1
|
Trang NM, Vinh LB, Phong NV, Yang SY. Anti-Inflammatory Activity of Labdane and Norlabdane Diterpenoids from Leonurus sibiricus Related to Modulation of MAPKs Signaling Pathway. PLANTA MEDICA 2025; 91:29-39. [PMID: 39395406 DOI: 10.1055/a-2440-5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Leonurus sibiricus, a widely cultivated herbaceous plant in Asian countries, exhibits diverse medicinal applications. Recent studies emphasize its pharmacological properties and efficacy in promoting bone health. In addition to the known compounds and their pharmacological activities, in this study, we isolated and elucidated two new labdane-type diterpenoids, (3R,5R,6S,10S)-3,6-dihydroxy-15-ethoxy-7-oxolabden-8(9),13(14)-dien-15,16-olide (1: ) and (4R,5R,10S)-18-hydroxy-14,15-bisnorlabda-8-en-7,13-dione (2: ), a new natural phenolic compound, and a known compound from L. sibiricus using advanced spectroscopic techniques, including circular dichroism spectroscopy, high-resolution mass spectrometry, and 1- and 2-dimensional NMR. Among these, compound 1: demonstrated potent inhibition of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression levels, followed by compound 2: . Whereas compounds 3: and 4: did not exhibit effectiveness in RAW264.7 macrophages. Moreover, compound 1: suppressed pro-inflammatory markers induced by lipopolysaccharide (LPS) stimulation. Compound 1: also suppressed iNOS and cyclooxygenase-2 (COX-2) protein levels and downregulated pro-inflammatory cytokines. Additionally, compound 1: showed inhibition of the phosphorylation of p38, JNK, and ERK, key mediators of the MAPK signaling pathway. These findings indicate that a natural-derived product, compound 1,: might be a potential candidate as an anti-inflammation mediator.
Collapse
Affiliation(s)
- Nguyen Minh Trang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Le Ba Vinh
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Kulhari U, Rajanan A, Ambujakshan A, Verma S, Mugale MN, Sahu BD. Biochanin A mitigates ulcerative colitis and intestinal inflammation in mice by inhibiting MAPK/NF-kB (p65) axis. J Biochem Mol Toxicol 2024; 38:e23738. [PMID: 38764152 DOI: 10.1002/jbt.23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 μM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1β (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.
Collapse
Affiliation(s)
- Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Ashitha Rajanan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Anju Ambujakshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Smriti Verma
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, India
| |
Collapse
|
3
|
Nguyen TV, Vo CT, Vo VM, Nguyen CTT, Pham TM, Piao CH, Fan YJ, Chai OH, Bui TT. Phaeanthus vietnamensis Ban Ameliorates Lower Airway Inflammation in Experimental Asthmatic Mouse Model via Nrf2/HO-1 and MAPK Signaling Pathway. Antioxidants (Basel) 2023; 12:1301. [PMID: 37372031 DOI: 10.3390/antiox12061301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease listed as one of the top global health problems. Phaeanthus vietnamensis BÂN is a well-known medicinal plant in Vietnam with its anti-oxidant, anti-microbial, anti-inflammatory potential, and gastro-protective properties. However, there is no study about P. vietnamensis extract (PVE) on asthma disease. Here, an OVA-induced asthma mouse model was established to evaluate the anti-inflammatory and anti-asthmatic effects and possible mechanisms of PVE. BALB/c mice were sensitized by injecting 50 μg OVA into the peritoneal and challenged by nebulization with 5% OVA. Mice were orally administered various doses of PVE once daily (50, 100, 200 mg/kg) or dexamethasone (Dex; 2.5 mg/kg) or Saline 1 h before the OVA challenge. The cell infiltrated in the bronchoalveolar lavage fluid (BALF) was analyzed; levels of OVA-specific immunoglobulins in serum, cytokines, and transcription factors in the BALF were measured, and lung histopathology was evaluated. PVE, especially PVE 200mg/kg dose, could improve asthma exacerbation by balancing the Th1/Th2 ratio, reducing inflammatory cells in BALF, depressing serum anti-specific OVA IgE, anti-specific OVA IgG1, histamine levels, and retrieving lung histology. Moreover, the PVE treatment group significantly increased the expressions of antioxidant enzymes Nrf2 and HO-1 in the lung tissue and the level of those antioxidant enzymes in the BALF, decreasing the oxidative stress marker MDA level in the BALF, leading to the relieving the activation of MAPK signaling in asthmatic condition. The present study demonstrated that Phaeanthus vietnamensis BÂN, traditionally used in Vietnam as a medicinal plant, may be used as an efficacious agent for treating asthmatic disease.
