to the reduced content of photosynthetic pigments, which agrees with the low transcript levels of genes encoding protochlorophyllide oxidoreductase (PORA) and phytoene synthase (PSY). The transcript levels of a number of genes involved in phytohormone biosynthesis and signaling, such as GA3ox, RRa, KAO and JazA, were enhanced under red light, unlike under dark conditions. We suggest that the observed phenomena of red light are the most important for the germination of the plantlets and may be based on earlier and enhanced expression of auxin, cytokinin, gibberellin and jasmonate signaling genes activated by corresponding photoreceptors. The obtained results may help to improve reforestation technology; however, this problem needs further study.
Collapse
|
4
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
5
|
Song P, Li G, Xu J, Ma Q, Qi B, Zhang Y. Genome-Wide Analysis of Genes Involved in the GA Signal Transduction Pathway in ' duli' Pear ( Pyrus betulifolia Bunge). Int J Mol Sci 2022; 23:6570. [PMID: 35743013 PMCID: PMC9224306 DOI: 10.3390/ijms23126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Gibberellic acid (GA) is an important phytohormone that regulates every aspect of plant growth and development. While elements involved in GA signaling have been identified and, hence, their functions have been well studied in model plants, such as Arabidopsis and rice, very little is known in pear. We, therefore, analyzed the genes related to GA signaling from the recently sequenced genome of the wildtype 'duli' pear (Pyrus betulifolia Bunge), a widely used rootstock for grafting in pear cultivation in China due to its vigorous growth and resistance to abiotic and biotic stress. In total, 15 genes were identified, including five GA receptors PbGID1s (GA-INSENSTIVE DWARF 1), six GA negative regulators, PbDELLAs, and four GA positive regulators, PbSLYs. Exogenous application of GA could promote the expression of PbGID1s but inhibit that of PbDELLAs and PbSLYs in tissue culture 'duli' pear seedlings. The expression profiles of these genes in field-grown trees under normal growth conditions, as well as in tissue-cultured seedlings treated with auxin (IAA), GA, paclobutrazol (PAC), abscisic acid (ABA), and sodium chloride (NaCl), were also studied, providing further evidence of the involvement of these genes in GA signaling in 'duli' pear plants. The preliminary results obtained in this report lay a good foundation for future research into GA signaling pathways in pear. Importantly, the identification and preliminary functional verification of these genes could guide molecular breeding in order to obtain the highly desired dwarf pear rootstocks for high-density plantation to aid easy orchard management and high yielding of pear fruits.
Collapse
Affiliation(s)
- Pingli Song
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Gang Li
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Qingcui Ma
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Baoxiu Qi
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| |
Collapse
|
6
|
14-3-3 gene of Zostera japonica ZjGRF1 participates in gibberellin signaling pathway. Mol Biol Rep 2022; 49:4795-4803. [DOI: 10.1007/s11033-022-07330-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
|
7
|
Hussain T, Asrar H, Zhang W, Gul B, Liu X. Combined Transcriptome and Proteome Analysis to Elucidate Salt Tolerance Strategies of the Halophyte Panicum antidotale Retz. FRONTIERS IN PLANT SCIENCE 2021; 12:760589. [PMID: 34804096 PMCID: PMC8598733 DOI: 10.3389/fpls.2021.760589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 05/24/2023]
Abstract
Panicum antidotale, a C4 monocot, has the potential to reclaim saline and drylands and to be utilized as fodder and forage. Its adaptability to survive saline stress has been proven with eco-physiological and biochemical studies. However, little is known about its molecular mechanisms of salt tolerance. In this study, an integrated transcriptome and proteome analysis approach, based on RNA sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS), was used to identify the said mechanisms. Plants were treated with control (0 mM), low (100 mM), and high (300 mM) sodium chloride (NaCl) treatments to distinguish beneficial and toxic pathways influencing plant biomass. The results indicated differential expression of 3,179 (1,126 upregulated/2,053 downregulated) and 2,172 (898 upregulated/1,274 downregulated) genes (DEGs), and 514 (269 upregulated/245 downregulated) and 836 (494 upregulated/392 downregulated) proteins (DEPs) at 100 and 300 mM NaCl, respectively. Among these, most upregulated genes and proteins were involved in salt resistance strategies such as proline biosynthesis, the antioxidant defense system, ion homeostasis, and sugar accumulation at low salinity levels. On the other hand, the expression of several genes and proteins involved in the respiratory process were downregulated, indicating the inability of plants to meet their energy demands at high salinity levels. Moreover, the impairments in photosynthesis were also evident with the reduced expression of genes regulating the structure of photosystems and increased expression of abscisic acid (ABA) mediated pathways which limits stomatal gas exchange. Similarly, the disturbance in fatty acid metabolism and activation of essential ion transport blockers damaged the integrity of the cell membrane, which was also evident with enhanced malondialdehyde (MDA). Overall, the analysis of pathways revealed that the plant optimal performance at low salinity was related to enhanced metabolism, antioxidative defense, cell growth, and signaling pathways, whereas high salinity inhibited biomass accumulation by altered expression of numerous genes involved in carbon metabolism, signaling, transcription, and translation. The data provided the first global analysis of the mechanisms imparting salt stress tolerance of any halophyte at transcriptome and proteome levels.
