1
|
Latorre-Rodríguez AR, Mittal SK, Ravichandran R, Shacker M, Isaza-Restrepo A, Bansal S, Mohankumar T, Bremner RM. Collagen-V and K-α-1 Tubulin Antibodies as Potential Markers of Unsuspected GERD-Related Lung Damage: Insights from a Cross-Sectional Analysis. Lung 2024:10.1007/s00408-024-00745-8. [PMID: 39317885 DOI: 10.1007/s00408-024-00745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE Our group has proposed that aspiration of gastric contents leads to exposure of normally sequestered lung self-antigens (SAgs), specifically collagen-V (Col-V) and K-α-1-tubulin (Kα1T), which elicits an immune response characterized by increasing concentrations of self-antibodies (SAbs) anti-Col-V and anti-Kα1T. We sought to establish the point prevalence of abnormally elevated concentrations of SAbs among patients with pathological gastroesophageal reflux disease (GERD) and/or hiatal hernia undergoing antireflux surgery (ARS). METHODS For this cross-sectional study, we retrieved a plasma aliquot from the Norton Thoracic Institute BioBank from blood samples that were taken preoperatively from patients who underwent ARS between November 2019 and August 2022. Enzyme-linked immunosorbent assays were employed to detect and quantify anti-Col-V and anti-Kα1T. RESULTS Samples from 43 patients (females, n = 34 [79.1%]; mean age, 62 ± 12 years; and mean BMI, 30.5 ± 7 kg/m2) were analyzed. Before ARS, 28 (65.1%, CI95: 50.3-80.0%) patients had abnormally elevated concentrations of anti-Col-V and 19 (44.2%, CI95: 28.7-59.7%) had elevated concentrations of circulating anti-Kα1T. Overall, 13 patients (30.2%) had low (i.e., normal) concentrations of both SAbs, 13 (30.2%) were positive only for one, and 17 (39.5%) were positive for both SAbs. CONCLUSION A relative high point prevalence of abnormally elevated circulating SAbs (i.e., anti-Col-V and/or anti-Kα1T) before ARS was found. This result suggests clinically unsuspected pulmonary parenchymal injury secondary to GERD-related aspiration. Further studies are required to confirm this hypothesis and to identify alternative non-invasive early biomarkers of GERD-related lung damage.
Collapse
Affiliation(s)
- Andrés R Latorre-Rodríguez
- Norton Thoracic Institute, St. Joseph´s Hospital and Medical Center, Phoenix, AZ, USA
- Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Sumeet K Mittal
- Norton Thoracic Institute, St. Joseph´s Hospital and Medical Center, Phoenix, AZ, USA.
- School of Medicine, Creighton University, Phoenix, AZ, USA.
| | | | - Mark Shacker
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Andrés Isaza-Restrepo
- Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph´s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph´s Hospital and Medical Center, Phoenix, AZ, USA
- School of Medicine, Creighton University, Phoenix, AZ, USA
| |
Collapse
|
2
|
Behr J, Bonella F, Frye BC, Günther A, Hagmeyer L, Henes J, Klemm P, Koschel D, Kreuter M, Leuschner G, Nowak D, Prasse A, Quadder B, Sitter H, Costabel U. Pharmacological Treatment of Idiopathic Pulmonary Fibrosis (Update) and Progressive Pulmonary Fibroses: S2k Guideline of the German Respiratory Society. Respiration 2024:1-29. [PMID: 39250885 DOI: 10.1159/000540856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Jürgen Behr
- Department of Medicine V, Comprehensice Pneumology Center Munich, German Center for Lung Research Munich, LMU University Hospital, LMU Munich, Munich, Germany
| | - Francesco Bonella
- Pneumology Department, Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Björn Christian Frye
- Department for Pneumology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Günther
- Center for Interstitial and Rare Lung Diseases, Agaplesion Evangelisches Krankenhaus Mittelhessen, University Hospital Giessen Marburg, Giessen, Germany
| | - Lars Hagmeyer
- Clinic for Pulmonology and Allergology, Center for Sleep Medicine and Respiratory Care, Bethanien Hospital Solingen, Institute for Pulmonology with the University of Cologne, Cologne, Germany
| | - Jörg Henes
- Department for Internal Medicine II (Hematology, Oncology, Rheumatology and Clinical Immunology), University Hospital Tuebingen, Tuebingen, Germany
| | - Philipp Klemm
- Deptartment of Rheumatology and Clinical Immunology, Campus Kerckhoff, Kerckhoff Clinic, Justus-Liebig-University Giessen, Bad Nauheim, Germany
| | - Dirk Koschel
- Fachkrankenhaus Coswig, Lung Center Coswig, and Medical Department I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Kreuter
- Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Department of Pulmonary, Critical Care and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Gabriela Leuschner
- Department of Medicine V, Comprehensice Pneumology Center Munich, German Center for Lung Research Munich, LMU University Hospital, LMU Munich, Munich, Germany
| | - Dennis Nowak
- Institute and Policlinic for Occupational, Social and Environmental Medicine, Omprehensive Pulmonology Center (CPC) Munich, Member of the German Lung Research Center, Munich, Germany
| | - Antje Prasse
- Department of Pulmonology and Infectiology, German DZL BREATH and Fibrosis Research Department, Hannover Medical School, Fraunhofer ITEM, Hannover, Germany
| | | | - Helmut Sitter
- Institute for Surgical Research, Philipps University Marburg, Marburg, Germany
| | - Ulrich Costabel
- Pneumology Department, Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Hung CF, Raghu G. Treatment of acute exacerbations of interstitial lung diseases with corticosteroids: Evidence? Respirology 2024; 29:747-750. [PMID: 38961640 DOI: 10.1111/resp.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
See related article
Collapse
Affiliation(s)
- Chi F Hung
- Department of Medicine, Center for Interstitial Lung Diseases, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Ganesh Raghu
- Department of Medicine, Center for Interstitial Lung Diseases, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Fernandez AM, Chan WW. Update on extraesophageal manifestations of gastroesophageal reflux. Curr Opin Gastroenterol 2024; 40:305-313. [PMID: 38662405 DOI: 10.1097/mog.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Symptoms/complications related to extraesophageal reflux (EER) are increasingly prevalent presentations and pose significant challenges for clinicians. We summarize and discuss clinical advances and developments in pathophysiology, testing and treatment algorithms of upper/lower airway manifestations of EER. RECENT FINDINGS Growing evidence supports likely multifactorial causes of laryngeal symptoms, including EER, oropharyngeal pathologies, allergic conditions, and cognitive-affective processes (brain-larynx interaction). Diagnostic paradigm for laryngopharyngeal reflux (LPR) is shifting towards a personalized approach with noninvasive strategies/prediction tools to risk-stratify patients for upfront reflux testing over empiric acid suppression trials. Management should be multipronged to include antireflux therapies and treatments targeting other causes. Lower airway complications of EER may result in lung dysfunction and poor transplant outcomes. Esophageal symptoms are often absent and routine esophageal/reflux testing to guide timely antireflux therapies may lead to improved outcomes. Modalities that leverage impedance technology may be important, given the potential role of nonacidic reflux. Novel impedance-based metrics such as mean nocturnal baseline impedance and postreflux swallow-induced peristaltic wave index may provide adjunctive diagnostic values. SUMMARY Standardized approach to diagnosis/management of EER should include multidisciplinary care teams and consider different phenotypes, nonreflux contributors, and the complex gut-airway relationships. Prompt antireflux therapies after careful candidate selection may improve outcomes of these airway complications.
Collapse
Affiliation(s)
- Annel M Fernandez
- Department of Medicine, Brigham and Women's Hospital
- Harvard Medical School
| | - Walter W Chan
- Department of Medicine, Brigham and Women's Hospital
- Harvard Medical School
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Matson SM, Ngo LT, Sugawara Y, Fernando V, Lugo C, Azeem I, Harrison A, Alsup A, Nissen E, Koestler D, Washburn MP, Rekowski MJ, Wolters PJ, Lee JS, Solomon JJ, Demoruelle MK. Neutrophil extracellular traps linked to idiopathic pulmonary fibrosis severity and survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301742. [PMID: 38343853 PMCID: PMC10854325 DOI: 10.1101/2024.01.24.24301742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) leads to progressive loss of lung function and mortality. Understanding mechanisms and markers of lung injury in IPF is paramount to improving outcomes for these patients. Despite the lack of systemic involvement in IPF, many analyses focus on identifying circulating prognostic markers. Using a proteomic discovery method followed by ELISA validation in multiple IPF lung compartments and cohorts we explored novel markers of IPF survival. Methods In our discovery analysis, agnostic label-free quantitative proteomics differentiated lung tissue protein expression based on survival trajectory (n=10). Following selection of the candidate pathway (neutrophil extracellular trap (NET) formation), we subsequently validated the presence of NETs in the IPF lung microenvironment using fully quantitative assays of known NET remnants in separate IPF cohorts (n=156 and n=52) with bronchoalveolar lavage fluid. We then assessed the correlation of these markers with baseline pulmonary function and survival. Results Discovery lung tissue proteomics identified NET formation as significantly associated with poor IPF survival. Using fully quantitative confirmatory tests for reproducibility we confirmed the presence of NET markers in IPF BALF and found significant correlations with worse pulmonary function in both cohorts (p<0.03 and p = 0.04 respectively). In the survival cohort, higher levels of NET markers predicted worse survival after adjusting for gender, age, and baseline physiologic severity (hazard ratio range: 1.79-2.19). Conclusions NET markers were associated with disease severity and worse survival in IPF. These findings suggest NET formation contributes to lung injury and decreased survival in IPF and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Scott M. Matson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Linh T. Ngo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Yui Sugawara
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Veani Fernando
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Claudia Lugo
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Imaan Azeem
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alexis Harrison
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alex Alsup
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Devin Koestler
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michael P. Washburn
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michaella J. Rekowski
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Paul J. Wolters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA
| | - Joyce S. Lee
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA
| | - Joshua J. Solomon
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Hospital, Denver, CO
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Raghu G, Ghazipura M, Fleming TR, Aronson KI, Behr J, Brown KK, Flaherty KR, Kazerooni EA, Maher TM, Richeldi L, Lasky JA, Swigris JJ, Busch R, Garrard L, Ahn DH, Li J, Puthawala K, Rodal G, Seymour S, Weir N, Danoff SK, Ettinger N, Goldin J, Glassberg MK, Kawano-Dourado L, Khalil N, Lancaster L, Lynch DA, Mageto Y, Noth I, Shore JE, Wijsenbeek M, Brown R, Grogan D, Ivey D, Golinska P, Karimi-Shah B, Martinez FJ. Meaningful Endpoints for Idiopathic Pulmonary Fibrosis (IPF) Clinical Trials: Emphasis on 'Feels, Functions, Survives'. Report of a Collaborative Discussion in a Symposium with Direct Engagement from Representatives of Patients, Investigators, the National Institutes of Health, a Patient Advocacy Organization, and a Regulatory Agency. Am J Respir Crit Care Med 2024; 209:647-669. [PMID: 38174955 DOI: 10.1164/rccm.202312-2213so] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) carries significant mortality and unpredictable progression, with limited therapeutic options. Designing trials with patient-meaningful endpoints, enhancing the reliability and interpretability of results, and streamlining the regulatory approval process are of critical importance to advancing clinical care in IPF. Methods: A landmark in-person symposium in June 2023 assembled 43 participants from the US and internationally, including patients with IPF, investigators, and regulatory representatives, to discuss the immediate future of IPF clinical trial endpoints. Patient advocates were central to discussions, which evaluated endpoints according to regulatory standards and the FDA's 'feels, functions, survives' criteria. Results: Three themes emerged: 1) consensus on endpoints mirroring the lived experiences of patients with IPF; 2) consideration of replacing forced vital capacity (FVC) as the primary endpoint, potentially by composite endpoints that include 'feels, functions, survives' measures or FVC as components; 3) support for simplified, user-friendly patient-reported outcomes (PROs) as either components of primary composite endpoints or key secondary endpoints, supplemented by functional tests as secondary endpoints and novel biomarkers as supportive measures (FDA Guidance for Industry (Multiple Endpoints in Clinical Trials) available at: https://www.fda.gov/media/162416/download). Conclusions: This report, detailing the proceedings of this pivotal symposium, suggests a potential turning point in designing future IPF clinical trials more attuned to outcomes meaningful to patients, and documents the collective agreement across multidisciplinary stakeholders on the importance of anchoring IPF trial endpoints on real patient experiences-namely, how they feel, function, and survive. There is considerable optimism that clinical care in IPF will progress through trials focused on patient-centric insights, ultimately guiding transformative treatment strategies to enhance patients' quality of life and survival.
