1
|
Feichtner A, Enzler F, Kugler V, Hoppe K, Mair S, Kremser L, Lindner H, Huber RG, Stelzl U, Stefan E, Torres-Quesada O. Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions. Cell Mol Life Sci 2024; 81:162. [PMID: 38568213 PMCID: PMC10991009 DOI: 10.1007/s00018-024-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.
Collapse
Affiliation(s)
- Andreas Feichtner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Katharina Hoppe
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
- Vascage, Center of Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, 138671, Singapore
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically gated A-kinase anchoring protein. Proc Natl Acad Sci U S A 2024; 121:e2314947121. [PMID: 38513099 PMCID: PMC10990152 DOI: 10.1073/pnas.2314947121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| | - Yasumi Otani
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| |
Collapse
|
3
|
Parajuli P, Craig DB, Gadgeel M, Bagla S, Wright RE, Chu R, Shanti CM, Thirunagari R, Grover SK, Ravindranath Y. Defective monocyte plasticity and altered cAMP pathway characterize USB1-mutated poikiloderma with neutropenia Clericuzio type. Br J Haematol 2024; 204:683-693. [PMID: 37779259 DOI: 10.1111/bjh.19128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Poikiloderma with neutropenia (PN) Clericuzio type (OMIM #604173) is a rare disease with areas of skin hyper- and hypopigmentation caused by biallelic USB1 variants. The current study was spurred by poor healing of a perianal tear wound in one affected child homozygous for c.266-1G>A (p.E90Sfster8) mutation, from a family reported previously. Treatment with G-CSF/CSF3 or GM-CSF/CSF2 transiently increased neutrophil/monocytes count with no effect on wound healing. Analysis of peripheral blood revealed a lack of non-classical (CD14+/- CD16+ ) monocytes, associated with a systemic inflammatory cytokine profile, in the two affected brothers. Importantly, despite normal expression of cognate receptors, monocytes from PN patients did not respond to M-CSF or IL-34 in vitro, as determined by cytokine secretion or CD16 expression. RNAseq of monocytes showed 293 differentially expressed genes, including significant downregulation of GATA2, AKAP6 and PDE4DIP that are associated with leucocyte differentiation and cyclic adenosine monophosphate (cAMP) signalling. Notably, the plasma cAMP was significantly low in the PN patients. Our study revealed a novel association of PN with a lack of non-classical monocyte population. The defects in monocyte plasticity may contribute to disease manifestations in PN and a defective cAMP signalling may be the primary effect of the splicing errors caused by USB1 mutation.
Collapse
Affiliation(s)
- Prahlad Parajuli
- Department of Pharmaceutical and Health Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, USA
- Barbara Ann Karmanos Cancer Institute, Michigan, Detroit, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Michigan, Detroit, USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manisha Gadgeel
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
- Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Shruti Bagla
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert E Wright
- Department of Pharmaceutical and Health Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, USA
| | - Roland Chu
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
- Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Christina M Shanti
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| | - Rajeev Thirunagari
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| | - Sudershan K Grover
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Barbara Ann Karmanos Cancer Institute, Michigan, Detroit, USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| |
Collapse
|
4
|
Sinha MK, Kumaresan A, Rao Talluri T, Ebenezer Samuel King JP, Prakash MA, Nag P, Paul N, Raval K, Kamaraj E, V A. Single nucleotide polymorphisms cumulating to genetic variation for fertility in crossbred ( Bos taurus × Bos indicus) bull spermatozoa. Anim Biotechnol 2023; 34:2875-2886. [PMID: 36137067 DOI: 10.1080/10495398.2022.2124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Spermatozoa from high-fertile (HF) and low-fertile (LF) breeding bulls were subjected to high-throughput next-generation sequencing to identify important Single nucleotide polymorphisms (SNPs) and novel variants associated with fertility. A total of 77,038 genome-wide SNPs were identified, among which, 10,788 were novel variants. A total of 42,290 and 34,748 variants were recorded with 6115 and 4673 novel variants in in HF and LF bulls, respectively. Higher number of SNPs were identified in HF compared to LF bulls. GO analysis of filtered genes with significant variations in HF bulls indicated their involvement in oxidative phosphorylation and metabolic pathways. GO analysis of filtered genes with significant variation in LF bulls revealed their involvement in Ca2++ ion binding, structural constituent of ribosome, and biological processes like translation and ribosomal small subunit assembly. The study identified SNPs in candidate genes including TPT1, BOLA-DRA, CD74, RPS17, RPS28, RPS29, RPL14, RPL13, and RPS27A, which are linked to sperm functionality, survival, oxidative stress, and bull fertility. The identified SNPs could be used in selection of bulls for high fertility and the variation in these genes could be established as an explanation for the fertility differences in bulls upon validation in large number of bulls.
Collapse
Affiliation(s)
| | - Arumugam Kumaresan
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumala Rao Talluri
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Mani Arul Prakash
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Aranganathan V
- Jain University (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
5
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically-gated A-kinase anchoring protein (AKAP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554038. [PMID: 37645895 PMCID: PMC10462126 DOI: 10.1101/2023.08.20.554038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cAMP-dependent protein kinase (Protein Kinase A; PKA) is a ubiquitous, promiscuous kinase whose activity is focused and specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to the extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), intracellular complexes coupling ECM-bound integrins to the actin cytoskeleton, suggesting the existence of one or more FA AKAPs. Using a combination of a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1-R13. Direct binding assays and nuclear magnetic resonance spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Finally, single-molecule experiments with talin1 and PKA, and experiments in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. These observations identify the first mechanically-gated anchoring protein for PKA, a new force-dependent binding partner for talin1, and thus a new mechanism for coupling cellular tension and signal transduction.