Collapse
Affiliation(s)
- Tabassum Hussain
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Hina Asrar
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Wensheng Zhang
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Xiaojing Liu
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
8
|
Arain S, Meer M, Sajjad M, Yasmin H. Light contributes to salt resistance through GAI protein regulation in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:1-11. [PMID: 33310401 DOI: 10.1016/j.plaphy.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The role of DELLAs in response to light intensity under salt stress is largely unknown. Therefore, the effect of three light intensities-low (35), medium (60), and high (155) μmol m-2 s-1 on Arabidopsis plants growth under saline condition (150 mM NaCl) was evaluated. High light intensity exhibited significant growth in the number of lateral roots related to the low light. Immunoblot assay revealed increased DELLA accumulation at the seedling stage under high light intensity. High light promotes seed germination by 24-44%, whilst, lateral roots by 25-90% in wild-type ecotypes. The lateral roots increased significantly in gai (gibberellic acid insensitive mutant) as compared with gai-t6 (wild type like gibberellic acid insensitive mutant) in response to low to medium and high to medium light intensity. High light increased seedling survival rate by 67% in Col-0 (Columbia) and 60% in Ler (Landsberg erecta) and showed a 28% increase in survival rate in gai mutant under salt stress as compared to gai-t6. Furthermore, salt-stress responsive genes' expression in gai-mutant establishes the relationship of DELLA proteins with salt resistance. Together, light is a cardinal element, its optimum quantity is highly beneficial and promotes salt stress resistance through DELLA protein at seedling stage in plants.
Collapse
Affiliation(s)
- Saima Arain
- Nuclear Institute of Agriculture, NIA, Tandojam, Pakistan.
| | - Maria Meer
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| |
Collapse
|
9
|
Gawarecka K, Ahn JH. Isoprenoid-Derived Metabolites and Sugars in the Regulation of Flowering Time: Does Day Length Matter? FRONTIERS IN PLANT SCIENCE 2021; 12:765995. [PMID: 35003159 PMCID: PMC8738093 DOI: 10.3389/fpls.2021.765995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 05/06/2023]
Abstract
In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.
Collapse
|
10
|
Morii M, Sugihara A, Takehara S, Kanno Y, Kawai K, Hobo T, Hattori M, Yoshimura H, Seo M, Ueguchi-Tanaka M. The Dual Function of OsSWEET3a as a Gibberellin and Glucose Transporter Is Important for Young Shoot Development in Rice. ACTA ACUST UNITED AC 2020; 61:1935-1945. [DOI: 10.1093/pcp/pcaa130] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Abstract
Translocation and long-distance transport of phytohormones are considered important processes for phytohormone responses, as well as their synthesis and signaling. Here, we report on the dual function of OsSWEET3a, a bidirectional sugar transporter from clade I of the rice SWEET family of proteins, as both a gibberellin (GA) and a glucose transporter. OsSWEET3a efficiently transports GAs in the C13-hydroxylation pathway of GA biosynthesis. Both knockout and overexpression lines of OsSWEET3a showed defects in germination and early shoot development, which were partially restored by GA, especially GA20. Quantitative reverse transcription PCR, GUS staining and in situ hybridization revealed that OsSWEET3a was expressed in vascular bundles in basal parts of the seedlings. OsSWEET3a expression was co-localized with OsGA20ox1 expression in the vascular bundles but not with OsGA3ox2, whose expression was restricted to leaf primordia and young leaves. These results suggest that OsSWEET3a is expressed in the vascular tissue of basal parts of seedlings and is involved in the transport of both GA20 and glucose to young leaves, where GA20 is possibly converted to the bioactive GA1 form by OsGA3ox2, during early plant development. We also indicated that such GA transport activities of SWEET proteins have sporadically appeared in the evolution of plants: GA transporters in Arabidopsis have evolved from sucrose transporters, while those in rice and sorghum have evolved from glucose transporters.
Collapse
Affiliation(s)
- Minami Morii
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Akihiko Sugihara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Sayaka Takehara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Kyosuke Kawai
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Masako Hattori
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Hisako Yoshimura
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| |
Collapse
|
11
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020. [DOI: 10.1007/s12038-020-9996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Liao X, Li M, Liu B, Yan M, Yu X, Zi H, Liu R, Yamamuro C. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc Natl Acad Sci U S A 2018; 115:E11542-E11550. [PMID: 30455308 PMCID: PMC6298082 DOI: 10.1073/pnas.1812575115] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fruit growth and ripening are controlled by multiple phytohormones. How these hormones coordinate and interact with each other to control these processes at the molecular level is unclear. We found in the early stages of Fragaria vesca (woodland strawberry) fruit development, auxin increases both widths and lengths of fruits, while gibberellin [gibberellic acid (GA)] mainly promotes their longitudinal elongation. Auxin promoted GA biosynthesis and signaling by activating GA biosynthetic and signaling genes, suggesting auxin function is partially dependent on GA function. To prevent the repressive effect of abscisic acid (ABA) on fruit growth, auxin and GA suppressed ABA accumulation during early fruit development by activating the expression of FveCYP707A4a encoding cytochrome P450 monooxygenase that catalyzes ABA catabolism. At the onset of fruit ripening, both auxin and GA levels decreased, leading to a steep increase in the endogenous level of ABA that drives fruit ripening. ABA repressed the expression of FveCYP707A4a but promoted that of FveNCED, a rate-limiting step in ABA biosynthesis. Accordingly, altering FveCYP707A4a expression changed the endogenous ABA levels and affected FveNCED expression. Hence, ABA catabolism and biosynthesis are tightly linked by feedback and feedforward loops to limit ABA contents for fruit growth and to quickly increase ABA contents for the onset of fruit ripening. These results indicate that FveCYP707A4a not only regulates ABA accumulation but also provides a hub to coordinate fruit size and ripening times by relaying auxin, GA, and ABA signals.