Collapse
Affiliation(s)
- Ganesh Raghu
- Center for Interstitial Lung Diseases, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
| | - Marya Ghazipura
- ZS Associates, Global Health Economics and Outcomes Research, New York, New York
- Division of Epidemiology and
- Division of Biostatistics, Department of Population Health, New York University Langone Health, New York, New York
| | - Thomas R Fleming
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Kerri I Aronson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jürgen Behr
- Department of Medicine V, LMU University Hospital, Ludwig-Maximilians-University Munich, Member of the German Center for Lung Research, Munich, Germany
| | | | - Kevin R Flaherty
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ella A Kazerooni
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Division of Cardiothoracic Radiology, Department of Radiology, University of Michigan Health System, Detroit, Michigan
| | - Toby M Maher
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Luca Richeldi
- Divisione di Medicina Polmonare, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Joseph A Lasky
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | | | - Robert Busch
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Lili Garrard
- Division of Biometrics III, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, and
| | - Dong-Hyun Ahn
- Division of Biometrics III, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, and
| | - Ji Li
- Division of Clinical Outcome Assessment, Office of Drug Evaluation Sciences, Office of New Drugs, and
| | - Khalid Puthawala
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Gabriela Rodal
- Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Sally Seymour
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Nargues Weir
- Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Sonye K Danoff
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Neil Ettinger
- Division of Pulmonary Medicine, St. Luke's Hospital, Chesterfield, Missouri
| | - Jonathan Goldin
- Department of Radiology, University of California, Los Angeles, Los Angeles, California
| | - Marilyn K Glassberg
- Department of Medicine, Stritch School of Medicine, Loyola Chicago, Chicago, Illinois
| | - Leticia Kawano-Dourado
- Hcor Research Institute - Hcor Hospital, São Paolo, Brazil
- Pulmonary Division, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Nasreen Khalil
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Lancaster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Vanderbilt University, Nashville, Tennessee
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - Yolanda Mageto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor University, Dallas, Texas
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | | | - Marlies Wijsenbeek
- Centre of Interstitial Lung Diseases, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Robert Brown
- Patient representative and patient living with IPF, Lovettsville, Virginia
| | - Daniel Grogan
- Patient representative and patient living with IPF, Charlottesville, Virginia; and
| | - Dorothy Ivey
- Patient representative and patient living with IPF, Richmond, Virginia
| | - Patrycja Golinska
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Banu Karimi-Shah
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, and
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
7
|
Mackintosh JA, Keir G, Troy LK, Holland AE, Grainge C, Chambers DC, Sandford D, Jo HE, Glaspole I, Wilsher M, Goh NSL, Reynolds PN, Chapman S, Mutsaers SE, de Boer S, Webster S, Moodley Y, Corte TJ. Treatment of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis: A position statement from the Thoracic Society of Australia and New Zealand 2023 revision. Respirology 2024; 29:105-135. [PMID: 38211978 PMCID: PMC10952210 DOI: 10.1111/resp.14656] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease leading to significant morbidity and mortality. In 2017 the Thoracic Society of Australia and New Zealand (TSANZ) and Lung Foundation Australia (LFA) published a position statement on the treatment of IPF. Since that time, subsidized anti-fibrotic therapy in the form of pirfenidone and nintedanib is now available in both Australia and New Zealand. More recently, evidence has been published in support of nintedanib for non-IPF progressive pulmonary fibrosis (PPF). Additionally, there have been numerous publications relating to the non-pharmacologic management of IPF and PPF. This 2023 update to the position statement for treatment of IPF summarizes developments since 2017 and reaffirms the importance of a multi-faceted approach to the management of IPF and progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- John A. Mackintosh
- Department of Respiratory MedicineThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
| | - Gregory Keir
- Department of Respiratory MedicinePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Lauren K. Troy
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| | - Anne E. Holland
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of PhysiotherapyThe Alfred HospitalMelbourneVictoriaAustralia
- Department of Respiratory Research@AlfredCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Christopher Grainge
- Department of Respiratory MedicineJohn Hunter HospitalNewcastleNew South WalesAustralia
| | - Daniel C. Chambers
- Department of Respiratory MedicineThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
| | - Debra Sandford
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Thoracic MedicineCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- University of AdelaideAdelaideSouth AustraliaAustralia
| | - Helen E. Jo
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| | - Ian Glaspole
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Respiratory MedicineThe Alfred HospitalMelbourneVictoriaAustralia
| | - Margaret Wilsher
- Department of Respiratory MedicineTe Toka Tumai AucklandAucklandNew Zealand
| | - Nicole S. L. Goh
- Department of Respiratory MedicineAustin HospitalMelbourneVictoriaAustralia
- Institute for Breathing and SleepMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Paul N. Reynolds
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Thoracic MedicineCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sally Chapman
- Institute for Respiratory Health, University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Steven E. Mutsaers
- Department of Respiratory MedicineFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Sally de Boer
- Department of Respiratory MedicineTe Toka Tumai AucklandAucklandNew Zealand
| | - Susanne Webster
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
| | - Yuben Moodley
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Institute for Respiratory Health, University of Western AustraliaNedlandsWestern AustraliaAustralia
- Department of Respiratory MedicineFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
8
|
Ford P, Kreuter M, Brown KK, Wuyts WA, Wijsenbeek M, Israël-Biet D, Hubbard R, Nathan SD, Nunes H, Penninckx B, Prasad N, Seghers I, Spagnolo P, Verbruggen N, Hirani N, Behr J, Kaner RJ, Maher TM. An adjudication algorithm for respiratory-related hospitalisation in idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00636-2023. [PMID: 38288082 PMCID: PMC10823372 DOI: 10.1183/23120541.00636-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Background There is no standard definition of respiratory-related hospitalisation, a common end-point in idiopathic pulmonary fibrosis (IPF) clinical trials. As diverse aetiologies and complicating comorbidities can present similarly, external adjudication is sometimes employed to achieve standardisation of these events. Methods An algorithm for respiratory-related hospitalisation was developed through a literature review of IPF clinical trials with respiratory-related hospitalisation as an end-point. Experts reviewed the algorithm until a consensus was reached. The algorithm was validated using data from the phase 3 ISABELA trials (clinicaltrials.gov identifiers NCT03711162 and NCT03733444), by assessing concordance between nonadjudicated, investigator-defined, respiratory-related hospitalisations and those defined by the adjudication committee using the algorithm. Results The algorithm classifies respiratory-related hospitalisation according to cause: extraparenchymal (worsening respiratory symptoms due to left heart failure, volume overload, pulmonary embolism, pneumothorax or trauma); other (respiratory tract infection, right heart failure or exacerbation of COPD); "definite" acute exacerbation of IPF (AEIPF) (worsening respiratory symptoms within 1 month, with radiological or histological evidence of diffuse alveolar damage); or "suspected" AEIPF (as for "definite" AEIPF, but with no radiological or histological evidence of diffuse alveolar damage). Exacerbations ("definite" or "suspected") with identified triggers (infective, post-procedural or traumatic, drug toxicity- or aspiration-related) are classed as "known AEIPF"; "idiopathic AEIPF" refers to exacerbations with no identified trigger. In the ISABELA programme, there was 94% concordance between investigator- and adjudication committee-determined causes of respiratory-related hospitalisation. Conclusion The algorithm could help to ensure consistency in the reporting of respiratory-related hospitalisation in IPF trials, optimising its utility as an end-point.
Collapse
Affiliation(s)
| | - Michael Kreuter
- Center for Pulmonary Medicine, Departments of Pneumology, Mainz University Medical Center and of Pulmonary, Critical Care and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Kevin K. Brown
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Wim A. Wuyts
- Unit for Interstitial Lung Diseases, Department of Respiratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Marlies Wijsenbeek
- Centre for Interstitial Lung Disease and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Richard Hubbard
- Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Steven D. Nathan
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Hilario Nunes
- Department of Pneumology, Centre de Référence des Maladies Pulmonaires Rares, Assistance Publique–Hôpitaux de Paris, Hôpital Avicenne, Université Sorbonne Paris Nord, Bobigny, France
| | | | | | | | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Nik Hirani
- Edinburgh Lung Fibrosis Clinic, Royal Infirmary Edinburgh and Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Juergen Behr
- Department of Medicine V, LMU University Hospital, Ludwig Maximilian University Munich, Comprehensive Pneumology Center (member of the German Center for Lung Research), Munich, Germany
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, UK
- Keck Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Sun D, Ye Q. Mendelian randomization analysis suggests no causal influence of gastroesophageal reflux disease on the susceptibility and prognosis of idiopathic pulmonary fibrosis. BMC Pulm Med 2023; 23:517. [PMID: 38129814 PMCID: PMC10740234 DOI: 10.1186/s12890-023-02788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The relationship between gastroesophageal reflux disease (GERD) and the susceptibility as well as the prognosis of idiopathic pulmonary fibrosis (IPF) has been previously suggested, with the potential confounding factor of smoking not adequately addressed. In light of this, we conducted a Mendelian randomization (MR) study to investigate the causal effects of GERD on the susceptibility and prognosis of IPF while excluding smoking. METHODS We chose GERD as the exposure variable and employed genome-wide association data to examine its association with susceptibility, forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLco), and transplant-free survival (TFS) in patients with IPF as the outcome variables. MR analyses were performed using the inverse variance weighted (IVW) method, and sensitivity analyses were conducted using the MR-PRESSO outlier test, Cochran's Q test, MR-Egger intercept test, and leave-one-out sensitivity analysis. Additionally, to mitigate the potential effects of smoking on our MR estimates, we conducted a multivariable MR (MVMR) analysis by adjusting for smoking. RESULTS The univariable MR analysis demonstrated no causal effect of GERD on FVC (βIVW = 26.63, SE = 48.23, P = 0.581), DLco (βIVW = 0.12, SE = 0.12, P = 0.319), and TFS (HRIVW = 0.87, 95% CI = 0.56 to 1.35, P = 0.533) in patients with IPF. Furthermore, sensitivity analysis revealed no evidence of heterogeneity, horizontal pleiotropy, or outlier single nucleotide polymorphisms. The MVMR analysis showed no causal effect of GERD on susceptibility to IPF after adjusting for smoking (ORIVW = 1.30, 95% CI = 0.93 to 1.68, P = 0.071). These findings were consistent in the replication cohort. CONCLUSIONS The link between GERD and its potential impact on susceptibility to IPF may not be of a direct causal nature and could be influenced by factors such as smoking. Our findings did not reveal any evidence of a causal relationship between GERD and the FVC, DLco, and TFS of patients with IPF.