Collapse
|
6
|
Kimura S, Lok J, Gelman IH, Lo EH, Arai K. Role of A-Kinase Anchoring Protein 12 in the Central Nervous System. J Clin Neurol 2023; 19:329-337. [PMID: 37417430 DOI: 10.3988/jcn.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 12 is a scaffolding protein that anchors various signaling proteins to the plasma membrane. These signaling proteins include protein kinase A, protein kinase C, protein phosphatase 2B, Src-family kinases, cyclins, and calmodulin, which regulate their respective signaling pathways. AKAP12 expression is observed in the neurons, astrocytes, endothelial cells, pericytes, and oligodendrocytes of the central nervous system (CNS). Its physiological roles include promoting the development of the blood-brain barrier, maintaining white-matter homeostasis, and even regulating complex cognitive functions such as long-term memory formation. Under pathological conditions, dysregulation of AKAP12 expression levels may be involved in the pathology of neurological diseases such as ischemic brain injury and Alzheimer's disease. This minireview aimed to summarize the current literature on the role of AKAP12 in the CNS.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Zhang R, Liang C, Guo X, Bao P, Pei J, Wu F, Yin M, Chu M, Yan P. Quantitative phosphoproteomics analyses reveal the regulatory mechanisms related to frozen-thawed sperm capacitation and acrosome reaction in yak (Bos grunniens). Front Physiol 2022; 13:1013082. [PMID: 36277216 PMCID: PMC9583833 DOI: 10.3389/fphys.2022.1013082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatozoa are not mature after ejaculation and must undergo additional functional and structural changes within female reproductive tracts to achieve subsequent fertilization, including both capacitation and acrosome reaction (AR), which are dominated by post-translational modifications (PTMs), especially phosphorylation. However, the mechanism of protein phosphorylation during frozen-thawed sperm capacitation and AR has not been well studied. In this study, the phosphoproteomics approach was employed based on tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy to analyze frozen-thawed sperm in Ashidan yak under three sequential conditions (density gradient centrifugation-based purification, incubation in the capacitation medium and induction of AR processes by the calcium ionophore A23187 treatment). The identification of 1,377 proteins with 5,509 phosphorylation sites revealed changes in phosphorylation levels of sperm-specific proteins involved in regulation of spermatogenesis, sperm motility, energy metabolism, cilium movement, capacitation and AR. Some phosphorylated proteins, such as AKAP3, AKAP4, SPA17, PDMD11, CABYR, PRKAR1A, and PRKAR2A were found to regulate yak sperm capacitation and AR though the cAMP/PKA signaling pathway cascades. Notably, the phosphorylation level of SPA17 at Y156 increased in capacitated sperm, suggesting that it is also a novel functional protein besides AKAPs during sperm capacitation. Furthermore, the results of this study suggested that the phosphorylation of PRKAR1A and PRKAR2A, and the dephosphorylation of CABYR both play key regulatory role in yak sperm AR process. Protein-protein interaction analysis revealed that differentially phosphorylated proteins (AKAP3, AKAP4, FSIP2, PSMD11, CABYR, and TPPP2) related to capacitation and AR process played a key role in protein kinase A binding, sperm motility, reproductive process, cytoskeleton and sperm flagella function. Taken together, these data provide not only a solid foundation for further exploring phosphoproteome of sperm in yak, but an efficient way to identify sperm fertility-related marker phosphorylated proteins.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| |
Collapse
|
8
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
9
|
Cañonero L, Pautasso C, Galello F, Sigaut L, Pietrasanta L, Arroyo J, Bermúdez-Moretti M, Portela P, Rossi S. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119209. [PMID: 34999138 DOI: 10.1016/j.bbamcr.2021.119209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.
Collapse
Affiliation(s)
- Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Lia Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Hopkins C, de Castro LF, Corsi A, Boyce A, Collins MT, Riminucci M, Heegaard AM. Fibrous dysplasia animal models: A systematic review. Bone 2022; 155:116270. [PMID: 34875396 DOI: 10.1016/j.bone.2021.116270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Fibrous dysplasia (FD) is a rare genetic bone disorder resulting in an overproduction of cAMP leading to a structurally unsound tissue, caused by a genetic mutation in the guanine nucleotide-binding protein gene (GNAS). In order to better understand this disease, several animal models have been developed with different strategies and features. OBJECTIVE Conduct a systematic review to analyze and compare animal models with the causative mutation and features of FD. METHODS A PRISMA search was conducted in Scopus, PubMed, and Web of Science. Studies reporting an in vivo model of FD that expressed the causative mutation were included for analysis. Models without the causative mutation, but developed an FD phenotype and models of FD cell implantation were included for subanalysis. RESULTS Seven unique models were identified. The models were assessed and compared for their face validity, construct validity, mosaicism, and induction methods. This was based on the features of clinical FD that were reported within the categories of: macroscopic features, imaging, histology and histomorphometry, histochemical and cellular markers, and blood/urine markers. LIMITATIONS None of the models reported all features of FD and some features were only reported in one model. This made comparing models a challenge, but indicates areas where further research is necessary. CONCLUSION The benefits and disadvantages of every model were assessed from a practical and scientific standpoint. While all published reports lacked complete data, the models have nonetheless informed our understanding of FD and provided meaningful information to guide researchers in bench and clinical research.
Collapse
Affiliation(s)
- Chelsea Hopkins
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Luis Fernandez de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alison Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Tsai CY, Chiou SJ, Ko HJ, Cheng YF, Lin SY, Lai YL, Lin CY, Wang C, Cheng JT, Liu HF, Kwan AL, Loh JK, Hong YR. Deciphering the evolution of composite-type GSKIP in mitochondria and Wnt signaling pathways. PLoS One 2022; 17:e0262138. [PMID: 35051222 PMCID: PMC8775565 DOI: 10.1371/journal.pone.0262138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
We previously revealed the origin of mammalian simple-type glycogen synthase kinase interaction protein (GSKIP), which served as a scavenger and a competitor in the Wnt signaling pathway during evolution. In this study, we investigated the conserved and nonconserved regions of the composite-type GSKIP by utilizing bioinformatics tools, site-directed mutagenesis, and yeast two-hybrid methods. The regions were denoted as the pre-GSK3β binding site, which is located at the front of GSK3β-binding sites. Our data demonstrated that clustered mitochondria protein 1 (CLU1), a type of composite-type GSKIP that exists in the mitochondria of all eukaryotic organisms, possesses the protein known as domain of unknown function 727 (DUF727), with a pre-GSK3β-binding site and a mutant GSK3β-binding flanking region. Another type of composite-type GSKIP, armadillo repeat containing 4 (ARMC4), which is known for cilium movement in vertebrates, contains an unintegrated DUF727 flanking region with a pre-GSK3β-binding site (115SPxF118) only. In addition, the sequence of the GSK3β-binding site in CLU1 revealed that Q126L and V130L were not conserved, differing from the ideal GSK3β-binding sequence of simple-type GSKIP. We further illustrated two exceptions, namely 70 kilodalton heat shock proteins (Hsp70/DnaK) and Mitofilin in nematodes, that presented an unexpected ideal GSK3β-binding region with a pre-GSK3β sequence; this composite-type GSKIP could only occur in vertebrate species. Furthermore, we revealed the importance of the pre-GSK3β-binding site (118F or 118Y) and various mutant GSK3β-binding sites of composite-type GSKIP. Collectively, our data suggest that the new composite-type GSKIP starts with a DUF727 domain followed by a pre-GSK3β-binding site, with the subsequent addition of the GSK3β-binding site, which plays vital roles for CLU1, Mitofilin, and ARMC4 in mitochondria and Wnt signaling pathways during evolution.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Fan Cheng
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sin-Yi Lin
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Ling Lai
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Yen Lin
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hsin-Fu Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Aij-Li Kwan
- College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (YRH); (JKL)
| | - Yi-Ren Hong
- College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail: (YRH); (JKL)
| |
Collapse
|
12
|
Byrne DP, Omar MH, Kennedy EJ, Eyers PA, Scott JD. Biochemical Analysis of AKAP-Anchored PKA Signaling Complexes. Methods Mol Biol 2022; 2483:297-317. [PMID: 35286684 PMCID: PMC9518671 DOI: 10.1007/978-1-0716-2245-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Generation of the prototypic second messenger cAMP instigates numerous signaling events. A major intracellular target of cAMP is Protein kinase A (PKA), a Ser/Thr protein kinase. Where and when this enzyme is activated inside the cell has profound implications on the functional impact of PKA. It is now well established that PKA signaling is focused locally into subcellular signaling "islands" or "signalosomes." The A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by dictating spatial and temporal aspects of PKA action. Genetically encoded biosensors, small molecule and peptide-based disruptors of PKA signaling are valuable tools for rigorous investigation of local PKA action at the biochemical level. This chapter focuses on approaches to evaluate PKA signaling islands, including a simple assay for monitoring the interaction of an AKAP with a tunable PKA holoenzyme. The latter approach evaluates the composition of PKA holoenzymes, in which regulatory subunits and catalytic subunits can be visualized in the presence of test compounds and small-molecule inhibitors.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK
| | - Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK.