Collapse
Affiliation(s)
- Xiong Liao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mengsi Li
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bin Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Miaoling Yan
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaomin Yu
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Renyi Liu
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chizuko Yamamuro
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
| |
Collapse
|
13
|
Du R, Niu S, Liu Y, Sun X, Porth I, El-Kassaby YA, Li W. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers. Sci Rep 2017; 7:16637. [PMID: 29192140 PMCID: PMC5709395 DOI: 10.1038/s41598-017-11859-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2017] [Indexed: 01/03/2023] Open
Abstract
Gibberellins (GAs) participate in controlling various aspects of basic plant growth responses. With the exception of bryophytes, GA signalling in land plants, such as lycophytes, ferns and angiosperms, is mediated via GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins. To explore whether this GID1-DELLA mechanism is present in pines, we cloned an orthologue (PtGID1) of Arabidopsis AtGID1a and two putative DELLA proteins (PtDPL; PtRGA) from Pinus tabuliformis, a widespread indigenous conifer species in China, and studied their recombinant proteins. PtGID1 shares with AtGID1a the conserved HSL motifs for GA binding and an N-terminal feature that are essential for interaction with DELLA proteins. Indeed, A. thaliana 35S:PtGID1 overexpressors showed a strong GA-hypersensitive phenotype compared to the wild type. Interactions between PtGID1 and PtDELLAs, but also interactions between the conifer-angiosperm counterparts (i.e. between AtGID1 and PtDELLAs and between PtGID1 and AtDELLA), were detected in vivo. This demonstrates that pine has functional GID1-DELLA components. The Δ17-domains within PtDPL and PtRGA were identified as potential interaction sites within PtDELLAs. Our results show that PtGID1 has the ability to interact with DELLA and functions as a GA receptor. Thus, a GA-GID1-DELLA signalling module also operates in evolutionarily ancient conifers.
Collapse
Affiliation(s)
- Ran Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China.,Science and Technology Development Center, State Forestry Administration, Beijing, 100714, P.R. China
| | - Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Yang Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Xinrui Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Ilga Porth
- Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, 1030 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Yousry A El-Kassaby
- Department of Forest Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China.
| |
Collapse
|
14
|
Denis E, Kbiri N, Mary V, Claisse G, Conde E Silva N, Kreis M, Deveaux Y. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:560-572. [PMID: 28218997 DOI: 10.1111/tpj.13513] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 05/11/2023]
Abstract
Procambial and cambial stem cells provide the initial cells that allow the formation of vascular tissues. WOX4 and WOX14 have been shown to act redundantly to promote procambial cell proliferation and differentiation. Gibberellins (GAs), which have an important role in wood formation, also stimulate cambial cell division. Here we show that the loss of WOX14 function phenocopies some traits of GA-deficient mutants that can be complemented by exogenous GA application, whereas WOX14 overexpression stimulates the expression of GA3ox anabolism genes and represses GA2ox catabolism genes, promoting the accumulation of bioactive GA. More importantly, our data clearly indicate that WOX14 but not WOX4 promotes vascular cell differentiation and lignification in inflorescence stems of Arabidopsis.
Collapse
Affiliation(s)
- Erwan Denis
- Saclay Plant Science, Institut de Biologie des Plantes, Univ. Paris-Sud, CNRS, Orsay, 91405, France
| | - Nadia Kbiri
- Saclay Plant Science, Institut de Biologie des Plantes, Univ. Paris-Sud, CNRS, Orsay, 91405, France
| | - Viviane Mary
- Saclay Plant Science, Institut de Biologie des Plantes, Univ. Paris-Sud, CNRS, Orsay, 91405, France
| | - Gaëlle Claisse
- Saclay Plant Science, Institut de Biologie des Plantes, Univ. Paris-Sud, CNRS, Orsay, 91405, France
| | - Natalia Conde E Silva
- Saclay Plant Science, Institut de Biologie des Plantes, Univ. Paris-Sud, CNRS, Orsay, 91405, France
- GQE- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Martin Kreis
- Saclay Plant Science, Institut de Biologie des Plantes, Univ. Paris-Sud, CNRS, Orsay, 91405, France
| | - Yves Deveaux
- Saclay Plant Science, Institut de Biologie des Plantes, Univ. Paris-Sud, CNRS, Orsay, 91405, France
- GQE- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
15
|
DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins. Proc Natl Acad Sci U S A 2014; 111:7861-6. [PMID: 24821766 DOI: 10.1073/pnas.1321669111] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DELLA protein is a key negative regulator of gibberellin (GA) signaling. Although how DELLA regulates downstream gene expression remains unclear, DELLA has been proposed to function as a transcriptional activator. However, because DELLA lacks a DNA-binding domain, intermediate protein(s) mediating the DELLA/DNA interaction are believed to be necessary for activating DELLA target genes. Here, using yeast hybrid screenings, we identified five members of indeterminate domain (IDD) protein family which bind physically to both DELLA and the promoter sequence of the GA-positive regulator SCARECROW-LIKE 3 (SCL3), which previously was characterized as a DELLA direct target gene. Transient assays using Arabidopsis protoplasts demonstrated that a luciferase reporter controlled by the SCL3 promoter was additively transactivated by REPRESSOR of ga1-3 (RGA) and IDDs. Phenotypic analysis of transgenic plants expressing AtIDD3 (one of the 16 IDDs in the Arabidopsis genome) fused with the plant-specific repression domain (SRDX) supported the possibility that AtIDD3 is positively involved in GA signaling. In addition, we found that SCL3 protein also interacts with IDDs, resulting in the suppression of its target gene expression. In this context, DELLA and SCL3 interact competitively with IDD proteins to regulate downstream gene expression. These results suggest that the coregulators DELLA and SCL3, using IDDs as transcriptional scaffolds for DNA binding, antagonistically regulate the expression of their downstream targets to control the GA signaling pathway.