Collapse
Affiliation(s)
- Di Sun
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
10
|
Schiza S, Schwarz EI, Bonsignore MR, McNicholas WT, Pataka A, Bouloukaki I. Co-existence of OSA and respiratory diseases and the influence of gender. Expert Rev Respir Med 2023; 17:1221-1235. [PMID: 38198636 DOI: 10.1080/17476348.2024.2304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Sleep-disordered breathing (SDB), especially obstructive sleep apnea (OSA), is commonly associated with respiratory diseases, such as COPD, asthma and interstitial lung disease. AREAS COVERED This narrative review aims to comprehensively synthesize the existing information on SDB in respiratory diseases, investigate the role of gender in this association, and highlight the importance of OSA management in improving sleep, quality of life, and disease prognosis in these specific patient populations. EXPERT OPINION Research indicates a synergistic link between OSA and chronic respiratory diseases, which leads to greater morbidity and mortality compared to each disorder alone. Given the lack of an optimal OSA screening tool for these patients, a comprehensive patient approach and overnight diagnostic sleep study are imperative. Despite the limited evidence available, it seems that gender has an impact on the prevalence, severity, and susceptibility of this coexistence. Recognizing the role of gender in the coexistence of OSA and other respiratory diseases can enhance everyday medical practice and enable clinicians to adopt a more personalized approach toward optimal screening and diagnosis of these patients.
Collapse
Affiliation(s)
- Sophia Schiza
- Sleep Disorders Center, Department of Respiratory Medicine, University of Crete School of Medicine, Crete, Greece
| | - Esther I Schwarz
- Department of Pulmonology, University Hospital Zurich and University of Zurich, University of Zurich Faculty of Medicine, Zurich, Switzerland
| | - Maria R Bonsignore
- Division of Respiratory Medicine, PROMISE Department, University of Palermo Faculty of Medicine and Surgery, Palermo, Italy
| | - Walter T McNicholas
- Department of Respiratory and Sleep Medicine, St Vincent's Hospital Group, University College Dublin, Dublin, Ireland
| | - Athanasia Pataka
- Respiratory Failure Unit, G Papanikolaou Hospital, Medical School, Aristoteleio Panepistemio Thessalonikes Schole Epistemon Ygeias, Thessaloniki, Greece
| | - Izolde Bouloukaki
- Sleep Disorders Center, Department of Respiratory Medicine, University of Crete School of Medicine, Crete, Greece
| |
Collapse
|
11
|
Newton CA, Noth I, Raghu G. Gastro-oesophageal reflux and idiopathic pulmonary fibrosis: sorting the chicken and the egg by genetic link. Eur Respir J 2023; 62:2301878. [PMID: 38128953 PMCID: PMC10990001 DOI: 10.1183/13993003.01878-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Chad A Newton
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ganesh Raghu
- Center for Interstitial Lung Diseases, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
12
|
Elkhatib WY, Helgeson SA, Baig HZ, Lee AS. Impact of concomitant gastroesophageal reflux disease symptomology on prognosis and pulmonary function of chronic hypersensitivity pneumonitis. Lung India 2023; 40:406-411. [PMID: 37787352 PMCID: PMC10553774 DOI: 10.4103/lungindia.lungindia_107_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 10/04/2023] Open
Abstract
Background and Objectives Comorbid risk factors in chronic hypersensitivity pneumonitis (CHP) are poorly characterised. Gastroesophageal reflux disease (GERD) is linked to interstitial lung diseases like idiopathic pulmonary fibrosis (IPF), but its association and treatment in CHP is less understood. This study aims to understand the role and prevalence of GERD in CHP, plus the effect of GERD treatment on lung function and mortality. Methods A tertiary referral centre panel was retrospectively reviewed for 214 patients diagnosed with CHP based on clinical history, bronchoalveolar lavage fluid analysis, imaging and histopathology. GERD diagnostic criteria included symptomology, acid suppressive therapy use and diagnostic testing. CHP patients with GERD (n = 89) and without GERD (n = 125) were compared via descriptive statistical analysis. Pulmonary function, GERD diagnosis plus treatment and other comorbidities were evaluated against CHP outcomes. Results Respective differences between diagnosis and study termination dates in the GERD population versus without GERD for functional vital capacity (FVC) were - 1 L vs - 2.5 L, diffusing capacity of the lungs for carbon monoxide (DLCO) were - 2 mL/min/mmHg versus - 1 mL/min/mmHg, per cent alive at the time of study 88% versus 81%, median date of survival 574.5 versus 850 and supplemental oxygen requirement 41% versus 37%. GERD prevalence was higher in CHP patients relative to the general population. No statistical significance was found between survival curves, oxygen requirement, smoking history, FVC, or DLCO. Conclusions GERD could be a harmful comorbidity in CHP though may not necessarily affect survival or functional outcomes. This aligns with previous IPF studies, though remains controversial. Further research is needed regarding this association and treatment benefit.
Collapse
Affiliation(s)
| | - Scott A. Helgeson
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic Florida, USA
| | - Hassan Z. Baig
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic Florida, USA
| | - Augustine S. Lee
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic Florida, USA
| |
Collapse
|
13
|
Kreuter M, Bonella F, Blank N, Riemekasten G, Müller-Ladner U, Henes J, Siegert E, Günther C, Kötter I, Pfeiffer C, Schmalzing M, Zeidler G, Korsten P, Susok L, Juche A, Worm M, Jandova I, Ehrchen J, Sunderkötter C, Keyßer G, Ramming A, Schmeiser T, Kreuter A, Kuhr K, Lorenz HM, Moinzadeh P, Hunzelmann N. Anti-acid therapy in SSc-associated interstitial lung disease: long-term outcomes from the German Network for Systemic Sclerosis. Rheumatology (Oxford) 2023; 62:3067-3074. [PMID: 36708008 PMCID: PMC10473195 DOI: 10.1093/rheumatology/kead023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Gastroesophageal reflux disease (GERD) occurs frequently in patients with SSc. We investigated whether the presence of GERD and/or the use of anti-acid therapy, specifically proton-pump inhibitors (PPIs), are associated with long-term outcomes, especially in SSc-associated interstitial lung disease (SSc-ILD). METHODS We retrospectively analysed patients with SSc and SSc-ILD from the German Network for Systemic Sclerosis (DNSS) database (2003 onwards). Kaplan-Meier analysis compared overall survival (OS) and progression-free survival (PFS) in patients with GERD vs without GERD (SSc and SSc-ILD), and PPI vs no PPI use (SSc-ILD only). Progression was defined as a decrease in either percentage predicted forced vital capacity of ≥10% or single-breath diffusing capacity for carbon monoxide of ≥15%, or death. RESULTS It was found that 2693/4306 (63%) registered patients with SSc and 1204/1931 (62%) with SSc-ILD had GERD. GERD was not associated with decreased OS or decreased PFS in patients in either cohort. In SSc-ILD, PPI use was associated with improved OS vs no PPI use after 1 year [98.4% (95% CI: 97.6, 99.3); n = 760 vs 90.8% (87.9-93.8); n = 290] and after 5 years [91.4% (89.2-93.8); n = 357 vs 70.9% (65.2-77.1); n = 106; P < 0.0001]. PPI use was also associated with improved PFS vs no PPI use after 1 year [95.9% (94.6-97.3); n = 745 vs 86.4% (82.9-90.1); n = 278] and after 5 years [66.8% (63.0-70.8); n = 286 vs 45.9% (39.6-53.2); n = 69; P < 0.0001]. CONCLUSION GERD had no effect on survival in SSc or SSc-ILD. PPIs improved survival in patients with SSc-ILD. Controlled, prospective trials are needed to confirm this finding.
Collapse
Affiliation(s)
- Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik, University of Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik, Pneumonology Department, University of Duisburg-Essen, Essen, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Gabriela Riemekasten
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | | | - Jörg Henes
- Centre for Interdisciplinary Rheumatology, Immunology and Auto-inflammatory Diseases and Department of Internal Medicine 2, University Hospital Tübingen, Tübingen, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité – Universitaetsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ina Kötter
- Division of Rheumatology and Systemic Inflammatory Diseases, University Hospital Hamburg, Rheumatology Clinic, Bad Bramstedt, Germany
| | - Christiane Pfeiffer
- Department of Dermatology and Allergology, University Hospital of Munich (LMU), Munich, Germany
| | - Marc Schmalzing
- Rheumatology/Clinical Immunology, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Gabriele Zeidler
- Department of Rheumatology, Osteology and Pain Therapy, Center for Rheumatology Brandenburg, Johanniter-Hospital Treuenbrietzen, Treuenbrietzen, Germany
| | - Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Susok
- Department of Dermatology, Venereology and Allergology, St. Josef Hospital Bochum, Bochum, Germany
| | - Aaron Juche
- Department of Rheumatology, Immanuel Hospital Berlin-Buch, Berlin, Germany
| | - Margitta Worm
- Department of Dermatology, Venereology and Allergology, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ilona Jandova
- Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Jan Ehrchen
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Cord Sunderkötter
- Department of Dermatology, University Hospital Halle (Saale), Halle, Germany
| | - Gernot Keyßer
- Department of Internal Medicine, Division of Rheumatology, University Hospital Halle (Saale), Halle, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Rheumatology & Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Tim Schmeiser
- Department for Rheumatology, Immunology and Osteology, St. Josef Hospital Wuppertal, Wuppertal, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St Elisabeth Hospital Oberhausen, University Witten/Herdecke, Oberhausen, Germany
| | - Kathrin Kuhr
- Institute of Medical Statistics and Computational Biology (IMSB), University Hospital Cologne, Cologne, Germany
| | - Hanns-Martin Lorenz
- Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik, Pneumonology Department, University of Duisburg-Essen, Essen, Germany
| | - Pia Moinzadeh
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Nicolas Hunzelmann
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
14
|
Amaral AF, Colares PDFB, Kairalla RA. Idiopathic pulmonary fibrosis: current diagnosis and treatment. J Bras Pneumol 2023; 49:e20230085. [PMID: 37556670 PMCID: PMC10578906 DOI: 10.36416/1806-3756/e20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 08/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating chronic lung disease without a clear recognizable cause. IPF has been at the forefront of new diagnostic algorithms and treatment developments that led to a shift in patients' care in the past decade, indeed influencing the management of fibrotic interstitial lung diseases other than IPF itself. Clinical presentation, pathophysiology, and diagnostic criteria are briefly addressed in this review article. Additionally, evidence regarding the use of antifibrotics beyond the settings of clinical trials, impact of comorbidities, and therapeutic approaches other than pharmacological treatments are discussed in further detail.
