1
|
Choi JW, Ha SO, Kim YJ, Shin JS, Choi MJ, Yu SE, Han J, Park EJ, Park KS, Kang JH. Characterization of Escherichia coli Strains for Novel Production of Plasmodium ovale Lactate Dehydrogenase. Microorganisms 2024; 12:876. [PMID: 38792706 PMCID: PMC11123484 DOI: 10.3390/microorganisms12050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Malaria is one of the most prevalent diseases worldwide with high incidence and mortality. Among the five species that can infect humans, Plasmodium ovale morphologically resembles Plasmodium vivax, resulting in misidentification and confusion in diagnosis, and is responsible for malarial disease relapse due to the formation of hypnozoites. P. ovale receives relatively less attention compared to other major parasites, such as P. falciparum and P. vivax, primarily due to its lower pathogenicity, mortality rates, and prevalence rates. To efficiently produce lactate dehydrogenase (LDH), a major target for diagnosing malaria, this study used three Escherichia coli strains, BL21(DE3), BL21(DE3)pLysS, and Rosetta(DE3), commonly used for recombinant protein production. These strains were characterized to select the optimal strain for P. ovale LDH (PoLDH) production. Gene cloning for recombinant PoLDH production and transformation of the three strains for protein expression were performed. The optimal PoLDH overexpression and washing buffer conditions in nickel-based affinity chromatography were established to ensure high-purity PoLDH. The yields of PoLDH expressed by the three strains were as follows: BL21(DE3), 7.6 mg/L; BL21(DE3)pLysS, 7.4 mg/L; and Rosetta(DE3), 9.5 mg/L. These findings are expected to be highly useful for PoLDH-specific diagnosis and development of antimalarial therapeutics.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Pharmaceutical and Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| | - Sang-Oh Ha
- Department of Pharmaceutical and Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| | - Yeon-Jun Kim
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jun-Seop Shin
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Min-Ji Choi
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Si-Eun Yu
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Junghun Han
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Eun-Ji Park
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Kyoung Sik Park
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Pharmaceutical and Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jung Hoon Kang
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Pharmaceutical and Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| |
Collapse
|
2
|
Heikal MF, Putra WE, Sustiprijatno, Rifa’i M, Hidayatullah A, Ningsih FN, Widiastuti D, Shuib AS, Zulfiani BF, Hanasepti AF. In Silico Screening and Molecular Dynamics Simulation of Potential Anti-Malarial Agents from Zingiberaceae as Potential Plasmodium falciparum Lactate Dehydrogenase (PfLDH) Enzyme Inhibitors. Trop Life Sci Res 2023; 34:1-20. [PMID: 38144376 PMCID: PMC10735256 DOI: 10.21315/tlsr2023.34.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/06/2022] [Indexed: 12/26/2023] Open
Abstract
Malaria continues to be a major public health issue in a number of countries, particularly in tropical regions-the emergence of drug-resistant Plasmodium falciparum encourages new drug discovery research. The key to Plasmodium falciparum survival is energy production up to 100 times greater than other parasites, primarily via the PfLDH. This study targets PfLDH with natural bioactive compounds from the Zingiberaceae family through molecular docking and molecular dynamic studies. Sulcanal, quercetin, shogosulfonic acid C, galanal A and naringenin are the Top 5 compounds with a lower binding energy value than chloroquine, which was used as a control in this study. By binding to NADH and substrate binding site residues, the majority of them are expected to inhibit pyruvate conversion to lactate and NAD+ regeneration. When compared to sulcanal and control drugs, the molecular dynamics (MD) simulation study indicated that quercetin may be the most stable molecule when interacting with PfLDH.