Collapse
|
16
|
Expression and purification of a GRAS domain of SLR1, the rice DELLA protein. Protein Expr Purif 2014; 95:248-58. [PMID: 24463428 DOI: 10.1016/j.pep.2014.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
Abstract
GRAS proteins belong to a plant specific protein family that participates in diverse and important functions in growth and development. GRAS proteins are typically composed of a variable N-terminal domain and highly conserved C-terminal GRAS domain. Despite the importance of the GRAS domain, little biochemical or structural analyses have been reported, mainly due to difficulties with purification of sufficient quality and quantity of protein. This study is focused on one of the most extensively studied GRAS proteins, the rice DELLA protein (SLR1), which is known to be involved in gibberellin (GA) signaling. Using a baculovirus-insect cell expression system we have achieved overproduction and purification of full-length SLR1. Limited proteolysis of the full-length SLR1 indicated that a region including the entire GRAS domain (SLR1(206-625)) is protease resistant. Based on those results, we have constructed an expression and purification system of the GRAS domain (SLR1(206-625)) in Escherichia coli. Several physicochemical assays have indicated that the folded structure of the GRAS domain is rich in secondary structural elements and that alanine substitutions for six cysteine residues improves protein folding without impairing function. Furthermore, by NMR spectroscopy we have observed direct interaction between the purified GRAS domain and the GA receptor GID1. Taken together, our purified preparation of the GRAS domain of SLR1 is suitable for further structural and functional studies that will contribute to precise understanding of the plant regulation mechanism through DELLA and GRAS proteins.
Collapse
|
17
|
Regulatory Networks Acted Upon by the GID1–DELLA System After Perceiving Gibberellin. SIGNALING PATHWAYS IN PLANTS 2014; 35:1-25. [DOI: 10.1016/b978-0-12-801922-1.00001-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Yoshida H, Ueguchi-Tanaka M. DELLA and SCL3 balance gibberellin feedback regulation by utilizing INDETERMINATE DOMAIN proteins as transcriptional scaffolds. PLANT SIGNALING & BEHAVIOR 2014; 9:e29726. [PMID: 25763707 PMCID: PMC4205140 DOI: 10.4161/psb.29726] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 05/20/2023]
Abstract
DELLA proteins are key negative regulators in the phytohormone gibberellin's (GA) signaling. In addition to this role, the DELLA proteins upregulate the gene expression levels of the positive regulators in GA signaling, such as GA 20-oxidase, GA receptor, and a transcriptional regulator, SCARECROW-LIKE3 (SCL3), which enables the regulation of GA feedback. Since DELLAs lack a known DNA binding domain, other transcription factor(s) that recruit DELLAs to DNA are essential for this regulation. Recently, we showed that the INDETERMINATE DOMAIN family proteins serve as transcriptional scaffolds to exert the transactivation activity of DELLAs. This finding and further analyses regarding the function of SCL3 indicate that the balance of the DELLAs and SCL3 protein levels (both are GRAS proteins) regulates downstream gene expression through IDDs binding to DNA. Here, we review the regulatory system in plants similar to ours and also discuss the interactive network between GRAS and IDD proteins.
Collapse
|
19
|
Satoh K, Yoneyama K, Kondoh H, Shimizu T, Sasaya T, Choi IR, Yoneyama K, Omura T, Kikuchi S. Relationship between gene responses and symptoms induced by Rice grassy stunt virus. Front Microbiol 2013; 4:313. [PMID: 24151491 PMCID: PMC3798811 DOI: 10.3389/fmicb.2013.00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/29/2013] [Indexed: 11/13/2022] Open
Abstract
Rice grassy stunt virus (RGSV) is a serious threat to rice production in Southeast Asia. RGSV is a member of the genus Tenuivirus, and it induces leaf yellowing, stunting, and excess tillering on rice plants. Here we examined gene responses of rice to RGSV infection to gain insight into the gene responses which might be associated with the disease symptoms. The results indicated that (1) many genes related to cell wall synthesis and chlorophyll synthesis were predominantly suppressed by RGSV infection; (2) RGSV infection induced genes associated with tillering process; (3) RGSV activated genes involved in inactivation of gibberellic acid and indole-3-acetic acid; and (4) the genes for strigolactone signaling were suppressed by RGSV. These results suggest that these gene responses to RGSV infection account for the excess tillering specific to RGSV infection as well as other symptoms by RGSV, such as stunting and leaf chlorosis.