Collapse
Affiliation(s)
- Alexandre Franco Amaral
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Philippe de Figueiredo Braga Colares
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Ronaldo Adib Kairalla
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| |
Collapse
|
15
|
Trachalaki A, Sultana N, Wells AU. An update on current and emerging drug treatments for idiopathic pulmonary fibrosis. Expert Opin Pharmacother 2023:1-18. [PMID: 37183672 DOI: 10.1080/14656566.2023.2213436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Idiopathic Pulmonary Fibrosis (IPF) is a progressive and devastating lung disease, characterized by progressive lung scarring. AREAS COVERED Prior to antifibrotic therapy (pirfenidone and nintedanib), there was no validated pharmaceutical therapy for IPF. Both antifibrotics can slow disease progression, however, IPF remains a detrimental disease with poor prognosis and treated survival rates of less than 7 years from diagnosis. Despite their effect the disease remains non-reversible and progressing whilst their side effect profile is often challenging. Treatment of comorbidities is also crucial. In this review, we discuss the current pharmacological management as well as management of comorbidities and symptoms. We also reviewed clinicaltrials.gov and summarised all the mid to late stage clinical trials (phase II and III) registered in IPF over the last 7 years and discuss the most promising drugs in clinical development. EXPERT OPINION Future for IPF management will need to focus on current unresolved issues. First a primary pathogenetic pathway has not been clearly identified. Future management may involve a combination of brushstroke approach with antifibrotics with targeted treatments for specific pathways in patient subsets following an 'oncological' approach. Another unmet need is management of exacerbations, which are deathly in most cases as well as either treating or preventing lung cancer.
Collapse
Affiliation(s)
- Athina Trachalaki
- The Margaret Turner Warwick Centre for Fibrosing Lung Diseases, Imperial College London National Heart and Lung Institute, Imperial College, London, UK
- Imperial College NHS Hospitals, London UK
| | | | - Athol Umfrey Wells
- Interstitial Lung Disease Unit, Royal Brompton & Harefield Hospitals, London, UK
- The Margaret Turner Warwick Centre for Fibrosing Lung Diseases, Imperial College London National Heart and Lung Institute, Imperial College, London, UK
- Imperial College NHS Hospitals, London UK
| |
Collapse
|
16
|
Alqalyoobi S, Little BB, Oldham JM, Obi ON. The prognostic value of gastroesophageal reflux disorder in interstitial lung disease related hospitalizations. Respir Res 2023; 24:97. [PMID: 36998050 PMCID: PMC10061884 DOI: 10.1186/s12931-023-02407-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Gastroesophageal reflux disease (GERD) is a common comorbidity in patients with interstitial lung disease (ILD). We built and validated a model using the national inpatient sample (NIS) database to assess the contributory role of GERD in ILD-related hospitalizations mortality.
Methods
In this retrospective analysis, we extracted ILD-related hospitalizations data between 2007 and 2019 from the NIS database. Univariable logistic regression was used for predictor selection. Data were split into the training and validation cohorts (0.6 and 0.4, respectively). We used decision tree analysis (classification and regression tree, CART) to create a predictive model to explore the role of GERD in ILD-related hospitalizations mortality. Different metrics were used to evaluate our model. A bootstrap-based technique was implemented to balance our training data outcome to improve our model metrics in the validation cohort. We conducted a variance-based sensitivity analysis to evaluate GERD's importance in our model.
Findings
The model had a sensitivity of 73.43%, specificity of 66.15%, precision of 0.27, negative predictive value (NPV) of 93.62%, accuracy of 67.2%, Matthews Correlation Coefficient (MCC) of 0.3, F1 score of 0.4, and area under the curve (AUC) for the receiver operating characteristic (ROC) curve of 0.76. GERD did not predict survival in our cohort. GERD contribution to the model was ranked the eleventh among twenty-nine variables included in this analysis (importance of 0.003, normalized importance of 5%). GERD was the best predictor in ILD-related hospitalizations who didn’t receive mechanical ventilation.
Interpretations
GERD is associated with mild ILD-related hospitalization. Our model-performance measures suggest overall an acceptable discrimination. Our model showed that GERD does not have a prognostic value in ILD-related hospitalization, indicating that GERD per se might not have any impact on mortality in hospitalized ILD patients.
Collapse
|
17
|
Berger K, Kaner RJ. Diagnosis and Pharmacologic Management of Fibrotic Interstitial Lung Disease. Life (Basel) 2023; 13:599. [PMID: 36983755 PMCID: PMC10055741 DOI: 10.3390/life13030599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Interstitial lung disease is an umbrella term that encompasses a spectrum of parenchymal lung pathologies affecting the gas exchanging part of the lung. While many of these disease entities are not fibrotic in nature, a number can lead to pulmonary fibrosis which may or may not progress over time. Idiopathic pulmonary fibrosis is the prototypical, progressive fibrotic interstitial lung disease, which can lead to worsening hypoxemic respiratory failure and mortality within a number of years from the time of diagnosis. The importance of an accurate and timely diagnosis of interstitial lung diseases, which is needed to inform prognosis and guide clinical management, cannot be overemphasized. Developing a consensus diagnosis requires the incorporation of a variety of factors by a multidisciplinary team, which then may or may not determine a need for tissue sampling. Clinical management can be challenging given the heterogeneity of disease behavior and the paucity of controlled trials to guide decision making. This review addresses current paradigms and recent updates in the diagnosis and pharmacologic management of these fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Kristin Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
18
|
Highlights for the Clinical Practice in Idiopathic Pulmonary Fibrosis and Progressive Pulmonary Fibrosis: From the ATS/ERS/ALAT/JRS 2022 Guideline. Arch Bronconeumol 2023; 59:73-75. [PMID: 36319518 DOI: 10.1016/j.arbres.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/07/2023]
|
19
|
Behr J, Bonella F, Frye BC, Günther A, Hagmeyer L, Henes J, Klemm P, Koschel D, Kreuter M, Leuschner G, Nowak D, Prasse A, Quadder B, Sitter H, Costabel U. [Pharmacological treatment of idiopathic pulmonary fibrosis (update) and progressive pulmonary fibrosis - S2k Guideline of the German Respiratory Society]. Pneumologie 2023; 77:94-119. [PMID: 36791790 DOI: 10.1055/a-1983-6796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Jürgen Behr
- Medizinische Klinik und Polklinik V, LMU Klinikum der Universität München, Mitglied des Deutschen Zentrums für Lungenforschung; Delegierte/r der DGP
| | - Francesco Bonella
- Zentrum für interstitielle und seltene Lungenerkrankungen, Klinik für Pneumologie, Ruhrlandklinik, Universitätsmedizin Essen; Delegierter der DGP
| | - Björn C Frye
- Klinik für Pneumologie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Deutschland; Delegierter der DGP
| | - Andreas Günther
- Center for Interstitial and Rare Lung Diseases, University Hospital Giessen Marburg, Giessen, Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany; Delegierter der DGP
| | - Lars Hagmeyer
- Krankenhaus Bethanien Solingen, Klinik für Pneumologie und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Institut für Pneumologie an der Universität zu Köln; Delegierter der DGP
| | - Jörg Henes
- Zentrum für interdisziplinäre Rheumatologie, Immunologie und Autoimmunerkrankungen (INDIRA) und Innere Medizin II; Delegierter DGRh
| | - Philipp Klemm
- Abt. Rheumatologie und klinische Immunologie, Kerckhoff Klinik und Campus Kerckhoff der Justus-Liebig-Universität Gießen, Bad Nauheim; Delegierter der DGRh
| | - Dirk Koschel
- Fachkrankenhaus Coswig, Lungenzentrum und Medizinische Klinik 1, Universitätsklinik Carl Gustav Carus der TU Dresden; Delegierter der DGP
| | - Michael Kreuter
- Zentrum für interstitielle und seltene Lungenerkrankungen & interdisziplinäres Sarkoidosezentrum, Thoraxklinik, Universitätsklinikum Heidelberg, Deutsches Zentrum für Lungenforschung Heidelberg und Klinik für Pneumologie, Interdisziplinäres Lungenzentrum Ludwigsburg, RKH Klinik Ludwigsburg; Delegierter der DGIM
| | - Gabriela Leuschner
- Medizinische Klinik und Polklinik V, LMU Klinikum der Universität München, Mitglied des Deutschen Zentrums für Lungenforschung; Delegierte/r der DGP
| | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU Klinikum der Universität München, Comprehensive Pneumology Center (CPC) München, Mitglied des Deutsches Zentrums für Lungenforschung; Delegierter der DGAUM
| | - Antje Prasse
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover, DZL BREATH und Abteilung für Fibroseforschung, Fraunhofer ITEM, Hannover, Delegierte der DGP
| | | | - Helmut Sitter
- Institut für Theoretische Chirurgie, Philipps-Universität Marburg, Moderator
| | - Ulrich Costabel
- Zentrum für interstitielle und seltene Lungenerkrankungen, Klinik für Pneumologie, Ruhrlandklinik, Universitätsmedizin Essen; Delegierter der DGP
| |
Collapse
|
20
|
Kim JS, Kim J, Yin X, Hiura GT, Anderson MR, Hoffman EA, Raghu G, Noth I, Manichaikul A, Rich SS, Smith BM, Podolanczuk AJ, Garcia CK, Barr RG, Prince MR, Oelsner EC. Associations of hiatus hernia with CT-based interstitial lung changes: the MESA Lung Study. Eur Respir J 2023; 61:2103173. [PMID: 35777776 PMCID: PMC10203882 DOI: 10.1183/13993003.03173-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hiatus hernia (HH) is prevalent in adults with pulmonary fibrosis. We hypothesised that HH would be associated with markers of lung inflammation and fibrosis among community-dwelling adults and stronger among MUC5B (rs35705950) risk allele carriers. METHODS In the Multi-Ethnic Study of Atherosclerosis, HH was assessed from cardiac and full-lung computed tomography (CT) scans performed at Exam 1 (2000-2002, n=3342) and Exam 5 (2010-2012, n=3091), respectively. Percentage of high attenuation areas (HAAs; percentage of voxels with attenuation between -600 and -250 HU) was measured from cardiac and lung scans. Interstitial lung abnormalities (ILAs) were examined from Exam 5 scans (n=2380). Regression models were used to examine the associations of HH with HAAs, ILAs and serum matrix metalloproteinase-7 (MMP-7), and adjusted for age, sex, race/ethnicity, educational attainment, smoking, height, weight and scanner parameters for HAA analysis. RESULTS HH detected from Exam 5 scans was associated with a mean percentage difference in HAAs of 2.23% (95% CI 0.57-3.93%) and an increase of 0.48% (95% CI 0.07-0.89%) per year, particularly in MUC5B risk allele carriers (p-value for interaction=0.02). HH was associated with ILAs among those <80 years of age (OR for ILAs 1.78, 95% CI 1.14-2.80) and higher serum MMP-7 level among smokers (p-value for smoking interaction=0.04). CONCLUSIONS HH was associated with more HAAs over time, particularly among MUC5B risk allele carriers, and ILAs in younger adults, and may be a risk factor in the early stages of interstitial lung disease.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jinhye Kim
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Westchester Medical Center, Valhalla, NY, USA
| | - Xiaorui Yin
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Grant T Hiura
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Eric A Hoffman
- Department of Radiology, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, NY, USA
| | - Christine Kim Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Bendstrup E, Kronborg-White S, Møller J, Prior TS. Current best clinical practices for monitoring of interstitial lung disease. Expert Rev Respir Med 2022; 16:1153-1166. [PMID: 36572644 DOI: 10.1080/17476348.2022.2162504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Interstitial lung diseases (ILDs) are a heterogeneous group of inflammatory and/or fibrotic conditions with variable outcome and often a dismal prognosis. Since many ILDs are progressive in nature, monitoring of signs and symptoms of progression is essential to inform treatment decisions and patient counseling. Monitoring of ILDs is a multimodality process and includes all aspects of the disease, e.g. measurement of pulmonary function and exercise capacity, symptom registration and quality of life (QoL), imaging, comorbidities and/or involvement of other organs to assess disease activity, symptom burden, treatment effects, adverse events, the need for supportive and palliative care, and lung transplantation. AREAS COVERED For this narrative review, we searched the PUBMED database to identify articles relevant for monitoring ILDs, including pulmonary function tests, exercise capacity, imaging, telemedicine, symptoms, and QoL. EXPERT OPINION Due to the high heterogeneity of the ILDs and their disease course, an individualized multimodality approach must be applied. Future strategies include use of telemedicine for home monitoring of lung function and symptoms, use of artificial intelligence to support automatized guidance of patients, computerized evaluation of ILD changes on imaging, and new imaging tools with less radiation dosage.