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Walker-Gray R, Pallien T, Miller DC, Oder A, Neuenschwander M, von Kries JP, Diecke S, Klussmann E. Disruptors of AKAP-Dependent Protein-Protein Interactions. Methods Mol Biol 2022; 2483:117-139. [PMID: 35286673 DOI: 10.1007/978-1-0716-2245-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A-kinase anchoring proteins (AKAPs) are a family of multivalent scaffolding proteins. They engage in direct protein-protein interactions with protein kinases, kinase substrates and further signaling molecules. Each AKAP interacts with a specific set of protein interaction partners and such sets can vary between different cellular compartments and cells. Thus, AKAPs can coordinate signal transduction processes spatially and temporally in defined cellular environments. AKAP-dependent protein-protein interactions are involved in a plethora of physiological processes, including processes in the cardiovascular, nervous, and immune system. Dysregulation of AKAPs and their interactions is associated with or causes widespread diseases, for example, cardiac diseases such as heart failure. However, there are profound shortcomings in understanding functions of specific AKAP-dependent protein-protein interactions. In part, this is due to the lack of agents for specifically targeting defined protein-protein interactions. Peptidic and non-peptidic inhibitors are invaluable molecular tools for elucidating the functions of AKAP-dependent protein-protein interactions. In addition, such interaction disruptors may pave the way to new concepts for the treatment of diseases where AKAP-dependent protein-protein interactions constitute potential drug targets.Here we describe screening approaches for the identification of small molecule disruptors of AKAP-dependent protein-protein interactions. Examples include interactions of AKAP18 and protein kinase A (PKA) and of AKAP-Lbc and RhoA. We discuss a homogenous time-resolved fluorescence (HTRF) and an AlphaScreen® assay for small molecule library screening and human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) as a cell system for the characterization of identified hits.
Collapse
Affiliation(s)
- Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | | | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.
| |
Collapse
|
14
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
15
|
Protein kinase A regulation of pigment granule motility in retinal pigment epithelial cells from fish, Lepomis spp. Vis Neurosci 2021; 38:E013. [PMID: 34521486 DOI: 10.1017/s0952523821000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinomotor movements include elongation and contraction of rod and cone photoreceptors, and mass migration of melanin-containing pigment granules (melanosomes) of the retinal pigment epithelium (RPE) within the eyes of fish, frogs, and other lower vertebrates. Eyes of these animals do not contain dilatable pupils; therefore the repositioning of the rods and cones and a moveable curtain of pigment granules serve to modulate light intensity within the eye. RPE from sunfish (Lepomis spp.) can be isolated from the eye and dissociated into single cells, allowing in vitro studies of the cytoskeletal and regulatory mechanisms of organelle movement. Pigment granule aggregation from distal tips of apical projections into the cell body can be triggered by the application of underivatized cAMP, and dispersion is effected by cAMP washout in the presence of dopamine. While the phenomenon of cAMP-dependent pigment granule aggregation in isolated RPE was described many years ago, whether cAMP acts through the canonical cAMP-PKA pathway to stimulate motility has never been demonstrated. Here, we show that pharmacological inhibition of PKA blocks pigment granule aggregation, and microinjection of protein kinase A catalytic subunit triggers pigment granule aggregation. Treatment with a cAMP agonist that activates the Rap GEF, Epac (Effector protein activated by cAMP), had no effect on pigment granule position. Taken together, these results confirm that cAMP activates RPE pigment granule motility by the canonical cAMP-PKA pathway. Isolated RPE cells labeled with antibodies against PKA RIIα and against PKA-phosphorylated serine/threonine amino acids show diffuse, punctate labeling throughout the RPE cell body and apical projections. Immunoblotting of RPE lysates using the anti-PKA substrate antibody demonstrated seven prominent bands; two bands in particular at 27 and 64 kD showed increased levels of phosphorylation in the presence of cAMP, indicating their phosphorylation could contribute to the pigment granule aggregation mechanism.
Collapse
|
16
|
AKAP12/Gravin is over-expressed in patients with ulcerative colitis. Immunol Res 2021; 69:429-435. [PMID: 34327631 DOI: 10.1007/s12026-021-09214-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The gene of A-kinase anchor protein 12 (AKAP12) regulates cell cycle progression, cell motility, and morphology through its multiple scaffolding domains. However, the role of AKAP12 expression in ulcerative colitis (UC) patients has not been yet described. The aim of the study was to describe the gene and protein of AKAP12 expression in patients with UC and its association regarding the disease severity. We included a total of 40 patients with confirmed diagnosis of UC and 25 controls without endoscopic evidence of colitis or neoplasia. The relative quantification of the gene expression was performed by real-time PCR for AKAP12. Kruskal-Wallis was used to test differences among groups, and Spearman correlation to assess the relationship between AKAP12 gene and clinical outcomes. The extent of disease was evaluated using total colonoscopy, and biopsies were taken from rectum segments. The AKAP12 gene expression was increased in colonic mucosa from patients with active UC when compared with UC remission and control group. The overexpression of AKAP12 in patients with UC was associated with the presence of extensive colitis (p = 0.04, RM = 12, IC = 1.29-186.37). AKAP12/CD16 double positive cells were higher in submucosa (p = 0.04), muscular (p < 0.001), and cells from serosa (p < 0.001) in patients affected by UC in comparison to controls. The overexpression of AKAP12 was associated with the extent of disease. This is the first report about the role of AKAP12 in patients with UC suggesting that this gene and its protein could be involved in the modulation of the disease.
Collapse
|
17
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
18
|
Sholokh A, Klussmann E. Local cyclic adenosine monophosphate signalling cascades-Roles and targets in chronic kidney disease. Acta Physiol (Oxf) 2021; 232:e13641. [PMID: 33660401 DOI: 10.1111/apha.13641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3',5'-adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometre dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalization is tightly controlled by a specific set of proteins, including A-kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP-Lbc and STUB1, and PDE4 coordinate arginine-vasopressin (AVP)-induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na+ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalized cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease-relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD.
Collapse
Affiliation(s)
- Anastasiia Sholokh
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
| | - Enno Klussmann
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
| |
Collapse
|
19
|
Ko HJ, Tsai CY, Chiou SJ, Lai YL, Wang CH, Cheng JT, Chuang TH, Huang CYF, Kwan AL, Loh JK, Hong YR. The Phosphorylation Status of Drp1-Ser637 by PKA in Mitochondrial Fission Modulates Mitophagy via PINK1/Parkin to Exert Multipolar Spindles Assembly during Mitosis. Biomolecules 2021; 11:424. [PMID: 33805672 PMCID: PMC7998912 DOI: 10.3390/biom11030424] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial fission and fusion cycles are integrated with cell cycle progression. Here we first re-visited how mitochondrial ETC inhibition disturbed mitosis progression, resulting in multipolar spindles formation in HeLa cells. Inhibitors of ETC complex I (rotenone, ROT) and complex III (antimycin A, AA) decreased the phosphorylation of Plk1 T210 and Aurora A T288 in the mitotic phase (M-phase), especially ROT, affecting the dynamic phosphorylation status of fission protein dynamin-related protein 1 (Drp1) and the Ser637/Ser616 ratio. We then tested whether specific Drp1 inhibitors, Mdivi-1 or Dynasore, affected the dynamic phosphorylation status of Drp1. Similar to the effects of ROT and AA, our results showed that Mdivi-1 but not Dynasore influenced the dynamic phosphorylation status of Ser637 and Ser616 in Drp1, which converged with mitotic kinases (Cdk1, Plk1, Aurora A) and centrosome-associated proteins to significantly accelerate mitotic defects. Moreover, our data also indicated that evoking mito-Drp1-Ser637 by protein kinase A (PKA) rather than Drp1-Ser616 by Cdk1/Cyclin B resulted in mitochondrial fission via the PINK1/Parkin pathway to promote more efficient mitophagy and simultaneously caused multipolar spindles. Collectively, this study is the first to uncover that mito-Drp1-Ser637 by PKA, but not Drp1-Ser616, drives mitophagy to exert multipolar spindles formation during M-phase.