Collapse
Affiliation(s)
- Kouji Satoh
- Research Team for Vector-Borne Plant Pathogens, National Agricultural Research Center Tsukuba, Japan ; Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Richter R, Bastakis E, Schwechheimer C. Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1992-2004. [PMID: 23739688 PMCID: PMC3729777 DOI: 10.1104/pp.113.219238] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/03/2013] [Indexed: 05/20/2023]
Abstract
The paralogous and functionally redundant GATA transcription factors GNC (for GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED) and GNL/CGA1 (for GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR1) from Arabidopsis (Arabidopsis thaliana) promote greening and repress flowering downstream from the phytohormone gibberellin. The target genes of GNC and GNL with regard to flowering time control have not been identified as yet. Here, we show by genetic and molecular analysis that the two GATA factors act upstream from the flowering time regulator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) to directly repress SOC1 expression and thereby repress flowering. Interestingly, this analysis inversely also reveals that the MADS box transcription factor SOC1 directly represses GNC and GNL expression to control cold tolerance and greening, two further physiological processes that are under the control of SOC1. In summary, these findings support the case of a cross-repressive interaction between the GATA factors GNC and GNL and the MADS box transcription factor SOC1 in flowering time control on the one side and greening and cold tolerance on the other that may be governed by the various signaling inputs that are integrated at the level of SOC1 expression.
Collapse
|
21
|
Song S, Qi T, Huang H, Xie D. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. MOLECULAR PLANT 2013; 6:1065-73. [PMID: 23543439 DOI: 10.1093/mp/sst054] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper stamen development is essential for plants to achieve their life cycles. Defects in stamen development will cause male sterility. A vast array of research efforts have been made to understand stamen developmental processes and regulatory mechanisms over the past decades. It is so far reported that phytohormones, including jasmonate, auxin, gibberellin, brassinosteroid, and cytokinin, play essential roles in regulation of stamen development. This review will briefly summarize the molecular basis for coordinated regulation of stamen development by jasmonate, auxin, and gibberellin in Arabidopsis.
Collapse
Affiliation(s)
- Susheng Song
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
22
|
Satoh K, Kondoh H, De Leon TB, Macalalad RJA, Cabunagan RC, Cabauatan PQ, Mauleon R, Kikuchi S, Choi IR. Gene expression responses to Rice tungro spherical virus in susceptible and resistant near-isogenic rice plants. Virus Res 2012. [PMID: 23183448 DOI: 10.1016/j.virusres.2012.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rice cultivar Taichung Native 1 (TN1) is susceptible to Rice tungro spherical virus (RTSV). TW16 is a backcross line developed between TN1 and RTSV-resistant cultivar Utri Merah. RTSV accumulation in TW16 was significantly lower than in TN1, although both TN1 and TW16 remained asymptomatic. We compared the gene expression profiles of TN1 and TW16 infected by RTSV to identify the gene expression patterns accompanying the accumulation and suppression of RTSV. About 11% and 12% of the genes in the entire genome were found differentially expressed by RTSV in TN1 and TW16, respectively. About 30% of the differentially expressed genes (DEGs) were detected commonly in both TN1 and TW16. DEGs related to development and stress response processes were significantly overrepresented in both TN1 and TW16. Evident differences in gene expression between TN1 and TW16 instigated by RTSV included (1) suppression of more genes for development-related transcription factors in TW16; (2) activation of more genes for development-related peptide hormone RALF in TN1; (3) TN1- and TW16-specific regulation of genes for jasmonate synthesis and pathway, and genes for stress-related transcription factors such as WRKY, SNAC, and AP2-EREBP; (4) activation of more genes for glutathione S-transferase in TW16; (5) activation of more heat shock protein genes in TN1; and (6) suppression of more genes for Golden2-like transcription factors involved in plastid development in TN1. The results suggest that a significant number of defense and development-related genes are still regulated in asymptomatic plants even with a very low level of RTSV, and that the TN1- and TW16-specific gene regulations might be associated with regulation of RTSV accumulation in the plants.