Collapse
Affiliation(s)
- Muhammad Fikri Heikal
- Tropical Medicine International Program, Faculty of Medicine, Khon Kaen University, 123, Mittraparp Highway, Muang District Khon Kaen 40002 Thailand
| | - Wira Eka Putra
- Biotechnology Study Program, Department of Applied Sciences, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Cakrawala No.5, Sumbersari, Kec. Lowokwaru, Kota Malang, 65145 East Java. Indonesia
| | - Sustiprijatno
- Research Center for Plant Conservation, Botanic Gardens and Forestry, National Research and Innovation Agency, Cibinong-Bogor, West Java, Indonesia
| | - Muhaimin Rifa’i
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Ketawanggede, Kec. Lowokwaru, Kota Malang, 65145 East Java, Indonesia
| | - Arief Hidayatullah
- Health Governance Initiative, United Nations Development Programme Indonesia, Eijkman-RSCM Building, Jakarta, Indonesia
| | - Febby Nurdiya Ningsih
- Research Center for Vaccine and Drug, National Research and Innovation Agency, South Tangerang, Indonesia
| | - Diana Widiastuti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Jl. Pakuan, Tegallega. Kecamatan Bogor Tengah, Kota Bogor, 16143 West Java, Indonesia
| | - Adawiyah Suriza Shuib
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Baiq Feby Zulfiani
- Biotechnology Study Program, Department of Applied Sciences, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Cakrawala No.5, Sumbersari, Kec. Lowokwaru, Kota Malang, 65145 East Java. Indonesia
| | - Afrabias Firyal Hanasepti
- Biotechnology Study Program, Department of Applied Sciences, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Cakrawala No.5, Sumbersari, Kec. Lowokwaru, Kota Malang, 65145 East Java. Indonesia
| |
Collapse
|
3
|
An update on cerebral malaria for therapeutic intervention. Mol Biol Rep 2022; 49:10579-10591. [PMID: 35670928 DOI: 10.1007/s11033-022-07625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral malaria is often pronounced as a major life-threatening neurological complication of Plasmodium falciparum infection. The complex pathogenic landscape of the parasite and the associated neurological complications are still not elucidated properly. The growing concerns of drugresistant parasite strains along with the failure of anti-malarial drugs to subdue post-recovery neuro-cognitive dysfunctions in cerebral malaria patients have called for a demand to explore novel biomarkers and therapeutic avenues. Due course of the brain infection journey of the parasite, events such as sequestration of infected RBCs, cytoadherence, inflammation, endothelial activation, and blood-brain barrier disruption are considered critical. METHODS In this review, we briefly summarize the diverse pathogenesis of the brain-invading parasite associated with loss of the blood-brain barrier integrity. In addition, we also discuss proteomics, transcriptomics, and bioinformatics strategies to identify an array of new biomarkers and drug candidates. CONCLUSION A proper understanding of the parasite biology and mechanism of barrier disruption coupled with emerging state-of-art therapeutic approaches could be helpful to tackle cerebral malaria.
Collapse
|
4
|
Nate Z, Gill AA, Chauhan R, Karpoormath R. Recent progress in electrochemical sensors for detection and quantification of malaria. Anal Biochem 2022; 643:114592. [DOI: 10.1016/j.ab.2022.114592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
|
5
|
Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJI. Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling. eLife 2021; 10:e73080. [PMID: 34939933 PMCID: PMC8860437 DOI: 10.7554/elife.73080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding Australian National Health and Medical Research Council, Wellcome Trust.