Collapse
Affiliation(s)
- Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-J.K.); (Y.-L.L.); (A.-L.K.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-J.C.); (C.-Y.F.H.)
| | - Cheng-Yu Tsai
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan; (C.-Y.T.); (T.-H.C.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-J.C.); (C.-Y.F.H.)
| | - Yun-Ling Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-J.K.); (Y.-L.L.); (A.-L.K.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-J.C.); (C.-Y.F.H.)
| | - Chi-Huei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Tsung-Hsien Chuang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan; (C.-Y.T.); (T.-H.C.)
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chi-Ying F. Huang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-J.C.); (C.-Y.F.H.)
- Department of Biotechnology and Laboratory Science in Medicine, Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-J.K.); (Y.-L.L.); (A.-L.K.)
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan; (C.-Y.T.); (T.-H.C.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Joon-Khim Loh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-J.K.); (Y.-L.L.); (A.-L.K.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-J.K.); (Y.-L.L.); (A.-L.K.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-J.C.); (C.-Y.F.H.)
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan; (C.-Y.T.); (T.-H.C.)
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| |
Collapse
|
20
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
21
|
Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021; 10:464. [PMID: 33671541 PMCID: PMC7926881 DOI: 10.3390/cells10020464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Liliana F. Iannucci
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta C. Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Sofia Zanin
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Filippo Conca
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Francesca Grisan
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy;
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
22
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
24
|
Meguro A, Yamane T, Takeuchi M, Miyake M, Fan Q, Zhao W, Wang IJ, Mizuki Y, Yamada N, Nomura N, Tsujikawa A, Matsuda F, Hosoda Y, Saw SM, Cheng CY, Tsai TH, Yoshida M, Iijima Y, Teshigawara T, Okada E, Ota M, Inoko H, Mizuki N. Genome-Wide Association Study in Asians Identifies Novel Loci for High Myopia and Highlights a Nervous System Role in Its Pathogenesis. Ophthalmology 2020; 127:1612-1624. [PMID: 32428537 DOI: 10.1016/j.ophtha.2020.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To identify novel susceptibility loci for high myopia. DESIGN Genome-wide association study (GWAS) followed by replication and meta-analysis. PARTICIPANTS A total of 14 096 samples from East and Southeast Asian populations (2549 patients with high myopia and 11 547 healthy controls). METHODS We performed a GWAS in 3269 Japanese individuals (1668 with high myopia and 1601 control participants), followed by replication analysis in a total of 10 827 additional samples (881 with high myopia and 9946 control participants) from Japan, Singapore, and Taiwan. To confirm the biological role of the identified loci in the pathogenesis of high myopia, we performed functional annotation and Gene Ontology (GO) analyses. MAIN OUTCOME MEASURES We evaluated the association of single nucleotide polymorphisms with high myopia and GO terms enriched among genes identified in the current study. RESULTS We identified 9 loci with genome-wide significance (P < 5.0 × 10-8). Three loci were previously reported myopia-related loci (ZC3H11B on 1q41, GJD2 on 15q14, and RASGRF1 on 15q25.1), and the other 6 were novel (HIVEP3 on 1p34.2, NFASC/CNTN2 on 1q32.1, CNTN4/CNTN6 on 3p26.3, FRMD4B on 3p14.1, LINC02418 on 12q24.33, and AKAP13 on 15q25.3). The GO analysis revealed a significant role of the nervous system related to synaptic signaling, neuronal development, and Ras/Rho signaling in the pathogenesis of high myopia. CONCLUSIONS The current study identified 6 novel loci associated with high myopia and demonstrated an important role of the nervous system in the disease pathogenesis. Our findings give new insight into the genetic factors underlying myopia, including high myopia, by connecting previous findings and allowing for a clarified interpretation of the cause and pathophysiologic features of myopia at the molecular level.
Collapse
Affiliation(s)
- Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - Wanting Zhao
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuki Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norihiro Yamada
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naoko Nomura
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshikatsu Hosoda
- Department of Ophthalmology and Visual Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Ching-Yu Cheng
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Masao Yoshida
- Department of Public Health, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasuhito Iijima
- Department of Ophthalmology, Aoto Eye Clinic, Yokohama, Japan
| | - Takeshi Teshigawara
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Ophthalmology, Yokosuka Chuoh Eye Clinic, Yokosuka, Japan; Department of Ophthalmology, Tsurumi Chuoh Eye Clinic, Yokohama, Japan
| | - Eiichi Okada
- Department of Ophthalmology, Okada Eye Clinic, Yokohama, Japan
| | - Masao Ota
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
25
|
Baarsma HA, Han B, Poppinga WJ, Driessen S, Elzinga CRS, Halayko AJ, Meurs H, Maarsingh H, Schmidt M. Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle. Front Cell Dev Biol 2020; 8:165. [PMID: 32328490 PMCID: PMC7160303 DOI: 10.3389/fcell.2020.00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/28/2020] [Indexed: 01/11/2023] Open
Abstract
With the ability to switch between proliferative and contractile phenotype, airway smooth muscle (ASM) cells can contribute to the progression of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), in which airway obstruction is associated with ASM hypertrophy and hypercontractility. A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules in various tissues, including ASM cells. AKAPs can anchor the regulatory subunits of protein kinase A (PKA), and guide cellular localization via various targeting domains. Here we investigated whether disruption of the AKAP-PKA interaction, by the cell permeable peptide stearated (st)-Ht31, alters human ASM proliferation and contractility. Treatment of human ASM with st-Ht31 enhanced the expression of protein markers associated with cell proliferation in both cultured cells and intact tissue, although this was not accompanied by an increase in cell viability or cell-cycle progression, suggesting that disruption of AKAP-PKA interaction on its own is not sufficient to drive ASM cell proliferation. Strikingly, st-Ht31 enhanced contractile force generation in human ASM tissue with concomitant upregulation of the contractile protein α-sm-actin. This upregulation of α-sm-actin was independent of mRNA stability, transcription or translation, but was dependent on proteasome function, as the proteasome inhibitor MG-132 prevented the st-Ht31 effect. Collectively, the AKAP-PKA interaction appears to regulate markers of the multi-functional capabilities of ASM, and this alter the physiological function, such as contractility, suggesting potential to contribute to the pathophysiology of airway diseases.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bing Han
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wilfred J Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Saskia Driessen
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Carolina R S Elzinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans 2020; 48:39-49. [PMID: 32065210 DOI: 10.1042/bst20190229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.