Collapse
Affiliation(s)
- Elisabeth Bendstrup
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Sissel Kronborg-White
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Møller
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Skovhus Prior
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
22
|
Cottin V, Bonniaud P, Cadranel J, Crestani B, Jouneau S, Marchand-Adam S, Nunes H, Wémeau-Stervinou L, Bergot E, Blanchard E, Borie R, Bourdin A, Chenivesse C, Clément A, Gomez E, Gondouin A, Hirschi S, Lebargy F, Marquette CH, Montani D, Prévot G, Quetant S, Reynaud-Gaubert M, Salaun M, Sanchez O, Trumbic B, Berkani K, Brillet PY, Campana M, Chalabreysse L, Chatté G, Debieuvre D, Ferretti G, Fourrier JM, Just N, Kambouchner M, Legrand B, Le Guillou F, Lhuillier JP, Mehdaoui A, Naccache JM, Paganon C, Rémy-Jardin M, Si-Mohamed S, Terrioux P. [French practical guidelines for the diagnosis and management of IPF - 2021 update, full version]. Rev Mal Respir 2022; 39:e35-e106. [PMID: 35752506 DOI: 10.1016/j.rmr.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Since the previous French guidelines were published in 2017, substantial additional knowledge about idiopathic pulmonary fibrosis has accumulated. METHODS Under the auspices of the French-speaking Learned Society of Pulmonology and at the initiative of the coordinating reference center, practical guidelines for treatment of rare pulmonary diseases have been established. They were elaborated by groups of writers, reviewers and coordinators with the help of the OrphaLung network, as well as pulmonologists with varying practice modalities, radiologists, pathologists, a general practitioner, a head nurse, and a patients' association. The method was developed according to rules entitled "Good clinical practice" in the overall framework of the "Guidelines for clinical practice" of the official French health authority (HAS), taking into account the results of an online vote using a Likert scale. RESULTS After analysis of the literature, 54 recommendations were formulated, improved, and validated by the working groups. The recommendations covered a wide-ranging aspects of the disease and its treatment: epidemiology, diagnostic modalities, quality criteria and interpretation of chest CT, indication and modalities of lung biopsy, etiologic workup, approach to familial disease entailing indications and modalities of genetic testing, evaluation of possible functional impairments and prognosis, indications for and use of antifibrotic therapy, lung transplantation, symptom management, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are aimed at guiding the diagnosis and the management in clinical practice of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- V Cottin
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France; UMR 754, IVPC, INRAE, Université de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; Membre d'OrphaLung, RespiFil, Radico-ILD2, et ERN-LUNG, Lyon, France.
| | - P Bonniaud
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et soins intensifs respiratoires, centre hospitalo-universitaire de Bourgogne et faculté de médecine et pharmacie, université de Bourgogne-Franche Comté, Dijon ; Inserm U123-1, Dijon, France
| | - J Cadranel
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et oncologie thoracique, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Tenon, Paris ; Sorbonne université GRC 04 Theranoscan, Paris, France
| | - B Crestani
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - S Jouneau
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Pontchaillou, Rennes ; IRSET UMR1085, université de Rennes 1, Rennes, France
| | - S Marchand-Adam
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, hôpital Bretonneau, service de pneumologie, CHRU, Tours, France
| | - H Nunes
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie, AP-HP, hôpital Avicenne, Bobigny ; université Sorbonne Paris Nord, Bobigny, France
| | - L Wémeau-Stervinou
- Centre de référence constitutif des maladies pulmonaires rares, Institut Cœur-Poumon, service de pneumologie et immuno-allergologie, CHRU de Lille, Lille, France
| | - E Bergot
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie et oncologie thoracique, hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - E Blanchard
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Haut Levêque, CHU de Bordeaux, Pessac, France
| | - R Borie
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - A Bourdin
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, département de pneumologie et addictologie, hôpital Arnaud-de-Villeneuve, CHU de Montpellier, Montpellier ; Inserm U1046, CNRS UMR 921, Montpellier, France
| | - C Chenivesse
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et d'immuno-allergologie, hôpital Albert Calmette ; CHRU de Lille, Lille ; centre d'infection et d'immunité de Lille U1019 - UMR 9017, Université de Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, Lille, France
| | - A Clément
- Centre de ressources et de compétence de la mucoviscidose pédiatrique, centre de référence des maladies respiratoires rares (RespiRare), service de pneumologie pédiatrique, hôpital d'enfants Armand-Trousseau, CHU Paris Est, Paris ; Sorbonne université, Paris, France
| | - E Gomez
- Centre de compétence pour les maladies pulmonaires rares, département de pneumologie, hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - A Gondouin
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Jean-Minjoz, Besançon, France
| | - S Hirschi
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, Nouvel Hôpital civil, Strasbourg, France
| | - F Lebargy
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Maison Blanche, Reims, France
| | - C-H Marquette
- Centre de compétence pour les maladies pulmonaires rares, FHU OncoAge, département de pneumologie et oncologie thoracique, hôpital Pasteur, CHU de Nice, Nice cedex 1 ; Université Côte d'Azur, CNRS, Inserm, Institute of Research on Cancer and Aging (IRCAN), Nice, France
| | - D Montani
- Centre de compétence pour les maladies pulmonaires rares, centre national coordonnateur de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs pneumologiques, AP-HP, DMU 5 Thorinno, Inserm UMR S999, CHU Paris-Sud, hôpital de Bicêtre, Le Kremlin-Bicêtre ; Université Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - G Prévot
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Larrey, Toulouse, France
| | - S Quetant
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et physiologie, CHU Grenoble Alpes, Grenoble, France
| | - M Reynaud-Gaubert
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, AP-HM, CHU Nord, Marseille ; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - M Salaun
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, oncologie thoracique et soins intensifs respiratoires & CIC 1404, hôpital Charles Nicole, CHU de Rouen, Rouen ; IRIB, laboratoire QuantiIF-LITIS, EA 4108, université de Rouen, Rouen, France
| | - O Sanchez
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et soins intensifs, hôpital européen Georges-Pompidou, AP-HP, Paris, France
| | | | - K Berkani
- Clinique Pierre de Soleil, Vetraz Monthoux, France
| | - P-Y Brillet
- Université Paris 13, UPRES EA 2363, Bobigny ; service de radiologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - M Campana
- Service de pneumologie et oncologie thoracique, CHR Orléans, Orléans, France
| | - L Chalabreysse
- Service d'anatomie-pathologique, groupement hospitalier est, HCL, Bron, France
| | - G Chatté
- Cabinet de pneumologie et infirmerie protestante, Caluire, France
| | - D Debieuvre
- Service de pneumologie, GHRMSA, hôpital Emile-Muller, Mulhouse, France
| | - G Ferretti
- Université Grenoble Alpes, Grenoble ; service de radiologie diagnostique et interventionnelle, CHU Grenoble Alpes, Grenoble, France
| | - J-M Fourrier
- Association Pierre-Enjalran Fibrose Pulmonaire Idiopathique (APEFPI), Meyzieu, France
| | - N Just
- Service de pneumologie, CH Victor-Provo, Roubaix, France
| | - M Kambouchner
- Service de pathologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - B Legrand
- Cabinet médical de la Bourgogne, Tourcoing ; Université de Lille, CHU Lille, ULR 2694 METRICS, CERIM, Lille, France
| | - F Le Guillou
- Cabinet de pneumologie, pôle santé de l'Esquirol, Le Pradet, France
| | - J-P Lhuillier
- Cabinet de pneumologie, La Varenne Saint-Hilaire, France
| | - A Mehdaoui
- Service de pneumologie et oncologie thoracique, CH Eure-Seine, Évreux, France
| | - J-M Naccache
- Service de pneumologie, allergologie et oncologie thoracique, GH Paris Saint-Joseph, Paris, France
| | - C Paganon
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France
| | - M Rémy-Jardin
- Institut Cœur-Poumon, service de radiologie et d'imagerie thoracique, CHRU de Lille, Lille, France
| | - S Si-Mohamed
- Département d'imagerie cardiovasculaire et thoracique, hôpital Louis-Pradel, HCL, Bron ; Université de Lyon, INSA-Lyon, Université Claude-Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
| | | |
Collapse
|
23
|
French practical guidelines for the diagnosis and management of idiopathic pulmonary fibrosis - 2021 update. Full-length version. Respir Med Res 2022; 83:100948. [PMID: 36630775 DOI: 10.1016/j.resmer.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Since the latest 2017 French guidelines, knowledge about idiopathic pulmonary fibrosis has evolved considerably. METHODS Practical guidelines were drafted on the initiative of the Coordinating Reference Center for Rare Pulmonary Diseases, led by the French Language Pulmonology Society (SPLF), by a coordinating group, a writing group, and a review group, with the involvement of the entire OrphaLung network, pulmonologists practicing in various settings, radiologists, pathologists, a general practitioner, a health manager, and a patient association. The method followed the "Clinical Practice Guidelines" process of the French National Authority for Health (HAS), including an online vote using a Likert scale. RESULTS After a literature review, 54 guidelines were formulated, improved, and then validated by the working groups. These guidelines addressed multiple aspects of the disease: epidemiology, diagnostic procedures, quality criteria and interpretation of chest CT scans, lung biopsy indication and procedures, etiological workup, methods and indications for family screening and genetic testing, assessment of the functional impairment and prognosis, indication and use of antifibrotic agents, lung transplantation, management of symptoms, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are intended to guide the diagnosis and practical management of idiopathic pulmonary fibrosis.