Collapse
Affiliation(s)
- Ellen A Kearney
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Paul A Agius
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Julia C Cutts
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Department of Medicine at the Doherty Institute, The University of MelbourneMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Freya JI Fowkes
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| |
Collapse
|
6
|
Salim NO, Fuad FAA, Khairuddin F, Seman WMKW, Jonet MA. Purifying and Characterizing Bacterially Expressed Soluble Lactate Dehydrogenase from Plasmodium knowlesi for the Development of Anti-Malarial Drugs. Molecules 2021; 26:molecules26216625. [PMID: 34771034 PMCID: PMC8588329 DOI: 10.3390/molecules26216625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Plasmodium lactate dehydrogenase (pLH) is one of the enzymes in glycolysis with potential target for chemotherapy. This study aimed to clone, overexpress and characterize soluble recombinant lactate dehydrogenase from Plasmodium knowlesi in a bacterial system. Synthetic P. knowlesi lactate dehydrogenase (Pk-LDH) gene was cloned into pET21a expression vector, transformed into Escherichia coli strain BL21 (DE3) expression system and then incubated for 18 h, 20 °C with the presence of 0.5 mM isopropyl β-d-thiogalactoside in Terrific broth supplemented with Magnesium sulfate, followed by protein purifications using Immobilized Metal Ion Affinity Chromatography and size exclusion chromatography (SEC). Enzymatic assay was conducted to determine the activity of the enzyme. SDS-PAGE analysis revealed that protein of 34 kDa size was present in the soluble fraction. In SEC, a single peak corresponding to the size of Pk-LDH protein was observed, indicating that the protein has been successfully purified. From MALDI-TOF analysis findings, a peptide score of 282 was established, which is significant for lactate dehydrogenase from P. knowlesi revealed via MASCOT analysis. Secondary structure analysis of CD spectra indicated 79.4% α helix and 1.37% β strand structure. Specific activity of recombinant Pk-LDH was found to be 475.6 U/mg, confirming the presence of active protein. Soluble Pk-LDH that is biologically active was produced, which can be used further in other malaria studies.
Collapse
Affiliation(s)
- Nurhainis Ogu Salim
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur 50728, W.P. Kuala Lumpur, Malaysia;
- Parasitology Unit, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health Malaysia NIH Complex, Bandar Setia Alam, Shah Alam 40170, Selangor, Malaysia
| | - Fazia Adyani Ahmad Fuad
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur 50728, W.P. Kuala Lumpur, Malaysia;
- Correspondence: ; Tel.: +603-6421-4577
| | - Farahayu Khairuddin
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (F.K.); (W.M.K.W.S.); (M.A.J.)
| | - Wan Mohd Khairulikhsan Wan Seman
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (F.K.); (W.M.K.W.S.); (M.A.J.)
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (F.K.); (W.M.K.W.S.); (M.A.J.)
| |
Collapse
|
7
|
The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum. Parasitology 2020; 147:1255-1262. [PMID: 32618524 DOI: 10.1017/s003118202000102x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmodium falciparum is the main cause of severe malaria in humans that can lead to death. There is growing evidence of drug-resistance in P. falciparum treatment, and the design of effective vaccines remains an ongoing strategy to control the disease. On the other hand, the recognition of specific diagnostic markers for P. falciparum can accelerate the diagnosis of this parasite in the early stages of infection. Therefore, the identification of novel antigenic proteins especially by proteomic tools is urgent for vaccination and diagnosis of P. falciparum. The proteome diversity of the life cycle stages of P. falciparum, the altered proteome of P. falciparum-infected human sera and altered proteins in P. falciparum-infected erythrocytes could be proposed as appropriate proteins for the aforementioned aims. Accordingly, this review highlights and proposes different proteins identified using proteomic approaches as promising markers in the diagnosis and vaccination of P. falciparum. It seems that most of the candidates identified in this study were able to elicit immune responses in the P. falciparum-infected hosts and they also played major roles in the life cycle, pathogenicity and key pathways of this parasite.