Collapse
|
27
|
Zhu YR, Jiang XX, Ye P, Wang ZM, Zheng Y, Liu Z, Chen SL, Zhang DM. Knockout of AKAP150 improves impaired BK channel-mediated vascular dysfunction through the Akt/GSK3β signalling pathway in diabetes mellitus. J Cell Mol Med 2020; 24:4716-4725. [PMID: 32163656 PMCID: PMC7176888 DOI: 10.1111/jcmm.15143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular dysfunction resulting from diabetes is an important factor in arteriosclerosis. Previous studies have shown that during hyperglycaemia and diabetes, AKAP150 promotes vascular tone enhancement by intensifying the remodelling of the BK channel. However, the interaction between AKAP150 and the BK channel remains open to discussion. In this study, we investigated the regulation of impaired BK channel‐mediated vascular dysfunction in diabetes mellitus. Using AKAP150 null mice (AKAP150−/−) and wild‐type (WT) control mice (C57BL/6J), diabetes was induced by intraperitoneal injection of streptozotocin. We found that knockout of AKAP150 reversed vascular remodelling and fibrosis in mice with diabetes and in AKAP150−/− diabetic mice. Impaired Akt/GSK3β signalling contributed to decreased BK‐β1 expression in aortas from diabetic mice, and the silencing of AKAP150 increased Akt phosphorylation and BK‐β1 expression in MOVAS cells treated with HG medium. The inhibition of Akt activity caused a decrease in BK‐β1 expression, and treatment with AKAP150 siRNA suppressed GSK3β expression in the nuclei of MOVAS cells treated with HG. Knockout of AKAP150 reverses impaired BK channel‐mediated vascular dysfunction through the Akt/GSK3β signalling pathway in diabetes mellitus.
Collapse
Affiliation(s)
- Yan-Rong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Xin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Mei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yaguo Zheng
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhizhong Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Cyclin-Dependent Kinase 18 Controls Trafficking of Aquaporin-2 and Its Abundance through Ubiquitin Ligase STUB1, Which Functions as an AKAP. Cells 2020; 9:cells9030673. [PMID: 32164329 PMCID: PMC7140648 DOI: 10.3390/cells9030673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Arginine-vasopressin (AVP) facilitates water reabsorption in renal collecting duct principal cells through regulation of the water channel aquaporin-2 (AQP2). The hormone binds to vasopressin V2 receptors (V2R) on the surface of the cells and stimulates cAMP synthesis. The cAMP activates protein kinase A (PKA), which initiates signaling that causes an accumulation of AQP2 in the plasma membrane of the cells facilitating water reabsorption from primary urine and fine-tuning of body water homeostasis. AVP-mediated PKA activation also causes an increase in the AQP2 protein abundance through a mechanism that involves dephosphorylation of AQP2 at serine 261 and a decrease in its poly-ubiquitination. However, the signaling downstream of PKA that controls the localization and abundance of AQP2 is incompletely understood. We carried out an siRNA screen targeting 719 kinase-related genes, representing the majority of the kinases of the human genome and analyzed the effect of the knockdown on AQP2 by high-content imaging and biochemical approaches. The screening identified 13 hits whose knockdown inhibited the AQP2 accumulation in the plasma membrane. Amongst the candidates was the so far hardly characterized cyclin-dependent kinase 18 (CDK18). Our further analysis revealed a hitherto unrecognized signalosome comprising CDK18, an E3 ubiquitin ligase, STUB1 (CHIP), PKA and AQP2 that controls the localization and abundance of AQP2. CDK18 controls AQP2 through phosphorylation at serine 261 and STUB1-mediated ubiquitination. STUB1 functions as an A-kinase anchoring protein (AKAP) tethering PKA to the protein complex and bridging AQP2 and CDK18. The modulation of the protein complex may lead to novel concepts for the treatment of disorders which are caused or are associated with dysregulated AQP2 and for which a satisfactory treatment is not available, e.g., hyponatremia, liver cirrhosis, diabetes insipidus, ADPKD or heart failure.
Collapse
|
29
|
A-Kinase Anchoring Proteins Diminish TGF-β 1/Cigarette Smoke-Induced Epithelial-To-Mesenchymal Transition. Cells 2020; 9:cells9020356. [PMID: 32028718 PMCID: PMC7072527 DOI: 10.3390/cells9020356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a role in chronic obstructive pulmonary diseases (COPD). Cyclic adenosine monophosphate (cAMP) can inhibit transforming growth factor-β1 (TGF-β1) mediated EMT. Although compartmentalization via A-kinase anchoring proteins (AKAPs) is central to cAMP signaling, functional studies regarding their therapeutic value in the lung EMT process are lacking. The human bronchial epithelial cell line (BEAS-2B) and primary human airway epithelial (pHAE) cells were exposed to TGF-β1. Epithelial (E-cadherin, ZO-1) and mesenchymal markers (collagen Ӏ, α-SMA, fibronectin) were analyzed (mRNA, protein). ELISA measured TGF-β1 release. TGF-β1-sensitive AKAPs Ezrin, AKAP95 and Yotiao were silenced while using siRNA. Cell migration was analyzed by wound healing assay, xCELLigence, Incucyte. Prior to TGF-β1, dibutyryl-cAMP (dbcAMP), fenoterol, rolipram, cilostamide, and forskolin were used to elevate intracellular cAMP. TGF-β1 induced morphological changes, decreased E-cadherin, but increased collagen Ӏ and cell migration, a process that was reversed by the inhibitor of δ/epsilon casein kinase I, PF-670462. TGF-β1 altered (mRNA, protein) expression of Ezrin, AKAP95, and Yotiao. St-Ht31, the AKAP antagonist, decreased E-cadherin (mRNA, protein), but counteracted TGF-β1-induced collagen Ӏ upregulation. Cigarette smoke (CS) increased TGF-β1 release, activated TGF signaling, augmented cell migration, and reduced E-cadherin expression, a process that was blocked by TGF-β1 neutralizing antibody. The silencing of Ezrin, AKAP95, and Yotiao diminished TGF-β1-induced collagen Ӏ expression, as well as TGF-β1-induced cell migration. Fenoterol, rolipram, and cilostamide, in AKAP silenced cells, pointed to distinct cAMP compartments. We conclude that Ezrin, AKAP95, and Yotiao promote TGF-β1-mediated EMT, linked to a TGF-β1 release by CS. AKAP members might define the ability of fenoterol, rolipram, and cilostamide to modulate the EMT process, and they might represent potential relevant targets in the treatment of COPD.
Collapse
|
30
|
Tschaikner P, Enzler F, Torres-Quesada O, Aanstad P, Stefan E. Hedgehog and Gpr161: Regulating cAMP Signaling in the Primary Cilium. Cells 2020; 9:cells9010118. [PMID: 31947770 PMCID: PMC7017137 DOI: 10.3390/cells9010118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Compartmentalization of diverse types of signaling molecules contributes to the precise coordination of signal propagation. The primary cilium fulfills this function by acting as a spatiotemporally confined sensory signaling platform. For the integrity of ciliary signaling, it is mandatory that the ciliary signaling pathways are constantly attuned by alterations in both oscillating small molecules and the presence or absence of their sensor/effector proteins. In this context, ciliary G protein-coupled receptor (GPCR) pathways participate in coordinating the mobilization of the diffusible second messenger molecule 3',5'-cyclic adenosine monophosphate (cAMP). cAMP fluxes in the cilium are primarily sensed by protein kinase A (PKA) complexes, which are essential for the basal repression of Hedgehog (Hh) signaling. Here, we describe the dynamic properties of underlying signaling circuits, as well as strategies for second messenger compartmentalization. As an example, we summarize how receptor-guided cAMP-effector pathways control the off state of Hh signaling. We discuss the evidence that a macromolecular, ciliary-localized signaling complex, composed of the orphan GPCR Gpr161 and type I PKA holoenzymes, is involved in antagonizing Hh functions. Finally, we outline how ciliary cAMP-linked receptor pathways and cAMP-sensing signalosomes may become targets for more efficient combinatory therapy approaches to counteract dysregulation of Hh signaling.