Collapse
|
24
|
Towards Treatable Traits for Pulmonary Fibrosis. J Pers Med 2022; 12:jpm12081275. [PMID: 36013224 PMCID: PMC9410230 DOI: 10.3390/jpm12081275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Interstitial lung diseases (ILD) are a heterogeneous group of disorders, of which many have the potential to lead to progressive pulmonary fibrosis. A distinction is usually made between primarily inflammatory ILD and primarily fibrotic ILD. As recent studies show that anti-fibrotic drugs can be beneficial in patients with primarily inflammatory ILD that is characterized by progressive pulmonary fibrosis, treatment decisions have become more complicated. In this perspective, we propose that the ‘treatable trait’ concept, which is based on the recognition of relevant exposures, various treatable phenotypes (disease manifestations) or endotypes (shared molecular mechanisms) within a group of diseases, can be applied to progressive pulmonary fibrosis. These targets for medical intervention can be identified through validated biomarkers and are not necessarily related to specific diagnostic labels. Proposed treatable traits are: cigarette smoking, occupational, allergen or drug exposures, excessive (profibrotic) auto- or alloimmunity, progressive pulmonary fibrosis, pulmonary hypertension, obstructive sleep apnea, tuberculosis, exercise intolerance, exertional hypoxia, and anxiety and depression. There are also several potential traits that have not been associated with relevant outcomes or for which no effective treatment is available at present: air pollution, mechanical stress, viral infections, bacterial burden in the lungs, surfactant-related pulmonary fibrosis, telomere-related pulmonary fibrosis, the rs35705950 MUC5B promoter polymorphism, acute exacerbations, gastro-esophageal reflux, dyspnea, and nocturnal hypoxia. The ‘treatable traits’ concept can be applied in new clinical trials for patients with progressive pulmonary fibrosis and could be used for developing new treatment strategies.
Collapse
|
25
|
Impact of gastroesophageal reflux disease on idiopathic pulmonary fibrosis and lung transplant recipients. Curr Opin Gastroenterol 2022; 38:411-416. [PMID: 35762701 DOI: 10.1097/mog.0000000000000841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Idiopathic pulmonary fibrosis (IPF) is a prevalent subset of interstitial lung disease (ILD) that often progresses to require lung transplantation. Gastroesophageal reflux disease (GERD) is common in the IPF population, and GER-related micro-aspiration appears to be an important risk factor for IPF pathogenesis and for the deterioration of transplanted lung function. RECENT FINDINGS Many patients with IPF have elevated esophageal acid exposure on reflux testing despite having no or minimal symptoms. Studies on the effects of medical GERD therapy on IPF-related outcomes have had mixed results. Antireflux surgery is safe in appropriately selected IPF patients, and appears to have potential for slowing the decline of lung function. GERD can persist, improve or develop after lung transplantation, and the presence of GERD is associated with allograft injury and pulmonary function decline in lung transplant recipients. SUMMARY Clinicians should have a low threshold to assess for objective evidence of GERD in IPF patients. Antireflux surgery in IPF patients with GERD appears to improve lung function, but further studies are needed before surgical treatment can be recommended routinely in this setting. In lung transplant recipients, reflux testing after transplant is the most accurate way to guide GERD treatment decisions.
Collapse
|
26
|
Liu GY, Budinger GRS, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ 2022; 377:e066354. [PMID: 36946547 DOI: 10.1136/bmj-2021-066354] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Similarly to idiopathic pulmonary fibrosis (IPF), other interstitial lung diseases can develop progressive pulmonary fibrosis (PPF) characterized by declining lung function, a poor response to immunomodulatory therapies, and early mortality. The pathophysiology of disordered lung repair involves common downstream pathways that lead to pulmonary fibrosis in both IPF and PPF. The antifibrotic drugs, such as nintedanib, are indicated for the treatment of IPF and PPF, and new therapies are being evaluated in clinical trials. Clinical, radiographic, and molecular biomarkers are needed to identify patients with PPF and subgroups of patients likely to respond to specific therapies. This article reviews the evidence supporting the use of specific therapies in patients with IPF and PPF, discusses agents being considered in clinical trials, and considers potential biomarkers based on disease pathogenesis that might be used to provide a personalized approach to care.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jane E Dematte
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
28
|
Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091543. [PMID: 35563849 PMCID: PMC9099509 DOI: 10.3390/cells11091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis.
Collapse
|
29
|
Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ, Molina-Molina M, Myers JL, Nicholson AG, Ryerson CJ, Strek ME, Troy LK, Wijsenbeek M, Mammen MJ, Hossain T, Bissell BD, Herman DD, Hon SM, Kheir F, Khor YH, Macrea M, Antoniou KM, Bouros D, Buendia-Roldan I, Caro F, Crestani B, Ho L, Morisset J, Olson AL, Podolanczuk A, Poletti V, Selman M, Ewing T, Jones S, Knight SL, Ghazipura M, Wilson KC. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 2022; 205:e18-e47. [PMID: 35486072 PMCID: PMC9851481 DOI: 10.1164/rccm.202202-0399st] [Citation(s) in RCA: 963] [Impact Index Per Article: 481.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: This American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Asociación Latinoamericana de Tórax guideline updates prior idiopathic pulmonary fibrosis (IPF) guidelines and addresses the progression of pulmonary fibrosis in patients with interstitial lung diseases (ILDs) other than IPF. Methods: A committee was composed of multidisciplinary experts in ILD, methodologists, and patient representatives. 1) Update of IPF: Radiological and histopathological criteria for IPF were updated by consensus. Questions about transbronchial lung cryobiopsy, genomic classifier testing, antacid medication, and antireflux surgery were informed by systematic reviews and answered with evidence-based recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. 2) Progressive pulmonary fibrosis (PPF): PPF was defined, and then radiological and physiological criteria for PPF were determined by consensus. Questions about pirfenidone and nintedanib were informed by systematic reviews and answered with evidence-based recommendations using the GRADE approach. Results:1) Update of IPF: A conditional recommendation was made to regard transbronchial lung cryobiopsy as an acceptable alternative to surgical lung biopsy in centers with appropriate expertise. No recommendation was made for or against genomic classifier testing. Conditional recommendations were made against antacid medication and antireflux surgery for the treatment of IPF. 2) PPF: PPF was defined as at least two of three criteria (worsening symptoms, radiological progression, and physiological progression) occurring within the past year with no alternative explanation in a patient with an ILD other than IPF. A conditional recommendation was made for nintedanib, and additional research into pirfenidone was recommended. Conclusions: The conditional recommendations in this guideline are intended to provide the basis for rational, informed decisions by clinicians.
Collapse
|
30
|
Antacid Medication and Antireflux Surgery in Patients with Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Ann Am Thorac Soc 2022; 19:833-844. [PMID: 35486080 DOI: 10.1513/annalsats.202102-172oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with impaired survival. Previous guidelines recommend antacid medication to improve respiratory outcomes in patients with IPF. Objectives: This systematic review was undertaken during the development of an American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Asociación Latinoamericana del Tórax guideline. The clinical question was, "Should patients with IPF who have documented abnormal gastroesophageal reflux (GER) with or without symptoms of GER disease 1) be treated with antacid medication or 2) undergo antireflux surgery to improve respiratory outcomes?" Methods: Medline, Embase, the Cochrane Central Register of Controlled Trials, and the gray literature were searched through June 30, 2020. Studies that enrolled patients with IPF and 1) compared antacid medication to placebo or no medication or 2) compared antireflux surgery to no surgery were selected. Meta-analyses were performed when possible. Outcomes included disease progression, mortality, exacerbations, hospitalizations, lung function, respiratory symptoms, GER severity, and adverse effects/complications. Results: For antacid medication, when two studies were aggregated, there was no statistically significant effect on disease progression, defined as a 10% or more decline in FVC, more than 50-m decline in 6-minute walking distance, or death (risk ratio [RR], 0.88; 95% confidence interval [CI], 0.76-1.03). A separate study that could not be included in the meta-analysis found no statistically significant effect on disease progression when defined as a 5% or more decline in FVC or death (RR, 1.10; 95% CI, 1.00-1.21) and an increase in disease progression when defined as a 10% or more decline in FVC or death (RR, 1.28; 95% CI, 1.08-1.51). For antireflux surgery, there was also no statistically significant effect on disease progression (RR, 0.29; 95% CI, 0.06-1.26). Neither antacid medications nor antireflux surgery was associated with improvements in the other outcomes. Conclusions: There is insufficient evidence to conclude that antacid medication or antireflux surgery improves respiratory outcomes in patients with IPF, most of whom had not had abnormal GER confirmed. Well-designed and adequately powered prospective studies with objective evaluation for GER are critical to elucidate the role of antacid medication and antireflux surgery for respiratory outcomes in patients with IPF.
Collapse
|
31
|
Cottin V, Bonniaud P, Cadranel J, Crestani B, Jouneau S, Marchand-Adam S, Nunes H, Wémeau-Stervinou L, Bergot E, Blanchard E, Borie R, Bourdin A, Chenivesse C, Clément A, Gomez E, Gondouin A, Hirschi S, Lebargy F, Marquette CH, Montani D, Prévot G, Quetant S, Reynaud-Gaubert M, Salaun M, Sanchez O, Trumbic B, Berkani K, Brillet PY, Campana M, Chalabreysse L, Chatté G, Debieuvre D, Ferretti G, Fourrier JM, Just N, Kambouchner M, Legrand B, Le Guillou F, Lhuillier JP, Mehdaoui A, Naccache JM, Paganon C, Rémy-Jardin M, Si-Mohamed S, Terrioux P. [French practical guidelines for the diagnosis and management of IPF - 2021 update, short version]. Rev Mal Respir 2022; 39:275-312. [PMID: 35304014 DOI: 10.1016/j.rmr.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Since the previous French guidelines were published in 2017, substantial additional knowledge about idiopathic pulmonary fibrosis has accumulated. METHODS Under the auspices of the French-speaking Learned Society of Pulmonology and at the initiative of the coordinating reference center, practical guidelines for treatment of rare pulmonary diseases have been established. They were elaborated by groups of writers, reviewers and coordinators with the help of the OrphaLung network, as well as pulmonologists with varying practice modalities, radiologists, pathologists, a general practitioner, a head nurse, and a patients' association. The method was developed according to rules entitled "Good clinical practice" in the overall framework of the "Guidelines for clinical practice" of the official French health authority (HAS), taking into account the results of an online vote using a Likert scale. RESULTS After analysis of the literature, 54 recommendations were formulated, improved, and validated by the working groups. The recommendations covered a wide-ranging aspects of the disease and its treatment: epidemiology, diagnostic modalities, quality criteria and interpretation of chest CT, indication and modalities of lung biopsy, etiologic workup, approach to familial disease entailing indications and modalities of genetic testing, evaluation of possible functional impairments and prognosis, indications for and use of antifibrotic therapy, lung transplantation, symptom management, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are aimed at guiding the diagnosis and the management in clinical practice of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- V Cottin
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France; UMR 754, IVPC, INRAE, Université de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; Membre d'OrphaLung, RespiFil, Radico-ILD2, et ERN-LUNG, Lyon, France.