Collapse
Affiliation(s)
- Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Chau Tuan Vo
- Faculty of Biology and Environmental Science, University of Science and Education, The University of Danang, Danang 59000, Vietnam
| | - Van Minh Vo
- Faculty of Biology and Environmental Science, University of Science and Education, The University of Danang, Danang 59000, Vietnam
| | - Cong Thuy Tram Nguyen
- Faculty of Biology and Environmental Science, University of Science and Education, The University of Danang, Danang 59000, Vietnam
| | - Thi My Pham
- Faculty of Biology and Environmental Science, University of Science and Education, The University of Danang, Danang 59000, Vietnam
| | - Chun Hua Piao
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, Republic of Korea
- Institute for Medical Sciences, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Thi Tho Bui
- Faculty of Biology and Environmental Science, University of Science and Education, The University of Danang, Danang 59000, Vietnam
| |
Collapse
|
4
|
Shin J, Choi LS, Jeon HJ, Lee HM, Kim SH, Kim KW, Ko W, Oh H, Park HS. Synthetic Glabridin Derivatives Inhibit LPS-Induced Inflammation via MAPKs and NF-κB Pathways in RAW264.7 Macrophages. Molecules 2023; 28:molecules28052135. [PMID: 36903379 PMCID: PMC10004008 DOI: 10.3390/molecules28052135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Glabridin is a polyphenolic compound with reported anti-inflammatory and anti-oxidative effects. In the previous study, we synthesized glabridin derivatives-HSG4112, (S)-HSG4112, and HGR4113-based on the structure-activity relationship study of glabridin to improve its biological efficacy and chemical stability. In the present study, we investigated the anti-inflammatory effects of the glabridin derivatives in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We found that the synthetic glabridin derivatives significantly and dose-dependently suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and decreased the level of inducible nitric oxygen synthase (iNOS) and cyclooxygenase-2 (COX-2) and the expression of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). The synthetic glabridin derivatives inhibited the nuclear translocation of the NF-κB by inhibiting phosphorylation of the inhibitor of κB alpha (IκB-α), and distinctively inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. In addition, the compounds increased the expression of antioxidant protein heme oxygenase (HO-1) by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) through ERK and p38 MAPKs. Taken together, these results indicate that the synthetic glabridin derivatives exert strong anti-inflammatory effects in LPS-stimulated macrophages through MAPKs and NF-κB pathways, and support their development as potential therapeutics against inflammatory diseases.
Collapse
Affiliation(s)
- Jaejin Shin
- Glaceum Inc., Suwon 16675, Republic of Korea
| | | | | | - Hyeong Min Lee
- Glaceum Inc., Suwon 16675, Republic of Korea
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | | | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Wonmin Ko
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | | |
Collapse
|
5
|
Kim G, Jang G, Song J, Kim D, Lee S, Joo JWJ, Jang W. A transcriptome-wide association study of uterine fibroids to identify potential genetic markers and toxic chemicals. PLoS One 2022; 17:e0274879. [PMID: 36174000 PMCID: PMC9521910 DOI: 10.1371/journal.pone.0274879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Uterine fibroid is one of the most prevalent benign tumors in women, with high socioeconomic costs. Although genome-wide association studies (GWAS) have identified several loci associated with uterine fibroid risks, they could not successfully interpret the biological effects of genomic variants at the gene expression levels. To prioritize uterine fibroid susceptibility genes that are biologically interpretable, we conducted a transcriptome-wide association study (TWAS) by integrating GWAS data of uterine fibroid and expression quantitative loci data. We identified nine significant TWAS genes including two novel genes, RP11-282O18.3 and KBTBD7, which may be causal genes for uterine fibroid. We conducted functional enrichment network analyses using the TWAS results to investigate the biological pathways in which the overall TWAS genes were involved. The results demonstrated the immune system process to be a key pathway in uterine fibroid pathogenesis. Finally, we carried out chemical–gene interaction analyses using the TWAS results and the comparative toxicogenomics database to determine the potential risk chemicals for uterine fibroid. We identified five toxic chemicals that were significantly associated with uterine fibroid TWAS genes, suggesting that they may be implicated in the pathogenesis of uterine fibroid. In this study, we performed an integrative analysis covering the broad application of bioinformatics approaches. Our study may provide a deeper understanding of uterine fibroid etiologies and informative notifications about potential risk chemicals for uterine fibroid.