Collapse
Affiliation(s)
- Philipp Tschaikner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Florian Enzler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
| | - Pia Aanstad
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (P.T.); (F.E.); (O.T.-Q.)
- Correspondence: ; Tel.: +43-512-507-57531; Fax: +43-512-507-57599
| |
Collapse
|
31
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Interaction of AIP with protein kinase A (cAMP-dependent protein kinase). Hum Mol Genet 2019; 27:2604-2613. [PMID: 29726992 DOI: 10.1093/hmg/ddy166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene cause mostly somatotropinomas and/or prolactinomas in a subset of familial isolated pituitary adenomas (FIPA). AIP has been shown to interact with phosphodiesterases (PDEs) and G proteins, suggesting a link to the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Upregulation of PKA is seen in sporadic somatotropinomas that carry GNAS mutations, and those in Carney complex that are due to PRKAR1A mutations. To elucidate the mechanism of AIP-dependent pituitary tumorigenesis, we studied potential functional and physical interactions of AIP with PKA's main subunits PRKAR1A (R1α) and PRKACA (Cα). We found that AIP physically interacts with both R1α and Cα; this interaction is enhanced when all three components are present, but maintained during Cα-R1α dissociation by PKA activation, indicating that AIP binds Cα/R1α both in complex and separately. The interaction between AIP and R1α/Cα is reduced when the frequent AIP pathogenic mutation p.R304* is present. AIP protein levels are regulated both by translation and the ubiquitin/proteasome pathway and Cα stabilizes both AIP and R1α protein levels. AIP reduction by siRNA leads to an increase of PKA activity, which is disproportionately enhanced during PDE4-inhibition. We show that AIP interacts with the PKA pathway on multiple levels, including a physical interaction with both the main regulatory (R1α) and catalytic (Cα) PKA subunits and a functional interaction with PDE4-dependent PKA activation. These findings provide novel insights on the mechanisms of AIP-dependent pituitary tumorigenesis.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Marin W. A-kinase anchoring protein 1 (AKAP1) and its role in some cardiovascular diseases. J Mol Cell Cardiol 2019; 138:99-109. [PMID: 31783032 DOI: 10.1016/j.yjmcc.2019.11.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023]
Abstract
A-kinase anchoring proteins (AKAPs) play crucial roles in regulating compartmentalized multi-protein signaling networks related to PKA-mediated phosphorylation. The mitochondrial AKAP - AKAP1 proteins are enriched in heart and play cardiac protective roles. This review aims to thoroughly summarize AKAP1 variants from their sequence features to the structure-function relationships between AKAP1 and its binding partners, as well as the molecular mechanisms of AKAP1 in cardiac hypertrophy, hypoxia-induced myocardial infarction and endothelial cells dysfunction, suggesting AKAP1 as a candidate for cardiovascular therapy.
Collapse
Affiliation(s)
- Wenwen Marin
- Institute for Translational Medicine, Medical Faculty of Qingdao University, Qingdao 266021, China.
| |
Collapse
|
33
|
Pozo A, Regnier M, Lizotte J, Martineau C, Scorza T, Moreau R. Cyclic adenosine monophosphate-dependent activation of transient receptor potential vanilloid 4 (TRPV4) channels in osteoblast-like MG-63 cells. Cell Signal 2019; 66:109486. [PMID: 31778738 DOI: 10.1016/j.cellsig.2019.109486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 10/25/2022]
Abstract
Parathyroid hormone (PTH) directly interacts with bone remodeling osteoblasts and osteocytes expressing the G-protein coupled receptor PTH receptor 1 (PTH1R), and its osteoanabolic effects mostly involve the cAMP/PKA signaling cascade. Considering that PTH-dependent calcium entry in rat enterocytes is reproduced by the adenylate cyclase agonist forskolin or by cAMP analogues, possible involvement of calcium as a second messenger in PTH-dependent cAMP signaling was investigated in MG-63 cells. First, Ca2+ influx was confirmed in Fluo3-loaded MG-63 cells treated with a cell-permeable cAMP analog. Second, PTH (1-34) and forskolin promoted calcium influxes that were completely abrogated by the PKA inhibitor H-89. Ca2+ entry was not reproduced when PTH (1-34) was combined with the PKC-activating competitor PTH (3-34). Vanilloid transient potential (TRPV) channel inhibitor Ruthenium Red, but not a voltage-dependent calcium channel (VDCC) inhibitor nifedipine, efficiently stunted Ca2+ entry, and comparable abrogation was reproduced in cells treated with TRPV4-selective inhibitor RN-1734 or transfected with TRPV4-specific siRNA. Interestingly, PTH-driven Ca2+ through TRPV4 significantly inhibited MG63 cell migration through a mechanism requiring extracellular Ca2+. In contrast, the inhibitory effects of forskolin on migration were refractory to TRPV4 silencing or to RN-1734. Altogether, our results indicate that single treatment with PTH (1-34) promotes extracellular calcium entry through TRPV4 channels in MG-63 cells through a cAMP/PKA-dependent mechanism, and that this influx affects cell migration.
Collapse
Affiliation(s)
- Arleth Pozo
- Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Marine Regnier
- Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jérôme Lizotte
- Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Corine Martineau
- Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Tatiana Scorza
- Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.
| | - Robert Moreau
- Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
34
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
35
|
GSKIP-Mediated Anchoring Increases Phosphorylation of Tau by PKA but Not by GSK3beta via cAMP/PKA/GSKIP/GSK3/Tau Axis Signaling in Cerebrospinal Fluid and iPS Cells in Alzheimer Disease. J Clin Med 2019; 8:jcm8101751. [PMID: 31640277 PMCID: PMC6832502 DOI: 10.3390/jcm8101751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Based on the protein kinase A (PKA)/GSK3β interaction protein (GSKIP)/glycogen synthase kinase 3β (GSK3β) axis, we hypothesized that these might play a role in Tau phosphorylation. Here, we report that the phosphorylation of Tau Ser409 in SHSY5Y cells was increased by overexpression of GSKIP WT more than by PKA- and GSK3β-binding defective mutants (V41/L45 and L130, respectively). We conducted in vitro assays of various kinase combinations to show that a combination of GSK3β with PKA but not Ca2+/calmodulin-dependent protein kinase II (CaMK II) might provide a conformational shelter to harbor Tau Ser409. Cerebrospinal fluid (CSF) was evaluated to extend the clinical significance of Tau phosphorylation status in Alzheimer's disease (AD), neurological disorders (NAD), and mild cognitive impairment (MCI). We found higher levels of different PKA-Tau phosphorylation sites (Ser214, Ser262, and Ser409) in AD than in NAD, MCI, and normal groups. Moreover, we used the CRISPR/Cas9 system to produce amyloid precursor protein (APPWT/D678H) isogenic mutants. These results demonstrated an enhanced level of phosphorylation by PKA but not by the control. This study is the first to demonstrate a transient increase in phosphor-Tau caused by PKA, but not GSK3β, in the CSF and induced pluripotent stem cells (iPSCs) of AD, implying that both GSKIP and GSK3β function as anchoring proteins to strengthen the cAMP/PKA/Tau axis signaling during AD pathogenesis.