Collapse
Affiliation(s)
- Kouji Satoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mimura M, Nagato Y, Itoh JI. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway. PLANTA 2012; 235:1081-9. [PMID: 22476293 DOI: 10.1007/s00425-012-1639-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 05/08/2023]
Affiliation(s)
- Manaki Mimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | | | | |
Collapse
|
24
|
Cederholm HM, Iyer-Pascuzzi AS, Benfey PN. Patterning the primary root in Arabidopsis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:675-91. [DOI: 10.1002/wdev.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1182-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. PLANTA 2011; 234:1285-98. [PMID: 21792553 DOI: 10.1007/s00425-011-1485-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/07/2011] [Indexed: 05/02/2023]
Abstract
We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | | | |
Collapse
|
27
|
Characterization of grape Gibberellin Insensitive1 mutant alleles in transgenic Arabidopsis. Transgenic Res 2011; 21:725-41. [DOI: 10.1007/s11248-011-9565-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/27/2011] [Indexed: 10/15/2022]
|
28
|
Zubo YO, Yamburenko MV, Kusnetsov VV, Börner T. Methyl jasmonate, gibberellic acid, and auxin affect transcription and transcript accumulation of chloroplast genes in barley. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1335-44. [PMID: 21316794 DOI: 10.1016/j.jplph.2011.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 05/21/2023]
Abstract
Phytohormones control growth and development of plants. Their effects on the expression of nuclear genes are well investigated. Although they influence plastid-related processes, it is largely unknown whether phytohormones exert their control also by regulating the expression of plastid/chloroplast genes. We have therefore studied the effects of methyl jasmonate (MeJA), gibberellic acid (GA(3)), an auxin (indole-3-acetic acid, IAA), a brassinosteroid (24-epibrassinolide, BR) and a cytokinin (6-benzyladenine) on transcription (run-on assays) and transcript levels (RNA blot hybridization) of chloroplast genes after incubation of detached barley leaves in hormone solutions. BR was the only hormone without significant influence on chloroplast transcription. It showed, however, a weak reducing effect on transcript accumulation. MeJA, IAA and GA(3) repressed both transcription and transcript accumulation, while BA counteracted the effects of the other hormones. Effects of phytohormones on transcription differed in several cases from their influence on transcript levels suggesting that hormones may act via separate signaling pathways on transcription and transcript accumulation in chloroplasts. We observed striking differences in the response of chloroplast gene expression on phytohormones between the lower (young cells) and the upper segments (oldest cells) of barley leaves. Quantity and quality of the hormone effects on chloroplast gene expression seem to depend therefore on the age and/or developmental stage of the cells. As the individual chloroplast genes responded in different ways on phytohormone treatment, gene- and transcript-specific factors should be involved. Our data suggest that phytohormones adjust gene expression in the nucleo-cytoplasmic compartment and in plastids/chloroplasts in response to internal and external cues.
Collapse
Affiliation(s)
- Yan O Zubo
- Institute of Biology-Genetics, Humboldt University, Chausseestrasse 117, Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Gao XH, Xiao SL, Yao QF, Wang YJ, Fu XD. An updated GA signaling 'relief of repression' regulatory model. MOLECULAR PLANT 2011; 4:601-6. [PMID: 21690205 DOI: 10.1093/mp/ssr046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gibberellic acid (GA) regulates many aspects of plant growth and development. The DELLA proteins act to restrain plant growth, and GA relieves this repression by promoting their degradation via the 26S proteasome pathway. The elucidation of the crystalline structure of the GA soluble receptor GID1 protein represents an important breakthrough for understanding the way in which GA is perceived and how it induces the destabilization of the DELLA proteins. Recent advances have revealed that the DELLA proteins are involved in protein-protein interactions within various environmental and hormone signaling pathways. In this review, we highlight our current understanding of the 'relief of repression' model that aims to explain the role of GA and the function of the DELLA proteins, incorporating the many aspects of cross-talk shown to exist in the control of plant development and the response to stress.
Collapse
Affiliation(s)
- Xiu-Hua Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
30
|
Scherer GFE. AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3339-57. [PMID: 21733909 DOI: 10.1093/jxb/err033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since we are living in the 'age of transcription', awareness of aspects other than transcription in auxin signal transduction seems to have faded. One purpose of this review is to recall these other aspects. The focus will also be on the time scales of auxin responses and their potential or known dependence on either AUXIN BINDING PROTEIN 1 (ABP1) or on TRANSPORT-INHIBITOR-RESISTANT1 (TIR1) as a receptor. Furthermore, both direct and indirect evidence for the function of ABP1 as a receptor will be reviewed. Finally, the potential functions of a two-receptor system for auxin and similarities to other two-receptor signalling systems in plants will be discussed. It is suggested that such a functional arrangement is a property of plants which strengthens tissue autonomy and overcomes the lack of nerves or blood circulation which are responsible for rapid signal transport in animals.
Collapse
Affiliation(s)
- Günther F E Scherer
- Leibniz-Universität Hannover, Institute for Ornamental Plants and Wood Science, Section Molecular Developmental Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| |
Collapse
|
31
|
Hayashi-Tsugane M, Maekawa M, Qian Q, Kobayashi H, Iida S, Tsugane K. A rice mutant displaying a heterochronically elongated internode carries a 100 kb deletion. J Genet Genomics 2011; 38:123-8. [PMID: 21477784 DOI: 10.1016/j.jgg.2011.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
We have isolated a recessive rice mutant, designated as indeterminate growth (ing), which displays creeping and apparent heterochronic phenotypes in the vegetative period with lanky and winding culms. Rough mapping and subsequent molecular characterization revealed that the ing mutant carries a large deletion, which corresponds to a 103 kb region in the Nipponbare genome, containing nine annotated genes on chromosome 3. Of these annotated genes, the SLR1 gene encoding a DELLA protein is the only one that is well characterized in its function, and its null mutation, which is caused by a single base deletion in the middle of the intronless SLR1 gene, confers a slender phenotype that bears close resemblance to the ing mutant phenotype. The primary cause of the ing mutant phenotype is the deletion of the SLR1 gene, and the ing mutant appears to be the first characterized mutant having the entire SLR1 sequence deleted. Our results also suggest that the deleted region of 103 kb does not contain an indispensable gene, whose dysfunction must result in a lethal phenotype.