| | - P Bonniaud
- Service de pneumologie et soins intensifs respiratoires, centre de référence constitutif des maladies pulmonaires rares, centre hospitalo-universitaire de Bourgogne et faculté de médecine et pharmacie, université de Bourgogne-Franche Comté, Dijon ; Inserm U123-1, Dijon, France
| | - J Cadranel
- Service de pneumologie et oncologie thoracique, centre de référence constitutif des maladies pulmonaires rares, assistance publique-hôpitaux de Paris (AP-HP), hôpital Tenon, Paris ; Sorbonne université GRC 04 Theranoscan, Paris, France
| | - B Crestani
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - S Jouneau
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Pontchaillou, Rennes ; IRSET UMR1085, université de Rennes 1, Rennes, France
| | - S Marchand-Adam
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, hôpital Bretonneau, service de pneumologie, CHRU, Tours, France
| | - H Nunes
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie, AP-HP, hôpital Avicenne, Bobigny ; université Sorbonne Paris Nord, Bobigny, France
| | - L Wémeau-Stervinou
- Centre de référence constitutif des maladies pulmonaires rares, Institut Cœur-Poumon, service de pneumologie et immuno-allergologie, CHRU de Lille, Lille, France
| | - E Bergot
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie et oncologie thoracique, hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - E Blanchard
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Haut Levêque, CHU de Bordeaux, Pessac, France
| | - R Borie
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - A Bourdin
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, département de pneumologie et addictologie, hôpital Arnaud-de-Villeneuve, CHU de Montpellier, Montpellier ; Inserm U1046, CNRS UMR 921, Montpellier, France
| | - C Chenivesse
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et d'immuno-allergologie, hôpital Albert Calmette ; CHRU de Lille, Lille ; centre d'infection et d'immunité de Lille U1019 - UMR 9017, Université de Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, Lille, France
| | - A Clément
- Centre de ressources et de compétences de la mucoviscidose pédiatrique, centre de référence des maladies respiratoires rares (RespiRare), service de pneumologie pédiatrique, hôpital d'enfants Armand-Trousseau, CHU Paris Est, Paris ; Sorbonne université, Paris, France
| | - E Gomez
- Centre de compétence pour les maladies pulmonaires rares, département de pneumologie, hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - A Gondouin
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Jean Minjoz, Besançon, France
| | - S Hirschi
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, Nouvel Hôpital civil, Strasbourg, France
| | - F Lebargy
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Maison Blanche, Reims, France
| | - C-H Marquette
- Centre de compétence pour les maladies pulmonaires rares, FHU OncoAge, département de pneumologie et oncologie thoracique, hôpital Pasteur, CHU de Nice, Nice cedex 1 ; Université Côte d'Azur, CNRS, Inserm, Institute of Research on Cancer and Aging (IRCAN), Nice, France
| | - D Montani
- Centre de compétence pour les maladies pulmonaires rares, centre national coordonnateur de référence de l'hypertension pulmonaire, unité pneumologie et soins intensifs pneumologiques, AP-HP, DMU 5 Thorinno, Inserm UMR S999, CHU Paris-Sud, hôpital de Bicêtre, Le Kremlin-Bicêtre ; Université Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - G Prévot
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Larrey, Toulouse, France
| | - S Quetant
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et physiologie, CHU Grenoble Alpes, Grenoble, France
| | - M Reynaud-Gaubert
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, AP-HM, CHU Nord, Marseille ; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - M Salaun
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, oncologie thoracique et soins intensifs respiratoires & CIC 1404, hôpital Charles Nicole, CHU de Rouen, Rouen ; IRIB, laboratoire QuantiIF-LITIS, EA 4108, université de Rouen, Rouen, France
| | - O Sanchez
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et soins intensifs, hôpital européen Georges Pompidou, AP-HP, Paris, France
| | | | - K Berkani
- Clinique Pierre de Soleil, Vetraz Monthoux, France
| | - P-Y Brillet
- Université Paris 13, UPRES EA 2363, Bobigny ; service de radiologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - M Campana
- Service de pneumologie et oncologie thoracique, CHR Orléans, Orléans, France
| | - L Chalabreysse
- Service d'anatomie-pathologique, groupement hospitalier est, HCL, Bron, France
| | - G Chatté
- Cabinet de pneumologie et infirmerie protestante, Caluire, France
| | - D Debieuvre
- Service de Pneumologie, GHRMSA, hôpital Emile Muller, Mulhouse, France
| | - G Ferretti
- Université Grenoble Alpes, Grenoble ; service de radiologie diagnostique et interventionnelle, CHU Grenoble Alpes, Grenoble, France
| | - J-M Fourrier
- Association Pierre Enjalran Fibrose Pulmonaire Idiopathique (APEFPI), Meyzieu, France
| | - N Just
- Service de pneumologie, CH Victor Provo, Roubaix, France
| | - M Kambouchner
- Service de pathologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - B Legrand
- Cabinet médical de la Bourgogne, Tourcoing ; Université de Lille, CHU Lille, ULR 2694 METRICS, CERIM, Lille, France
| | - F Le Guillou
- Cabinet de pneumologie, pôle santé de l'Esquirol, Le Pradet, France
| | - J-P Lhuillier
- Cabinet de pneumologie, La Varenne Saint-Hilaire, France
| | - A Mehdaoui
- Service de pneumologie et oncologie thoracique, CH Eure-Seine, Évreux, France
| | - J-M Naccache
- Service de pneumologie, allergologie et oncologie thoracique, GH Paris Saint-Joseph, Paris, France
| | - C Paganon
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France
| | - M Rémy-Jardin
- Institut Cœur-Poumon, service de radiologie et d'imagerie thoracique, CHRU de Lille, Lille, France
| | - S Si-Mohamed
- Département d'imagerie cardiovasculaire et thoracique, hôpital Louis Pradel, HCL, Bron ; Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
| | | |
Collapse
|
32
|
Morrow LE, Hilleman D, Malesker MA. Management of patients with fibrosing interstitial lung diseases. Am J Health Syst Pharm 2022; 79:129-139. [PMID: 34608488 PMCID: PMC8881211 DOI: 10.1093/ajhp/zxab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PURPOSE This article summarizes the appropriate use and pharmacology of treatments for fibrosing interstitial lung diseases, with a specific focus on the antifibrotic agents nintedanib and pirfenidone. SUMMARY The interstitial lung diseases are a heterogenous group of parenchymal lung disorders with a common feature-infiltration of the interstitial space with derangement of the normal capillary-alveolar anatomy. Diseases characterized by fibrosis of the interstitial space are referred to as the fibrosing interstitial lung diseases and often show progression over time: idiopathic pulmonary fibrosis is the most common fibrotic interstitial lung disease. Historically, therapies for fibrosing lung diseases have been limited in number, questionable in efficacy, and associated with potential harms. Food and Drug Administration (FDA) approval of the antifibrotic agents nintedanib and pirfenidone for idiopathic pulmonary fibrosis in 2014 heralded an era of reorganization of therapy for the fibrotic interstitial lung diseases. Subsequent investigations have led to FDA approval of nintedanib for systemic sclerosis-associated interstitial lung disease and interstitial lung diseases with a progressive phenotype. Although supportive care and pulmonary rehabilitation should be provided to all patients, the role(s) of immunomodulators and/or immune suppressing agents vary by the underlying disease state. Several agents previously used to treat fibrotic lung diseases (N-acetylcysteine, anticoagulation, and pulmonary vasodilators) lack efficacy or cause harm. CONCLUSION With the introduction of effective pharmacotherapy for fibrosing interstitial lung disease, pharmacists have an increasingly important role in the interdisciplinary team managing these patients.
Collapse
Affiliation(s)
- Lee E Morrow
- Creighton University School of Medicine, Omaha, NE
- Creighton University School of Pharmacy and Health Professions, Omaha, NE, USA
| | - Daniel Hilleman
- Creighton University School of Pharmacy and Health Professions, Omaha, NE
- Creighton University School of Medicine, Omaha, NE, USA
| | - Mark A Malesker
- Creighton University School of Pharmacy and Health Professions, Omaha, NE
- Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
33
|
Abstract
Acute exacerbation is a major cause of morbidity and mortality in patients with idiopathic pulmonary fibrosis. Although the real nature of it is still not clear and there is no proven effective therapy, progress has been made since the consensus definition and diagnostic criteria were proposed. The trial results of several new innovative therapies in idiopathic pulmonary fibrosis have suggested a potential for benefit in acute exacerbation of idiopathic pulmonary fibrosis, leading to double blind randomized clinical trials in this area. This article reviews the present knowledge on acute exacerbation of idiopathic pulmonary fibrosis, focusing on the triggering factors and treatment.
Collapse
|
34
|
Abstract
The aim of this review is to explore the relationship between esophageal syndromes and pulmonary diseases considering the most recent data available. Prior studies have shown a close relationship between lung diseases such as asthma, chronic obstructive pulmonary disorders (COPD), Idiopathic pulmonary fibrosis (IPF), and lung transplant rejection and esophageal dysfunction. Although the association has long been demonstrated, the exact relationship remains unclear. Clinical experience has shown a bidirectional relationship where esophageal disease may influence the outcomes of pulmonary disease and vice versa. The impact of esophageal dysfunction on pulmonary disorders may also be related to 2 different mechanisms: the reflux pathway leading to microaspiration and the reflex pathway triggering vagally mediated airway reactions. The aim of this review is to further explore these relationships and pathophysiologic mechanisms. Specifically, we discuss the proposed hypotheses for the relationship between the 2 diseases, as well as the pathophysiology and new developments in clinical management.
Collapse
|
35
|
Yang M, Dong J, An J, Liu L, Chen L. Effect of anti-reflux therapy on pulmonary function in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. J Thorac Dis 2021; 13:5776-5787. [PMID: 34795926 PMCID: PMC8575825 DOI: 10.21037/jtd-21-771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023]
Abstract
Background Current guideline conditionally recommends regular use of anti-reflux medication in idiopathic pulmonary fibrosis (IPF). However, the effect of anti-reflux therapy in this group remains controversial. We systematically reviewed literatures to evaluate whether anti-reflux therapy could ameliorate pulmonary function in IPF. Methods We performed electronic search in PubMed, Embase and CENTRAL (Cochrane Central Register of Controlled Trials) to identify original articles published in English language. We included randomized controlled trials (RCTs) and observational studies regarding anti-reflux therapy on pulmonary function in IPF. Qualitative and quantitative analyses were conducted. In quantitative analysis, the inverse-variance method with fixed-effect model was used to analyze pooled data. Results Fifteen studies (2 RCTs and 13 observational studies) including 3,891 patients with IPF were included. Pooled analysis suggested that anti-reflux therapy did not improve forced vital capacity (FVC)% predicted [mean difference (MD) =0.88, 95% confidence interval (CI): −0.22 to 1.98, P=0.12, I2 =0%, 8 studies, n=3,076], diffusing capacity of the lung for carbon monoxide (DLCO) % predicted (MD =0.75, 95% CI: −0.13 to 1.62, P=0.10, I2 =0%, 8 studies, n=3,073), and FVC decline (MD =0.02, 95% CI: −0.01 to 0.04, P=0.29, I2 =17%, 5 studies, n=1,586) in IPF. Discussion Anti-reflux therapy may not ameliorate pulmonary function in IPF. However, adequately powered studies are warranted to validate the present findings.
Collapse
Affiliation(s)
- Mei Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiajia Dong
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jing An
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Copeland CR, Lancaster LH. Management of Progressive Fibrosing Interstitial Lung Diseases (PF-ILD). Front Med (Lausanne) 2021; 8:743977. [PMID: 34722582 PMCID: PMC8548364 DOI: 10.3389/fmed.2021.743977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Progressive fibrosing interstitial lung diseases (PF-ILD) consist of a diverse group of interstitial lung diseases (ILD) characterized by a similar clinical phenotype of accelerated respiratory failure, frequent disease exacerbation and earlier mortality. Regardless of underlying disease process, PF-ILD progresses through similar mechanisms of self-sustained dysregulated cell repair, fibroblast proliferation and alveolar dysfunction that can be therapeutically targeted. Antifibrotic therapy with nintedanib or pirfenidone slow lung function decline and are the backbone of treatment for IPF with an expanded indication of PF-ILD for nintedanib. Immunosuppression is utilized for some subtypes of PF-ILD, including connective tissue disease ILD and hypersensitivity pneumonitis. Inhaled treprostinil is a novel therapy that improves exercise tolerance in individuals with PF-ILD and concomitant World Health Organization (WHO) group 3 pulmonary hypertension. Lung transplantation is the only curative therapy and can be considered in an appropriate and interested patient. Supportive care, oxygen therapy when appropriate, and treatment of comorbid conditions are important aspects of PF-ILD management. This review summarizes the current data and recommendations for management of PF-ILD.