Collapse
|
36
|
Zhu YR, Jiang XX, Zheng Y, Xiong J, Wei D, Zhang DM. Cardiac function modulation depends on the A-kinase anchoring protein complex. J Cell Mol Med 2019; 23:7170-7179. [PMID: 31512389 PMCID: PMC6815827 DOI: 10.1111/jcmm.14659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The A‐kinase anchoring proteins (AKAPs) are a group of structurally diverse proteins identified in various species and tissues. These proteins are able to anchor protein kinase and other signalling proteins to regulate cardiac function. Acting as a scaffold protein, AKAPs ensure specificity in signal transduction by enzymes close to their appropriate effectors and substrates. Over the decades, more than 70 different AKAPs have been discovered. Accumulative evidence indicates that AKAPs play crucial roles in the functional regulation of cardiac diseases, including cardiac hypertrophy, myofibre contractility dysfunction and arrhythmias. By anchoring different partner proteins (PKA, PKC, PKD and LTCCs), AKAPs take part in different regulatory pathways to function as regulators in the heart, and a damaged structure can influence the activities of these complexes. In this review, we highlight recent advances in AKAP‐associated protein complexes, focusing on local signalling events that are perturbed in cardiac diseases and their roles in interacting with ion channels and their regulatory molecules. These new findings suggest that AKAPs might have potential therapeutic value in patients with cardiac diseases, particularly malignant rhythm.
Collapse
Affiliation(s)
- Yan-Rong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Xin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yaguo Zheng
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Dongping Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Baltzer S, Klussmann E. Small molecules for modulating the localisation of the water channel aquaporin-2-disease relevance and perspectives for targeting local cAMP signalling. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1049-1064. [PMID: 31300862 DOI: 10.1007/s00210-019-01686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
Abstract
The tight spatial and temporal organisation of cyclic adenosine monophosphate (cAMP) signalling plays a key role in arginine-vasopressin (AVP)-mediated water reabsorption in renal collecting duct principal cells and in a plethora of other processes such as in the control of cardiac myocyte contractility. This review critically discusses in vitro- and cell-based screening strategies for the identification of small molecules that interfere with AVP/cAMP signalling in renal principal cells; it features phenotypic screening and approaches for targeting protein-protein interactions of A-kinase anchoring proteins (AKAPs), which organise local cAMP signalling hubs. The discovery of novel chemical entities for the modulation of local cAMP will not only provide tools for elucidating molecular mechanisms underlying cAMP signalling. Novel chemical entities can also serve as starting points for the development of novel drugs for the treatment of human diseases. Examples illustrate how screening for small molecules can pave the way to novel approaches for the treatment of certain forms of diabetes insipidus, a disease caused by defects in AVP-mediated water reabsorption.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Vegetative Physiology, Berlin, Germany.
| |
Collapse
|
38
|
Ramírez-Sarmiento CA. "Riddle Me This": Substrate Channeling Solves the Paradigms of cAMP-Dependent Activation of PKA. Biophys J 2019. [PMID: 28636902 DOI: 10.1016/j.bpj.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
39
|
Wang Z, Li Y, Xiao Y, Lin HP, Yang P, Humphries B, Gao T, Yang C. Integrin α9 depletion promotes β-catenin degradation to suppress triple-negative breast cancer tumor growth and metastasis. Int J Cancer 2019; 145:2767-2780. [PMID: 31008533 DOI: 10.1002/ijc.32359] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
Although integrin α9 (ITGA9) is known to be involved in cell adhesion and motility, its expression in cancer and its role in tumor growth and metastasis remain largely unknown. Our study was designed to investigate the role of ITGA9 in triple-negative breast cancer (TNBC). ITGA9 expression in TNBC cells was knocked out (KO) using CRISPR/Cas9 technology. Four orthotopic mouse mammary xenograft tumor models coupled with cell culture studies were performed to determine the effect of ITGA9 depletion on TNBC tumor growth and metastasis and the underlying mechanism. Bioinformatics analysis showed that ITGA9 level is significantly higher in TNBC than other breast cancer subtypes, and higher ITGA9 level is associated with significantly worse distant metastasis-free survival and recurrence-free survival in TNBC patients. Experimentally, ITGA9 KO significantly reduced TNBC cell cancer stem cell (CSC)-like property, tumor angiogenesis, tumor growth and metastasis by promoting β-catenin degradation. Further mechanistic studies revealed that ITGA9 KO causes integrin-linked kinase (ILK) relocation from the membrane region to the cytoplasm, where it interacts with protein kinase A (PKA) and inhibits PKA activity leading to increased activity of glycogen synthase kinase 3 (GSK3) and subsequent β-catenin degradation. Overexpressing β-catenin in ITGA9 KO cells reversed the inhibitory effect of ITGA9 KO on tumor growth and metastasis. Furthermore, ITGA9 downregulation in TNBC tumors by nanoparticle-mediated delivery of ITGA9 siRNA drastically decreased tumor angiogenesis, tumor growth and metastasis. These findings indicate that ITGA9 depletion suppresses TNBC tumor growth and metastasis by promoting β-catenin degradation through the ILK/PKA/GSK3 pathway.
Collapse
Affiliation(s)
- Zhishan Wang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Yunfei Li
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Yajuan Xiao
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY.,Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Ping Yang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY.,School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Brock Humphries
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
40
|
Zuo H, Cattani-Cavalieri I, Valença SS, Musheshe N, Schmidt M. Function of cAMP scaffolds in obstructive lung disease: Focus on epithelial-to-mesenchymal transition and oxidative stress. Br J Pharmacol 2019; 176:2402-2415. [PMID: 30714124 PMCID: PMC6592852 DOI: 10.1111/bph.14605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, research has defined cAMP as one of the central cellular nodes in sensing and integrating multiple pathways and as a pivotal role player in lung pathophysiology. Obstructive lung disorders, such as chronic obstructive pulmonary disease (COPD), are characterized by a persistent and progressive airflow limitation and by oxidative stress from endogenous and exogenous insults. The extent of airflow obstruction depends on the relative deposition of different constituents of the extracellular matrix, a process related to epithelial-to-mesenchymal transition, and which subsequently results in airway fibrosis. Oxidative stress from endogenous and also from exogenous sources causes a profound worsening of COPD. Here we describe how cAMP scaffolds and their different signalosomes in different subcellular compartments may contribute to COPD. Future research will require translational studies to alleviate disease symptoms by pharmacologically targeting the cAMP scaffolds. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Isabella Cattani-Cavalieri
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Urizar-Arenaza I, Osinalde N, Akimov V, Puglia M, Candenas L, Pinto FM, Muñoa-Hoyos I, Gianzo M, Matorras R, Irazusta J, Blagoev B, Subiran N, Kratchmarova I. Phosphoproteomic and Functional Analyses Reveal Sperm-specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol Cell Proteomics 2019; 18:S118-S131. [PMID: 30622161 PMCID: PMC6427232 DOI: 10.1074/mcp.ra118.001133] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
G-protein coupled receptors (GPCRs) belong to the seven transmembrane receptor superfamily that transduce signals via G proteins in response to external stimuli to initiate different intracellular signaling pathways which culminate in specific cellular responses. The expression of diverse GPCRs at the plasma membrane of human spermatozoa suggests their involvement in the regulation of sperm fertility. However, the signaling events downstream of many GPCRs in spermatozoa remain uncharacterized. Here, we selected the kappa-opioid receptor (KOR) as a study model and applied phosphoproteomic approach based on TMT labeling and LC-MS/MS analyses. Quantitative coverage of more than 5000 proteins with over 3500 phosphorylation sites revealed changes in the phosphorylation levels of sperm-specific proteins involved in the regulation of the sperm fertility in response to a specific agonist of KOR, U50488H. Further functional studies indicate that KOR could be involved in the regulation of sperm fertile capacity by modulation of calcium channels. Our findings suggest that human spermatozoa possess unique features in the molecular mechanisms downstream of GPCRs which could be key regulators of sperm fertility and improved knowledge of these specific processes may contribute to the development of useful biochemical tools for diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Itziar Urizar-Arenaza
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba, Spain, 01006
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Sevilla, Spain, 41092
| | | | - Iraia Muñoa-Hoyos
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Marta Gianzo
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Roberto Matorras
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Jon Irazusta
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Nerea Subiran
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903;.