Collapse
|
32
|
Inagaki S, Umeda M. Cell-Cycle Control and Plant Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:227-61. [DOI: 10.1016/b978-0-12-386035-4.00007-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Lumba S, Cutler S, McCourt P. Plant Nuclear Hormone Receptors: A Role for Small Molecules in Protein-Protein Interactions. Annu Rev Cell Dev Biol 2010; 26:445-69. [DOI: 10.1146/annurev-cellbio-100109-103956] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Sean Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, and Department of Chemistry, University of California, Riverside, California 92521;
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| |
Collapse
|
34
|
Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. PLANT & CELL PHYSIOLOGY 2010; 51:1854-68. [PMID: 20937610 DOI: 10.1093/pcp/pcq153] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DELLA proteins are nuclear-localized negative regulators of gibberellin signaling found ubiquitously throughout higher plants. Dominant dwarfing mutations of DELLA proteins have been primarily responsible for the dramatic increases in harvest index of the 'green revolution'. Maize contains two genetic loci encoding DELLA proteins, dwarf plant8 (d8) and dwarf plant 9 (d9). The d8 gene and three of its dominant dwarfing alleles have been previously characterized at the molecular level. Almost 20 years after the initial description of the mutant, this investigation represents the first molecular characterization of d9 and its gibberellin-insensitive mutant, D9-1. We have molecularly, subcellularly and phenotypically characterized the gene products of five maize DELLA alleles in transgenic Arabidopsis. In dissecting the molecular differences in D9-1, a critical residue for normal DELLA function has been uncovered, corresponding to E600 of the D9 protein. The gibberellin-insensitive D9-1 was found to produce dwarfing and, notably, earlier flowering in Arabidopsis. Conversely, overexpression of the D9-1 allele delayed flowering in transgenic maize, while overexpression of the d9 allele led to earlier flowering. These results corroborate findings that DELLA proteins are at the crux of many plant developmental pathways and suggest differing mechanisms of flowering time control by DELLAs in maize and Arabidopsis.
Collapse
Affiliation(s)
- Shai J Lawit
- Pioneer Hi-Bred International, Inc., a DuPont Business, PO Box 1004, Johnston, IA 50131-1004, USA.
| | | | | | | | | |
Collapse
|
35
|
Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. PLANTA 2010; 232:1383-96. [PMID: 20830595 DOI: 10.1007/s00425-010-1263-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/25/2010] [Indexed: 05/15/2023]
Abstract
A dwarf mutant, dwarf 62 (d62), was isolated from rice cultivar 93-11 by mutagenesis with γ-rays. Under normal growth conditions, the mutant had multiple abnormal phenotypes, such as dwarfism, wide and dark-green leaf blades, reduced tiller numbers, late and asynchronous heading, short roots, partial male sterility, etc. Genetic analysis indicated that the abnormal phenotypes were controlled by the recessive mutation of a single nuclear gene. Using molecular markers, the D62 gene was fine mapped in 131-kb region at the short arm of chromosome 6. Positional cloning of D62 gene revealed that it was the same locus as DLT/OsGRAS-32, which encodes a member of the GRAS family. In previous studies, the DLT/OsGRAS-32 is confirmed to play positive roles in brassinosteroid (BR) signaling. Sequence analysis showed that the d62 carried a 2-bp deletion in ORF region of D62 gene which led to a loss-of-function mutation. The function of D62 gene was confirmed by complementation experiment. RT-PCR analysis and promoter activity analysis showed that the D62 gene expressed in all tested tissues including roots, stems, leaves and panicles of rice plant. The d62 mutant exhibited decreased activity of α-amylase in endosperm and reduced content of endogenous GA(1). The expression levels of gibberellin (GA) biosynthetic genes including OsCPS1, OsKS1, OsKO1, OsKAO, OsGA20ox2/SD1 and OsGA2ox3 were significantly increased in d62 mutant. Briefly, these results demonstrated that the D62 (DLT/OsGRAS-32) not only participated in the regulation of BR signaling, but also influenced GA metabolism in rice.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | |
Collapse
|
36
|
Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, Kitano H, Matsuoka M, Ueguchi-Tanaka M. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. THE PLANT CELL 2010; 22:3589-602. [PMID: 21098733 PMCID: PMC3015124 DOI: 10.1105/tpc.110.074542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 09/21/2010] [Accepted: 11/01/2010] [Indexed: 05/20/2023]
Abstract
To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.
Collapse
Affiliation(s)
- Yuko Yamamoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Takaaki Hirai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Eiji Yamamoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tomomi Sato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
- Address correspondence to
| |
Collapse
|
37
|
Ueguchi-Tanaka M, Matsuoka M. The perception of gibberellins: clues from receptor structure. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:503-8. [PMID: 20851040 DOI: 10.1016/j.pbi.2010.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/13/2010] [Accepted: 08/18/2010] [Indexed: 05/18/2023]
Abstract
The discovery of GID1, a soluble receptor for gibberellins (GAs), has revealed new insights into how GA is perceived. X-ray analysis has demonstrated similarities in the tertiary structure of GID1 to hormone sensitive lipase (HSL), and the GA-binding pocket of GID1 corresponds to the active site of HSL. X-ray analysis has also revealed the structural basis of the GA-GID1 interaction, and evolutionary aspects of GID1 have been discovered by comparison to GID1 from non-flowering plants. Recent studies have also demonstrated the complexity of GA signaling in Arabidopsis, which is mediated by three GID1 and five DELLA proteins. Finally, mechanistic and structural similarities for hormone signaling are compared for GA, auxin and abscisic acid, three hormones where the receptor protein structure was recently described.