Collapse
Affiliation(s)
- Gayeon Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Gyuyeon Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Daeun Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Sora Lee
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jong Wha J. Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Nagahawatta D, Liyanage N, Jayawardhana H, Lee HG, Jayawardena TU, Jeon YJ. Anti-Fine Dust Effect of Fucoidan Extracted from Ecklonia maxima Laves in Macrophages via Inhibiting Inflammatory Signaling Pathways. Mar Drugs 2022; 20:413. [PMID: 35877707 PMCID: PMC9319110 DOI: 10.3390/md20070413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Brown seaweeds contain fucoidan, which has numerous biological activities. Here, the anti-fine-dust activity of fucoidan extracted from Ecklonia maxima, an abundant brown seaweed from South Africa, was explored. Fourier transmittance infrared spectroscopy, high-performance anion-exchange chromatography with pulsed amperometric detection analysis of the monosaccharide content, and nuclear magnetic resonance were used for the structural characterization of the polysaccharides. The toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were evaluated. The results revealed that E. maxima purified leaf fucoidan fraction 7 (EMLF7), which contained the highest sulfate content, showed the best anti-inflammatory activity by attenuating the TLR-mediated NF-κB/MAPK protein expressions in the particulate matter-stimulated cells. This was solidified by the successful reduction of Prostaglandin E2, NO, and pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β. The current findings confirm the anti-inflammatory activity of EMLF7, as well as the potential use of E. maxima as a low-cost fucoidan source due to its abundance. This suggests its further application as a functional ingredient in consumer products.
Collapse
Affiliation(s)
- D.P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (N.M.L.); (H.H.A.C.K.J.); (H.-G.L.)
| | - N.M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (N.M.L.); (H.H.A.C.K.J.); (H.-G.L.)
| | - H.H.A.C.K. Jayawardhana
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (N.M.L.); (H.H.A.C.K.J.); (H.-G.L.)
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (N.M.L.); (H.H.A.C.K.J.); (H.-G.L.)
| | - Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (N.M.L.); (H.H.A.C.K.J.); (H.-G.L.)
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children’s Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (N.M.L.); (H.H.A.C.K.J.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
7
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Li WY, Lee CY, Lee KM, Zhang G, Lyu A, Yue KKM. Advanced Glycation End-Product Precursor Methylglyoxal May Lead to Development of Alzheimer's Disease. Diabetes Metab Syndr Obes 2022; 15:3153-3166. [PMID: 36262805 PMCID: PMC9575592 DOI: 10.2147/dmso.s382927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is characterized by chronic hyperglycemia and diabetic complications. Exacerbated cortical neuronal degeneration was observed in Alzheimer's disease (AD) patients with DM. In fact, DM is now considered a risk factor of AD, as DM-induced activation of stress responses in the central nervous system (CNS) such as oxidative stress and neuroinflammation may lead to various neurodegenerative disorders. Methylglyoxal (MG) is one of the most reactive advanced glycation end-product (AGE) precursors. Abnormal accumulation of MG is observed in the serum of diabetic patients. As MG is reported to promote brain cells impairment in the CNS, and it is found that AGEs are abnormally increased in the brains of AD patients. Therefore, the effect of MG causing subsequent symptoms of AD was investigated. METHODS 5-week-old C57BL/6 mice were intraperitoneally injected with MG solution for 11 weeks. The Morris water maze (MWM) was used to examine the spatial learning ability and cognition of mice. After MG treatment, MTT assay, real-time PCR analyses, and Western blot were performed to assess the harvested astrocytes and hippocampi. RESULTS Significantly longer escape latency and reduced percentage time spent in the target quadrant were observed in the 9-week-MG-treated mice. We have found in both in vitro and in vivo models that MG induced astrogliosis, pro-inflammatory cytokines, AD-related markers, and ERK activation. Further, trend of normalization of the tested markers mRNA expressions were observed after ERK inhibition. CONCLUSION Our in vivo results suggested that MG could induce AD symptoms and in vitro results implied that ERK may regulate the promotion of inflammation and Aβ formation in MG-induced reactive astrocytes. Taken together, MG may participate in the dysfunction of brain cells resulting in possible diabetes-related neurodegeneration by promoting astrogliosis, Aβ production, and neuroinflammation through the ERK pathway. Our findings provide insight of targeting ERK as a therapeutic application for diabetes-induced AD.