Collapse
|
8
|
Glutamate dehydrogenase: a novel candidate to diagnose Plasmodium falciparum through rapid diagnostic test in blood specimen from fever patients. Sci Rep 2020; 10:6307. [PMID: 32286365 PMCID: PMC7156408 DOI: 10.1038/s41598-020-62850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
In recent years, Plasmodium falciparum histidine-rich protein 2 gene deletion has been reported in India. Such isolates are prone to selective transmission and thus form a challenge to case management. As most of the rapid malaria diagnostic tests are based on the detection of HRP2 protein in the blood, we attempted to use Glutamate Dehydrogenase (GDH) as a biomarker for the diagnosis of P. falciparum. Recombinant PfGDH was successfully cloned, expressed and purified using the Ni-NTA approach. Polyclonal antibodies were raised against full-length rPfGDH and its peptides. Antibodies for rPfGDH showed a strong immune response against the recombinant protein. However, antibody showed no affinity towards the peptides, which suggests they failed as antigen. Antibodies for rPfGDH significantly detected the GDH in human blood specimens. This is the first report where P. falciparum GDH was detected in malaria cases from various parts of India. The raised polyclonal antibodies had shown an affinity for PfGDH in quantitative ELISA and are capable to be exploited for RDTs. This research needs further statistical validation on a large number and different sample types from candidates infected with P. falciparum and other species.
Collapse
|
9
|
Ghosh S, Aggarwal K, U. VT, Nguyen T, Han J, Ahn CH. A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria. MICROSYSTEMS & NANOENGINEERING 2020; 6:5. [PMID: 34567620 PMCID: PMC8433401 DOI: 10.1038/s41378-019-0108-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/30/2019] [Accepted: 09/17/2019] [Indexed: 05/06/2023]
Abstract
There has been a considerable development in microfluidic based immunodiagnostics over the past few years which has greatly favored the growth of novel point-of-care-testing (POCT). However, the realization of an inexpensive, low-power POCT needs cheap and disposable microfluidic devices that can perform autonomously with minimum user intervention. This work, for the first time, reports the development of a new microchannel capillary flow assay (MCFA) platform that can perform chemiluminescence based ELISA with lyophilized chemiluminescent reagents. This new MCFA platform exploits the ultra-high sensitivity of chemiluminescent detection while eliminating the shortcomings associated with liquid reagent handling, control of assay sequence and user intervention. The functionally designed microchannels along with adequate hydrophilicity produce a sequential flow of assay reagents and autonomously performs the ultra-high sensitive chemiluminescence based ELISA for the detection of malaria biomarker such as PfHRP2. The MCFA platform with no external flow control and simple chemiluminescence detection can easily communicate with smartphone via USB-OTG port using a custom-designed optical detector. The use of the smartphone for display, data transfer, storage and analysis, as well as the source of power allows the development of a smartphone based POCT analyzer for disease diagnostics. This paper reports a limit of detection (LOD) of 8 ng/mL by the smartphone analyzer which is sensitive enough to detect active malarial infection. The MCFA platform developed with the smartphone analyzer can be easily customized for different biomarkers, so a hand-held POCT for various infectious diseases can be envisaged with full networking capability at low cost.
Collapse
Affiliation(s)
- Sthitodhi Ghosh
- Department of Electrical Engineering and Computer Science, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Kashish Aggarwal
- Department of Electrical Engineering and Computer Science, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Vinitha T. U.
- Department of Electrical Engineering and Computer Science, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Thinh Nguyen
- Department of Electrical Engineering and Computer Science, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Jungyoup Han
- Mico BioMed USA Inc., 10999 Reed Hartman Highway, STE 309C, Cincinnati, OH 45242 USA
| | - Chong H. Ahn
- Department of Electrical Engineering and Computer Science, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 USA
| |
Collapse
|
10
|
Beri D, Ramdani G, Balan B, Gadara D, Poojary M, Momeux L, Tatu U, Langsley G. Insights into physiological roles of unique metabolites released from Plasmodium-infected RBCs and their potential as clinical biomarkers for malaria. Sci Rep 2019; 9:2875. [PMID: 30814599 PMCID: PMC6393545 DOI: 10.1038/s41598-018-37816-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022] Open
Abstract
Plasmodium sp. are obligate intracellular parasites that derive most of their nutrients from their host meaning the metabolic circuitry of both are intricately linked. We employed untargeted, global mass spectrometry to identify metabolites present in the culture supernatants of P. falciparum-infected red blood cells synchronized at ring, trophozoite and schizont developmental stages. This revealed a temporal regulation in release of a distinct set of metabolites compared with supernatants of non-infected red blood cells. Of the distinct metabolites we identified pipecolic acid to be abundantly present in parasite lysate, infected red blood cells and infected culture supernatant. Further, we performed targeted metabolomics to quantify pipecolic acid concentrations in both the supernatants of red blood cells infected with P. falciparum, as well as in the plasma and infected RBCs of P. berghei-infected mice. Measurable and significant hyperpipecolatemia suggest that pipecolic acid has the potential to be a diagnostic marker for malaria.