Collapse
|
38
|
Cloning and Expression Profiling of Gibberellin Insensitive Dwarf GID1 Ho-mologous Genes from Cotton. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Somers DE, Fujiwara S. Thinking outside the F-box: novel ligands for novel receptors. TRENDS IN PLANT SCIENCE 2009; 14:206-13. [PMID: 19285909 DOI: 10.1016/j.tplants.2009.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 05/21/2023]
Abstract
The importance of regulated proteolysis in the physiology and development of plants is highlighted by the large number of genes dedicated to proteasome-dependent protein degradation. Within the SCF class of E3 ubiquitin ligases are more than 700 F-box proteins that act as recognition modules to specifically target their dedicated substrates for ubiquitylation. This review focuses on very recent studies indicating that some F-box proteins function as phytohormone or light receptors, which directly perceive signals and facilitate specific target-protein degradation to regulate downstream pathways. If this new connection between ligand-regulated proteolysis and signaling proves to be more extensive, an entirely new way of understanding the control of signal transduction is in the offing.
Collapse
Affiliation(s)
- David E Somers
- Department of Plant Cellular and Molecular Biology, The Ohio State University, 054 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA.
| | | |
Collapse
|
40
|
Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. THE PLANT CELL 2009; 21:403-19. [PMID: 19244139 PMCID: PMC2660632 DOI: 10.1105/tpc.108.064691] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/02/2009] [Accepted: 02/09/2009] [Indexed: 05/18/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR 3-LIKE5 (PIL5) is a basic helix-loop-helix transcription factor that inhibits seed germination by regulating the expression of gibberellin (GA)- and abscisic acid (ABA)-related genes either directly or indirectly. It is not yet known, however, whether PIL5 regulates seed germination solely through GA and ABA. Here, we used Chromatin immunoprecipitation-chip (ChIP-chip) analysis to identify 748 novel PIL5 binding sites in the Arabidopsis thaliana genome. Consistent with the molecular function of PIL5 as a transcription regulator, most of the identified binding sites are located in gene promoter regions. Binding site analysis shows that PIL5 binds to its target sites mainly through the G-box motif in vivo. Microarray analysis reveals that phytochromes regulate a large number of genes mainly through PIL5 during seed germination. Comparison between the ChIP-chip and microarray data indicates that PIL5 regulates 166 genes by directly binding to their promoters. Many of the identified genes encode transcription regulators involved in hormone signaling, while some encode enzymes involved in cell wall modification. Interestingly, PIL5 directly regulates many transcription regulators of hormone signaling and indirectly regulates many genes involved in hormone metabolism. Taken together, our data indicate that PIL5 inhibits seed germination not just through GA and ABA, but also by coordinating hormone signals and modulating cell wall properties in imbibed seeds.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Mutasa-Göttgens E, Hedden P. Gibberellin as a factor in floral regulatory networks. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1979-89. [PMID: 19264752 DOI: 10.1093/jxb/erp040] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gibberellins (GAs) function not only to promote the growth of plant organs, but also to induce phase transitions during development. Their involvement in flower initiation in long-day (LD) and biennial plants is well established and there is growing insight into the mechanisms by which floral induction is achieved. The extent to which GAs mediate the photoperiodic stimulus to flowering in LD plants is, with a few exceptions, less clear. Despite evidence for photoperiod-enhanced GA biosynthesis in leaves of many LD plants, through up-regulation of GA 20-oxidase gene expression, a function for GAs as transmitted signals from leaves to apices in response to LD has been demonstrated only in Lolium species. In Arabidopsis thaliana, as one of four quantitative floral pathways, GA signalling has a relatively minor influence on flowering time in LD, while in SD, in the absence of the photoperiod flowering pathway, the GA pathway assumes a major role and becomes obligatory. Gibberellins promote flowering in Arabidopsis through the activation of genes encoding the floral integrators SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), LEAFY (LFY), and FLOWERING LOCUS T (FT) in the inflorescence and floral meristems, and in leaves, respectively. Although GA signalling is not required for floral organ specification, it is essential for the normal growth and development of these organs. The sites of GA production and action within flowers, and the signalling pathways involved are beginning to be revealed.
Collapse
Affiliation(s)
- Effie Mutasa-Göttgens
- Broom's Barn Research Centre, Rothamsted Research Department of Applied Crop Science, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
| | | |
Collapse
|
42
|
Structural basis for gibberellin recognition by its receptor GID1. Nature 2008; 456:520-3. [PMID: 19037316 DOI: 10.1038/nature07546] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/14/2008] [Indexed: 12/31/2022]
Abstract
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. A nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), has a primary structure similar to that of the hormone-sensitive lipases (HSLs). Here we analyse the crystal structure of Oryza sativa GID1 (OsGID1) bound with GA(4) and GA(3) at 1.9 A resolution. The overall structure of both complexes shows an alpha/beta-hydrolase fold similar to that of HSLs except for an amino-terminal lid. The GA-binding pocket corresponds to the substrate-binding site of HSLs. On the basis of the OsGID1 structure, we mutagenized important residues for GA binding and examined their binding activities. Almost all of them showed very little or no activity, confirming that the residues revealed by structural analysis are important for GA binding. The replacement of Ile 133 with Leu or Val-residues corresponding to those of the lycophyte Selaginella moellendorffii GID1s-caused an increase in the binding affinity for GA(34), a 2beta-hydroxylated GA(4). These observations indicate that GID1 originated from HSL and was further modified to have higher affinity and more strict selectivity for bioactive GAs by adapting the amino acids involved in GA binding in the course of plant evolution.
Collapse
|