Collapse
Affiliation(s)
- Wai Yin Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Cheuk Yan Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Kwan Ming Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Kevin Kin Man Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China
- Correspondence: Kevin Kin Man Yue, 4/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Kowloon, Tel +852 3411 2468, Email
| |
Collapse
|
9
|
Oh S, Yang J, Park C, Son K, Byun K. Dieckol Attenuated Glucocorticoid-Induced Muscle Atrophy by Decreasing NLRP3 Inflammasome and Pyroptosis. Int J Mol Sci 2021; 22:8057. [PMID: 34360821 PMCID: PMC8348567 DOI: 10.3390/ijms22158057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dexamethasone (Dexa), frequently used as an anti-inflammatory agent, paradoxically leads to muscle inflammation and muscle atrophy. Receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) lead to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome formation through nuclear factor-κB (NF-κB) upregulation. NLRP3 inflammasome results in pyroptosis and is associated with the Murf-1 and atrogin-1 upregulation involved in protein degradation and muscle atrophy. The effects of Ecklonia cava extract (ECE) and dieckol (DK) on attenuating Dexa-induced muscle atrophy were evaluated by decreasing NLRP3 inflammasome formation in the muscles of Dexa-treated animals. The binding of AGE or high mobility group protein 1 to RAGE or TLR4 was increased by Dexa but significantly decreased by ECE or DK. The downstream signaling pathways of RAGE (c-Jun N-terminal kinase or p38) were increased by Dexa but decreased by ECE or DK. NF-κB, downstream of RAGE or TLR4, was increased by Dexa but decreased by ECE or DK. The NLRP3 inflammasome component (NLRP3 and apoptosis-associated speck-like), cleaved caspase -1, and cleaved gasdermin D, markers of pyroptosis, were increased by Dexa but decreased by ECE and DK. Interleukin-1β/Murf-1/atrogin-1 expression was increased by Dexa but restored by ECE or DK. The mean muscle fiber cross-sectional area and grip strength were decreased by Dexa but restored by ECE or DK. In conclusion, ECE or DK attenuated Dexa-induced muscle atrophy by decreasing NLRP3 inflammasome formation and pyroptosis.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.)
| | - Jinyoung Yang
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.)
| | - Chulhyun Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kukhui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.)
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| |
Collapse
|
10
|
Anti-Inflammatory Effects of Berchemia floribunda in LPS-Stimulated RAW264.7 Cells through Regulation of NF-κB and MAPKs Signaling Pathway. PLANTS 2021; 10:plants10030586. [PMID: 33808663 PMCID: PMC8003373 DOI: 10.3390/plants10030586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022]
Abstract
Berchemia floribunda (Wall.) Brongn. (BF), which belongs to Rhamnaceae, is a special plant of Anmyeon Island in Korea. BF has been reported to have antioxidant and whitening effects. However, the anti-inflammatory activity of BR has not been elucidated. In this study, we evaluated the anti-inflammatory effect of leaves (BR-L), branches (BR-B) and fruit (BR-F) extracted with 70% ethanol of BR and elucidated the potential signaling pathway in LPS-induced RAW264.7 cells. BR-L showed a strong anti-inflammatory activity through the inhibition of NO production. BR-L significantly suppressed the production of the pro-inflammatory mediators such as iNOS, COX-2, IL-1β, IL-6 and TNF-α in LPS-stimulated RAW264.7 cells. BR-L suppressed the degradation and phosphorylation of IκB-α, which contributed to the inhibition of p65 nuclear accumulation and NF-κB activation. BR-L obstructed the phosphorylation of MAPKs (ERK1/2, p38 and JNK) in LPS-stimulated RAW264.7 cells. Consequently, these results suggest that BR-L may have great potential for the development of anti-inflammatory drugs to treat acute and chronic inflammatory disorders.