Collapse
Affiliation(s)
- Divya Beri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ghania Ramdani
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France.,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Balu Balan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Darshak Gadara
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mukta Poojary
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Laurence Momeux
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France.,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Gordon Langsley
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France. .,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
11
|
Ghosh S, Ahn CH. Lyophilization of chemiluminescent substrate reagents for high-sensitive microchannel-based lateral flow assay (MLFA) in point-of-care (POC) diagnostic system. Analyst 2019; 144:2109-2119. [DOI: 10.1039/c8an01899e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method towards successful lyophilization and reconstitution of chemiluminescent substrate while restoring the substrate functionality is reported in this work.
Collapse
Affiliation(s)
- Sthitodhi Ghosh
- Department of Electrical Engineering and Computer Science
- Microsystems and BioMEMS Laboratory
- University of Cincinnati
- USA
| | - Chong H. Ahn
- Department of Electrical Engineering and Computer Science
- Microsystems and BioMEMS Laboratory
- University of Cincinnati
- USA
| |
Collapse
|
12
|
Pham NM, Karlen W, Beck HP, Delamarche E. Malaria and the 'last' parasite: how can technology help? Malar J 2018; 17:260. [PMID: 29996831 PMCID: PMC6042346 DOI: 10.1186/s12936-018-2408-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Malaria, together with HIV/AIDS, tuberculosis and hepatitis are the four most deadly infectious diseases globally. Progress in eliminating malaria has saved millions of lives, but also creates new challenges in detecting the 'last parasite'. Effective and accurate detection of malaria infections, both in symptomatic and asymptomatic individuals are needed. In this review, the current progress in developing new diagnostic tools to fight malaria is presented. An ideal rapid test for malaria elimination is envisioned with examples to demonstrate how innovative technologies can assist the global defeat against this disease. Diagnostic gaps where technology can bring an impact to the elimination campaign for malaria are identified. Finally, how a combination of microfluidic-based technologies and smartphone-based read-outs could potentially represent the next generation of rapid diagnostic tests is discussed.
Collapse
Affiliation(s)
- Ngoc Minh Pham
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Walter Karlen
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, Petersgraben 1, 4001, Basel, Switzerland.
| | | |
Collapse
|
13
|
KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite. PLoS One 2018; 13:e0192659. [PMID: 29425228 PMCID: PMC5806893 DOI: 10.1371/journal.pone.0192659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS). Both KSHV and HIV infections are endemic in Uganda, where KS is among the most common cancers in HIV-infected individuals. Recent studies examined the use of small RNAs as biomarkers of disease, including microRNAs (miRNAs), with viral and tumor-derived miRNAs being detected in exosomes from individuals with KSHV-associated malignancies. In the current study, the host and viral extracellular mature miRNA expression profiles were analyzed in blood of KS-negative individuals in Uganda, comparing those with or without KSHV detectable from the oropharynx. We observed increased levels of cellular oncogenic miRNAs and decreased levels of tumor-suppressor miRNAs in plasma of infected individuals exhibiting oral KSHV shedding. These changes in host oncomiRs were exacerbated in people co-infected with HIV, and partially reversed after 2 years of anti-retroviral therapy. We also detected KSHV miRNAs in plasma of KSHV infected individuals and determined that their expression levels correlated with KSHV plasma viremia. Deep sequencing revealed an expected profile of small cellular RNAs in plasma, with miRNAs constituting the major RNA biotype. In contrast, the composition of small RNAs in exosomes was highly atypical with high levels of YRNA and low levels of miRNAs. Mass spectrometry analysis of the exosomes revealed eleven different peptides derived from the malaria parasite, Plasmodium falciparum, and small RNA sequencing confirmed widespread plasmodium co-infections in the Ugandan cohorts. Proteome analysis indicated an exosomal protein profile consistent with erythrocyte and keratinocyte origins for the plasma exosomes. A strong correlation was observed between the abundance of Plasmodium proteins and cellular markers of malaria. As Plasmodium falciparum is an endemic pathogen in Uganda, our study shows that co-infection with other pathogens, such as KSHV, can severely impact the small RNA repertoire, complicating the use of exosome miRNAs as biomarkers of disease.