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320;.
| |
Collapse
|
42
|
Xie K, Fu C, Wang S, Xu H, Liu S, Shao Y, Gong Z, Wu X, Xu B, Han J, Xu J, Xu P, Jia X, Wu J. Cancer-testis antigens in ovarian cancer: implication for biomarkers and therapeutic targets. J Ovarian Res 2019; 12:1. [PMID: 30609934 PMCID: PMC6318940 DOI: 10.1186/s13048-018-0475-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer remains the most fatal gynecologic malignancy worldwide due to delayed diagnosis as well as recurrence and drug resistance. Thus, the development of new tumor-related molecules with high sensitivity and specificity to replace or supplement existing tools is urgently needed. Cancer-testis antigens (CTAs) are exclusively expressed in normal testis tissues but abundantly found in several types of cancers, including ovarian cancer. Numerous novel CTAs have been identified by high-throughput sequencing techniques, and some aberrantly expressed CTAs are associated with ovarian cancer initiation, clinical outcomes and chemotherapy resistance. More importantly, CTAs are immunogenic and may be novel targets for antigen-specific immunotherapy in ovarian cancer. In this review, we attempt to characterize the expression of candidate CTAs in ovarian cancer and their clinical significance as biomarkers, activation mechanisms, function in malignant phenotypes and applications in immunotherapy.
Collapse
Affiliation(s)
- Kaipeng Xie
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Chenyang Fu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Suli Wang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Hanzi Xu
- Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Siyu Liu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yang Shao
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Zhen Gong
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiaoli Wu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Han
- Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Juan Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Pengfei Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xuemei Jia
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Jiangping Wu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| |
Collapse
|
43
|
Cooper CD, Erickson SD, Yin S, Moravec T, Peh B, Curran K. Protein Kinase A Signaling Inhibits Iridophore Differentiation in Zebrafish. J Dev Biol 2018; 6:jdb6040023. [PMID: 30261583 PMCID: PMC6315511 DOI: 10.3390/jdb6040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
In zebrafish (Danio rerio), iridophores are specified from neural crest cells and represent a tractable system for examining mechanisms of cell fate and differentiation. Using this system, we have investigated the role of cAMP protein kinase A (PKA) signaling in pigment cell differentiation. Activation of PKA with the adenylyl cyclase activator forskolin reduces the number of differentiated iridophores in wildtype larvae, with insignificant changes to melanophore number. Inhibition of PKA with H89 significantly increases iridophore number, supporting a specific role for PKA during iridophore development. To determine the effects of altering PKA activity on iridophore and melanophore gene expression, we examined expression of iridophore marker pnp4a, melanophore marker mitfa, and the mitfa repressor foxd3. Consistent with our cell counts, forskolin significantly decreased pnp4a expression as detected by in situ hybridization and quantification of pnp4a+ cells. Forskolin had the opposite effect on mitfa and foxd3 gene activity, increasing the area of expression. As mitfa/nacre mutants have extra iridophores as compared to wildtype larvae, we examined the function of mitfa during PKA-sensitive iridophore development. Forskolin treatment of mitfa/nacre mutants did significantly reduce the number of iridophores but to a lesser extent than that observed in treated wildtype larvae. Taken together, our data suggests that PKA inhibits iridophore development in a subset of iridophore precursors, potentially via a foxd3-independent pathway.
Collapse
Affiliation(s)
- Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Steve D Erickson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Scott Yin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Trevor Moravec
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Brian Peh
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Kevin Curran
- Department of Biology, University of San Diego, San Diego, CA 92110, USA.
| |
Collapse
|
44
|
The origin of GSKIP, a multifaceted regulatory factor in the mammalian Wnt pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1046-1059. [DOI: 10.1016/j.bbamcr.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022]
|
45
|
Ramirez-Sarmiento CA, Komives EA. Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions. Methods 2018; 144:43-52. [PMID: 29627358 DOI: 10.1016/j.ymeth.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022] Open
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDXMS) has emerged as a powerful approach for revealing folding and allostery in protein-protein interactions. The advent of higher resolution mass spectrometers combined with ion mobility separation and ultra performance liquid chromatographic separations have allowed the complete coverage of large protein sequences and multi-protein complexes. Liquid-handling robots have improved the reproducibility and accurate temperature control of the sample preparation. Many researchers are also appreciating the power of combining biophysical approaches such as stopped-flow fluorescence, single molecule FRET, and molecular dynamics simulations with HDXMS. In this review, we focus on studies that have used a combination of approaches to reveal (re)folding of proteins as well as on long-distance allosteric changes upon interaction.
Collapse
Affiliation(s)
- Cesar A Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States.
| |
Collapse
|
46
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
47
|
Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2. Bioorg Med Chem 2018; 26:1174-1178. [PMID: 29449124 DOI: 10.1016/j.bmc.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/20/2022]
Abstract
Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD-2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors.
Collapse
|
48
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
49
|
Gu Y, Xu W, Zhuang B, Fu W. Role of A-kinase anchoring protein 95 in the regulation of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in human ovarian granulosa cells. Reprod Fertil Dev 2018; 30:1128-1136. [DOI: 10.1071/rd17313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/02/2018] [Indexed: 11/23/2022] Open
Abstract
Irregular expression of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) is involved in the development of polycystic ovary syndrome (PCOS). Activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway plays a crucial role in FSH regulation of CYP19A1 in human ovarian granulosa cells. A-Kinase anchor protein 95 (AKAP95) is known to confine PKA to the nucleus. However, it is unclear whether anchoring PKA to the nucleus is essential for the induction of CYP19A1 by FSH in human ovarian granulosa cells. Using the human granulosa cell line KGN and primary cultured human luteinised granulosa cells (hLGCs), we found that knockdown of AKAP8, the gene encoding AKAP95, or inhibition of AKAP95 reduced the amount of PKA anchored in the nucleus and attenuated the phosphorylation of CREB by either FSH or activation of the cAMP/PKA pathway. Moreover, knockdown of AKAP8 or inhibition of AKAP95 also significantly attenuated FSH-induced CYP19A1 expression and oestrogen synthesis. Furthermore, significant decreases in AKAP95 and CYP19A1 were observed in hLGCs obtained from PCOS patients. The results of the present study demonstrate a crucial role for AKAP95 in CYP19A1 expression and oestrogen synthesis in hLGCs, which implies that AKAP95 may be involved in the pathogenesis of PCOS.
Collapse
|
50
|
Reggi E, Diviani D. The role of A-kinase anchoring proteins in cancer development. Cell Signal 2017; 40:143-155. [DOI: 10.1016/j.cellsig.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|