Collapse
|
11
|
Ni L, Wang L, Fu X, Duan D, Jeon YJ, Xu J, Gao X. In vitro and in vivo anti-inflammatory activities of a fucose-rich fucoidan isolated from Saccharina japonica. Int J Biol Macromol 2020; 156:717-729. [PMID: 32289424 DOI: 10.1016/j.ijbiomac.2020.04.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022]
Abstract
A fucoidan (LJSF4) purified from Saccharina japonica was found to show a strong anti-inflammatory effect via activity assay in lipopolysaccharide (LPS) induced RAW 264.7 macrophage cells and zebrafish. Chemical and structural analysis indicated that LJSF4 with a sulfate content of 30.72% was composed of fucose, galactose, rhamnose, xylose and mannose with molar ratio percentages of 79.49%, 16.76%, 0.82%, 1.08% and 1.84%. NMR spectroscopy showed that LJSF4 is a polysaccharide with a backbone of alternating 1 → 3 linked α-l-fucopyranosyl and →4-α-l-fucopyranosyl with sulfate groups mainly at C-4 and partially at C-2 positions. Moreover, it also contained branches in the form of β-d-Galp-(1 → 4) units. The results of anti-inflammatory effect in vitro demonstrated that LJSF4 decreased the production of nitric oxide (NO) and cytokines, including TNF-α, IL-1β and IL-6. The mechanism revealed to be associated with the down-regulated expression of signal pathways including MAPK and NF-κB. By in vivo assay, LJSF4 showed a significantly protective effect by reducing the cell death rate, and the production of NO and ROS on LPS exposed zebrafish. Our results indicated that LJSF4 has the potential to be developed as an anti-inflammatory agent applied in functional food and cosmetic industries.
Collapse
Affiliation(s)
- Liying Ni
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China.
| | - Delin Duan
- State Key Lab of Seaweed Bioactive Substances, 1th Daxueyuan Road, Qingdao, Shandong 266400, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao, Shandong 266071, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| |
Collapse
|
12
|
Dietary Silk Peptide Inhibits LPS-Induced Inflammatory Responses by Modulating Toll-Like Receptor 4 (TLR4) Signaling. Biomolecules 2020; 10:biom10050771. [PMID: 32429220 PMCID: PMC7277379 DOI: 10.3390/biom10050771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Acid-hydrolyzed silk peptide (SP) is a valuable material that has been used traditionally to treat various diseases, however, the mechanism by which it affects inflammatory responses is unknown. To examine the effects of SP on inflammatory responses, we used macrophages as a vehicle for examining signaling via toll-like receptor 4 (TLR4), which plays an important role in innate immune responses to pathogenic infections and pathogen-derived molecules such as lipopolysaccharide (LPS). We then confirmed the anti-inflammatory effects of SP by examining lymph node, spleen, and serum samples from C57BL/6 mice injected with LPS. We also used LPS-induced bone marrow-derived macrophages and RAW264.7 cells (a murine macrophage cell line) to identify the mechanism by which SP modulates immune responses via the TLR4 signaling pathway. In addition, we showed that SP prevents LPS-induced production of nitric oxide and reactive oxygen species. In summary, SP inhibits LPS-induced inflammatory responses by modulating the TLR4 signaling pathway.
Collapse
|
13
|
Wallert M, Kluge S, Schubert M, Koeberle A, Werz O, Birringer M, Lorkowski S. Diversity of Chromanol and Chromenol Structures and Functions: An Emerging Class of Anti-Inflammatory and Anti-Carcinogenic Agents. Front Pharmacol 2020; 11:362. [PMID: 32372948 PMCID: PMC7187200 DOI: 10.3389/fphar.2020.00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Natural chromanols and chromenols comprise a family of molecules with enormous structural diversity and biological activities of pharmacological interest. A recently published systematic review described more than 230 structures that are derived from a chromanol ortpd chromenol core. For many of these compounds structure-activity relationships have been described with mostly anti-inflammatory as well as anti-carcinogenic activities. To extend the knowledge on the biological activity and the therapeutic potential of these promising class of natural compounds, we here present a report on selected chromanols and chromenols based on the availability of data on signaling pathways involved in inflammation, apoptosis, cell proliferation, and carcinogenesis. The chromanol and chromenol derivatives seem to bind or to interfere with several molecular targets and pathways, including 5-lipoxygenase, nuclear receptors, and the nuclear-factor "kappa-light-chain-enhancer" of activated B-cells (NFκB) pathway. Interestingly, available data suggest that the chromanols and chromenols are promiscuitively acting molecules that inhibit enzyme activities, bind to cellular receptors, and modulate mitochondrial function as well as gene expression. It is also noteworthy that the molecular modes of actions by which the chromanols and chromenols exert their effects strongly depend on the concentrations of the compounds. Thereby, low- and high-affinity molecular targets can be classified. This review summarizes the available knowledge on the biological activity of selected chromanols and chromenols which may represent interesting lead structures for the development of therapeutic anti-inflammatory and chemopreventive approaches.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
- Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
14
|
Chan Y, Ng SW, Xin Tan JZ, Gupta G, Tambuwala MM, Bakshi HA, Dureja H, Dua K, Ishaq M, Caruso V, Chellappan DK. Emerging therapeutic potential of the iridoid molecule, asperuloside: A snapshot of its underlying molecular mechanisms. Chem Biol Interact 2020; 315:108911. [PMID: 31786185 DOI: 10.1016/j.cbi.2019.108911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
|
15
|
Sanjeewa KKA, Jayawardena TU, Lee HG, Herath KHINM, Jee Y, Jeon YJ. The protective effect of Sargassum horneri against particulate matter-induced inflammation in lung tissues of an in vivo mouse asthma model. Food Funct 2019; 10:7995-8004. [PMID: 31793623 DOI: 10.1039/c9fo02068c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sargassum horneri is an edible brown seaweed with potential anti-inflammatory properties. The present study was designed to evaluate the anti-inflammatory properties of S. horneri using an in vivo mouse asthma model following exposure to particulate matter (PM). 7-8 week old BALB/c mice (20-25 g) were randomly divided into seven groups (n = 4) as follows: 1: no treatment, 2: OVA (ovalbumin) + PM, 3: OVA + PM + SHE (S. horneri ethanol extract) 200 mg kg-1, 4: OVA + PM + SHE 400 mg kg-1, 5: OVA + PM + prednisone 5 mg kg-1, 6: OVA only, and 7: PM only. All mice (except healthy controls) were sensitized on the first day by intraperitoneal injection of 10 μg OVA and 2 mg Al(OH)3 in 200 μL of saline. Starting from day 15, mice (except groups 1 and 6) were exposed to sonicated PM (5 mg m-3, 30 min day-1) through a nebulizer daily for 7 consecutive days. Mice exposed to PM and OVA showed up-regulated expression of MAPKs and pro-inflammatory cytokine production in the lungs. Furthermore, PM-exposed lungs had significantly reduced expression of Nrf2 and HO-1 genes. However, oral administration of the SHE reduced the phosphorylation levels of MAPKs, iNOS and COX2 expression levels, and mRNA expression levels of pro-inflammatory cytokines. In addition, SHE treated group mice had up-regulated anti-oxidant gene expression levels in the lungs compared to group 2. These findings demonstrate that oral administration of the SHE re-establishes PM-induced inflammation and oxidative stress in the lungs. Taken together, the SHE has therapeutic potential in preventing PM-induced inflammation and oxidative stress.
Collapse
Affiliation(s)
- K K Asanka Sanjeewa
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | | | | | | | | | | |
Collapse
|
16
|
Wang K, Pramod SN, Pavase TR, Ahmed I, Lin H, Liu L, Tian S, Lin H, Li Z. An overview on marine anti-allergic active substances for alleviating food-induced allergy. Crit Rev Food Sci Nutr 2019; 60:2549-2563. [PMID: 31441662 DOI: 10.1080/10408398.2019.1650716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Food provides energy and various nutrients and is the most important substance for the survival of living beings. However, for allergic people, certain foods cause strong reactions, and sometimes even cause shock or death. Food allergy has been recognized by the World Health Organization (WHO) as a major global food safety issue which affect the quality of life of nearly 5% of adults and 8% of children, and the incidence continues to rise but there is no effective cure. Drug alleviation methods for food allergies often have shortcomings such as side effects, poor safety, and high cost. At present, domestic and foreign scientists have turned to research and develop various new, safe and efficient natural sources of hypoallergenic or anti-allergic drugs or foods. There are many kinds of anti-allergic substances obtained from the plants and animals have been reported. Besides, probiotics and bifidobacteria also have certain anti-allergic effects. Of all the sources of anti-allergic substances, the ocean is rich in effective active substances due to its remarkable biodiversity and extremely complex living environment, and plays a huge role in the field of anti-food allergy. In this paper, the anti-food allergic bioactive substances isolated from marine organisms encompassing marine microbial, plant, animal sources and their mechanism were reviewed and the possible targets of anti-allergic substances exerting effects are illustrated by drawing. In addition, the development prospects of marine anti-allergic market are discussed and forecasted, which can provide reference for future research on anti-allergic substances.