Collapse
|
14
|
Detection of Plasmodium Aldolase Using a Smartphone and Microfluidic Enzyme Linked Immunosorbent Assay. Malar Res Treat 2017; 2017:9062514. [PMID: 29057138 PMCID: PMC5606091 DOI: 10.1155/2017/9062514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Malaria control efforts are limited in rural areas. A low-cost system to monitor response without the use of electricity is needed. Plasmodium aldolase is a malaria biomarker measured using enzyme linked immunosorbent assay (ELISA) techniques. A three-part system using ELISA was developed consisting of a microfluidic chip, hand crank centrifuge, and a smartphone. Methods A circular microfluidic chip was fabricated using clear acrylic and a CO2 laser. A series of passive valves released reagents at precise times based upon centrifugal force. Color change was measured via smartphone camera using an application programmed in Java. The microchip was compared to a standard 96-well sandwich ELISA. Results Results from standard ELISA were compared to microchip at varying concentrations (1–10 ng/mL). Over 15 different microfluidic patterns were tested, and a final prototype of the chip was created. The prototype microchip was compared to standard sandwich ELISA (n = 20) using samples of recombinant aldolase. Color readings of standard ELISA and microfluidic microchip showed similar results. Conclusion A low-cost microfluidic system could detect and follow therapeutic outcomes in rural areas and identify resistant strains.
Collapse
|
15
|
Games PD, Alves SN, Katz BB, Tomich JM, Serrão JE. Differential protein expression in the midgut of Culex quinquefasciatus mosquitoes induced by the insecticide temephos. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:253-263. [PMID: 27072633 DOI: 10.1111/mve.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/03/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are vectors for pathogens of malaria, lymphatic filariasis, dengue, chikungunya, yellow fever and Japanese encephalitis. Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) is a known vector of lymphatic filariasis. Its control in Brazil has been managed using the organophosphate temephos. Studies examining the proteins of Cx. quinquefasciatus that are differentially expressed in response to temephos further understanding of the modes of action of the insecticide and may potentially identify resistance factors in the mosquito. In the present study, a comparative proteomic analysis, using 2-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization (MALDI) time of flight (TOF)/TOF mass spectrometry, and bioinformatics analyses were performed to identify midgut proteins in Cx. quinquefasciatus larvae that were differentially expressed in response to exposure to temephos relative to those in untreated controls. A total of 91 protein spots were differentially expressed; 40 were upregulated and 51 were downregulated by temephos. A total of 22 proteins, predominantly upregulated, were identified as known to play a role in the immune response, whereas the downregulated proteins were involved in energy and protein catabolism. This is the first proteome study of the midgut of Cx. quinquefasciatus and it provides insights into the molecular mechanisms of insecticide-induced responses in the mosquito.
Collapse
Affiliation(s)
- P D Games
- Department of General Biology, State University of Viçosa, Viçosa, Brazil
| | - S N Alves
- Department of Biology, State University of São João del-Rey, Divinópolis, Brazil
| | - B B Katz
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, U.S.A
| | - J M Tomich
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, U.S.A
| | - J E Serrão
- Department of General Biology, State University of Viçosa, Viçosa, Brazil
| |
Collapse
|