Collapse
Affiliation(s)
- Kexin Wang
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Siddanakoppalu Narayana Pramod
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hang Lin
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Liangyu Liu
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Shenglan Tian
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| |
Collapse
|
17
|
Moon SW, Ahn CB, Oh Y, Je JY. Lotus (Nelumbo nucifera) seed protein isolate exerts anti-inflammatory and antioxidant effects in LPS-stimulated RAW264.7 macrophages via inhibiting NF-κB and MAPK pathways, and upregulating catalase activity. Int J Biol Macromol 2019; 134:791-797. [DOI: 10.1016/j.ijbiomac.2019.05.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
18
|
Kim EA, Kim SY, Kim J, Oh JY, Kim HS, Yoon WJ, Kang DH, Heo SJ. Tuberatolide B isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and NF-κB signaling pathway in RAW264.7 cells and zebrafish model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
19
|
Uniyal S, Dhasmana A, Tyagi A, Muyal JP. ATRA reduces inflammation and improves alveolar epithelium regeneration in emphysematous rat lung. Biomed Pharmacother 2018; 108:1435-1450. [PMID: 30372846 DOI: 10.1016/j.biopha.2018.09.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Pulmonary emphysema characterized by alveolar wall destruction is resultant of persistent chronic inflammation. All-trans retinoic acid (ATRA) has been reported to reverse elastase-induced emphysema in rats. However, the underlying molecular mechanisms are so far unknown. OBJECTIVE To investigate the therapeutic potential effect of ATRA via the amelioration of the ERK/JAK-STAT pathways in the lungs of emphysematous rats. METHODS In silico analysis was done to find the binding efficiency of ATRA with receptor and ligands of ERK & JAK-STAT pathway. Emphysema was induced by porcine pancreatic elastase in Sprague-Dawley rats and ATRA was supplemented as therapy. Lungs were harvested for histopathological, genomics and proteomics analysis. RESULTS AND DISCUSSION In silico docking, analysis confirms that ATRA interferes with the normal binding of ligands (TNF-α, IL6ST) and receptors (TNFR1, IL6) of ERK/JAK-STAT pathways respectively. ATRA restored the histology, proteases/antiproteases balance, levels of inflammatory markers, antioxidants, expression of candidate genes of ERK and JAK-STAT pathways in the therapy group. CONCLUSION ATRA ameliorates ERK/JAK-STAT pathway in emphysema condition, resulting in alveolar epithelium regeneration. Hence, ATRA may prove to be a potential drug in the treatment of emphysema.
Collapse
Affiliation(s)
- Swati Uniyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| | - Anupam Dhasmana
- Himalayan School of Biosciences and Cancer Research Institute, Swami Rama Himalayan University, Dehradun, India.
| | - Amit Tyagi
- Division of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India.
| | - Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| |
Collapse
|
20
|
Koirala P, Jung HA, Choi JS. Recent advances in pharmacological research on Ecklonia species: a review. Arch Pharm Res 2017; 40:981-1005. [PMID: 28840539 PMCID: PMC7090987 DOI: 10.1007/s12272-017-0948-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
Abstract
The genus Ecklonia (Lessoniaceae, Phaeophyceae), commonly called kelp (brown algae), is abundant on the coasts of Japan and Korea. During the past few decades, Ecklonia species have received tremendous attention for their wide range of therapeutic properties and multiple health benefits, such as great nutritional value and being rich in vitamins, minerals, dietary fiber, proteins, and polysaccharides. Several novel functional ingredients with diversified biological activities have been isolated and possess antimicrobial, antiviral, hepatoprotective, cardioprotective, anti-inflammatory, neuroprotective, anticarcinogenic, immunomodulatory, hypolipidemic, anti-diabetic, and antioxidant therapeutic properties. The present review discusses the phytochemical, pharmacological, therapeutic, nutritional, and health benefits of different species of genus Ecklonia, as well as their use in the prevention of disease and maintenance of good health.
Collapse
Affiliation(s)
- Prashamsa Koirala
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|