Collapse
Affiliation(s)
- Carla R Copeland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa H Lancaster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
37
|
Johannson KA, Chaudhuri N, Adegunsoye A, Wolters PJ. Treatment of fibrotic interstitial lung disease: current approaches and future directions. Lancet 2021; 398:1450-1460. [PMID: 34499866 DOI: 10.1016/s0140-6736(21)01826-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Fibrotic interstitial lung disease (ILD) represents a large group of pulmonary disorders that are often progressive and associated with high morbidity and early mortality. Important advancements in the past 10 years have enabled a better understanding, characterisation, and treatment of these diseases. This Series paper summarises the current approach to treatment of fibrotic ILDs, both pharmacological and non-pharmacological, including recent discoveries and practice-changing clinical trials. We further outline controversies and challenges, with discussion of evolving concepts and future research directions.
Collapse
Affiliation(s)
- Kerri A Johannson
- Departments of Medicine and Community Health Sciences, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| | - Nazia Chaudhuri
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
38
|
Nash S, Morgan KE, Frost C, Mulick A. Power and sample-size calculations for trials that compare slopes over time: Introducing the slopepower command. THE STATA JOURNAL 2021; 21:575-601. [PMID: 37476648 PMCID: PMC7614632 DOI: 10.1177/1536867x211045512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Trials of interventions that aim to slow disease progression may analyze a continuous outcome by comparing its change over time-its slope-between the treated and the untreated group using a linear mixed model. To perform a sample-size calculation for such a trial, one must have estimates of the parameters that govern the between- and within-subject variability in the outcome, which are often unknown. The algebra needed for the sample-size calculation can also be complex for such trial designs. We have written a new user-friendly command, slopepower, that performs sample-size or power calculations for trials that compare slope outcomes. The package is based on linear mixed-model methodology, described for this setting by Frost, Kenward, and Fox (2008, Statistics in Medicine 27: 3717-3731). In the first stage of this approach, slopepower obtains estimates of mean slopes together with variances and covariances from a linear mixed model fit to previously collected user-supplied data. In the second stage, these estimates are combined with user input about the target effectiveness of the treatment and design of the future trial to give an estimate of either a sample size or a statistical power. In this article, we present the slopepower command, briefly explain the methodology behind it, and demonstrate how it can be used to help plan a trial and compare the sample sizes needed for different trial designs.
Collapse
Affiliation(s)
- Stephen Nash
- Department of Infectious Disease Epidemiology
London School of Hygiene and Tropical Medicine
London, UK
| | - Katy E. Morgan
- Department of Medical Statistics London School
of Hygiene and Tropical Medicine London, UK
| | - Chris Frost
- Department of Medical Statistics London School
of Hygiene and Tropical Medicine London, UK
| | - Amy Mulick
- Department of Non-communicable Disease
Epidemiology London School of Hygiene and Tropical
Medicine London, UK
| |
Collapse
|
39
|
Kapnadak SG, Raghu G. Lung transplantation for interstitial lung disease. Eur Respir Rev 2021; 30:30/161/210017. [PMID: 34348979 DOI: 10.1183/16000617.0017-2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/02/2021] [Indexed: 01/18/2023] Open
Abstract
Lung transplantation (LTx) can be a life-extending treatment option for patients with advanced and/or progressive fibrotic interstitial lung disease (ILD), especially idiopathic pulmonary fibrosis (IPF), fibrotic hypersensitivity pneumonitis, sarcoidosis and connective tissue disease-associated ILD. IPF is now the most common indication for LTx worldwide. Several unique features in patients with ILD can impact optimal timing of referral or listing for LTx, pre- or post-transplant risks, candidacy and post-transplant management. As the epidemiology of LTx and community practices have evolved, recent literature describes outcomes and approaches in higher-risk candidates. In this review, we discuss the unique and important clinical findings, course, monitoring and management of patients with IPF and other progressive fibrotic ILDs during pre-LTx evaluation and up to the day of transplantation; the need for co-management with clinical experts in ILD and LTx is emphasised. Some post-LTx complications are unique in these patient cohorts, which require prompt detection and appropriate management by experts in multiple disciplines familiar with telomere biology disorders and infectious, haematological, oncological and cardiac complications to enhance the likelihood of improved outcomes and survival of LTx recipients with IPF and other ILDs.
Collapse
Affiliation(s)
- Siddhartha G Kapnadak
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Ganesh Raghu
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, University of Washington, Seattle, WA, USA .,Dept of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Kawano-Dourado L, Lee JS. Management of Connective Tissue Disease-Associated Interstitial Lung Disease. Clin Chest Med 2021; 42:295-310. [PMID: 34024405 DOI: 10.1016/j.ccm.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presence of interstitial lung disease (ILD) negatively affects prognosis among patients with an underlying connective tissue disease (CTD). The initial approach to care should determine whether the CTD-ILD needs pharmacologic treatment or not. There is little direct evidence to guide who and how to treat. At present, any severe, active, and/or progressive ILD should be pharmacologically treated. Immunosuppressants and/or corticosteroids are the mainstay of pharmacologic therapy for all CTD-ILDs, whereas antifibrotics may be beneficial in some scenarios. A comprehensive and multidisciplinary approach to management is also an important aspect of patient care.
Collapse
Affiliation(s)
- Leticia Kawano-Dourado
- HCor Research Institute, Hospital do Coracao, Rua Abilio Soares, 250, 12º andar, Sao Paulo, Sao Paulo 04005-909, Brazil; Pulmonary Division, Heart Institute (InCor), Medical School, University of Sao Paulo, Sao Paulo, Brazil; INSERM UMR 1152, University of Paris, Paris, France.
| | - Joyce S Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver - Anschutz Medical Campus, 12631 East 17th Avenue, C-323, Academic Office 1, Room 7223, Aurora, CO 80045, USA
| |
Collapse
|
41
|
Looking Ahead: Interstitial Lung Disease Diagnosis and Management in 2030. Clin Chest Med 2021; 42:375-384. [PMID: 34024412 DOI: 10.1016/j.ccm.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Important advancements have been made in interstitial lung disease (ILD) in recent years, with improved understanding of risk factors, disease pathogenesis, and clinical care. This article summarizes the current and future state of ILD management, with proposed short-term initiatives for immediate action, and longer-term objectives for innovation and discovery.
Collapse
|
42
|
Oldham JM, Vancheri C. Rethinking Idiopathic Pulmonary Fibrosis. Clin Chest Med 2021; 42:263-273. [PMID: 34024402 DOI: 10.1016/j.ccm.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease for patients and their loved ones. Since initial efforts to characterize this disease in the 1960s, understanding of IPF has evolved considerably. Such evolution has continually challenged prior diagnostic and treatment paradigms, ushering in an era of higher confidence diagnoses with less invasive procedures and more effective treatments. This review details how research and clinical experience over the past half century have led to a rethinking of IPF. Here, the evolution in understanding of IPF pathogenesis, diagnostic evaluation and treatment approach is discussed.
Collapse
Affiliation(s)
- Justin M Oldham
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, 4150 V Street Suite 3400, Sacramento, CA 95817, USA.
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Regional Referral Center for Rare Lung Diseases, University-Hospital "Policlinico -Vittorio Emanuele", Catania, Italy
| |
Collapse
|
43
|
Abstract
Progress in the past 2 decades has led to widespread use of 2 medications to slow loss of lung function in patients with pulmonary fibrosis. Treatment of individual patients with currently available pharmacotherapies can be limited by side effects, and neither drug has a consistent effect on patient symptoms or function. Several promising new pharmacotherapies are under development. Comprehensive management of pulmonary fibrosis hinges on shared decision making. Patient and caregiver education, and early identification and management of symptoms and comorbidities, can help improve quality of life.
Collapse
Affiliation(s)
- Margaret L Salisbury
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, 1161 21st Avenue South, T-1209A Medical Center North, Nashville, TN 37232, USA.
| | - Marlies S Wijsenbeek
- Department of Respiratory Medicine, Centre for Interstitial Lung Diseases and Sarcoidosis, Erasmus Medical Center, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam 3015, GD, the Netherlands
| |
Collapse
|
44
|
The Perils and Pitfalls of Esophageal Dysmotility in Idiopathic Pulmonary Fibrosis. Am J Gastroenterol 2021; 116:1189-1200. [PMID: 34074825 DOI: 10.14309/ajg.0000000000001202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Gastroesophageal reflux plays a significant role in idiopathic pulmonary fibrosis (IPF). Given the morbidity and mortality associated with IPF, understanding the mechanisms responsible for reflux is essential if patients are to receive optimal treatment and management, especially given the lack of clear benefit of antireflux therapies. Our aim was to understand the inter-relationships between esophageal motility, lung mechanics and reflux (particularly proximal reflux-a prerequisite of aspiration), and pulmonary function in patients with IPF. METHODS We prospectively recruited 35 patients with IPF (aged 53-75 years; 27 men) who underwent high-resolution impedance manometry and 24-hour pH-impedance, together with pulmonary function assessment. RESULTS Twenty-two patients (63%) exhibited dysmotility, 16 (73%) exhibited ineffective esophageal motility (IEM), and 6 (27%) exhibited esophagogastric junction outflow obstruction. Patients with IEM had more severe pulmonary disease (% forced vital capacity: P = 0.032) and more proximal reflux (P = 0.074) than patients with normal motility. In patients with IEM, intrathoracic pressure inversely correlated with the number of proximal events (r = -0.429; P = 0.098). Surprisingly, inspiratory lower esophageal sphincter pressure (LESP) positively correlated with the percentage of reflux events reaching the proximal esophagus (r = 0.583; P = 0.018), whereas in patients with normal motility, it inversely correlated with the bolus exposure time (r = -0.478; P = 0.098) and number of proximal events (r = -0.542; P = 0.056). % forced vital capacity in patients with IEM inversely correlated with the percentage of reflux events reaching the proximal esophagus (r = -0.520; P = 0.039) and inspiratory LESP (r = -0.477; P = 0.062) and positively correlated with intrathoracic pressure (r = 0.633; P = 0.008). DISCUSSION We have shown that pulmonary function is worse in patients with IEM which is associated with more proximal reflux events, the latter correlating with lower intrathoracic pressures and higher LESPs.
Collapse
|
45
|
Abuserewa ST, Duff R, Becker G. Treatment of Idiopathic Pulmonary Fibrosis. Cureus 2021; 13:e15360. [PMID: 34239792 PMCID: PMC8245298 DOI: 10.7759/cureus.15360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial pneumonia of unknown cause, occurring in adults and limited to the lungs. In the past, treatment was aimed at minimizing inflammation and slowing the progression of inflammation to fibrosis. However, the underlying lesion in IPF may be more fibrotic than inflammatory, explaining why few patients respond to anti-inflammatory therapies and the prognosis remains poor. In this review of literature, we will be focusing on main lines of treatment including current medications, supportive care, lung transplantation evaluation, and potential future strategies of treatment.
Collapse
Affiliation(s)
- Sherif T Abuserewa
- Internal Medicine, Grand Strand Regional Medical Center, Myrtle Beach, USA
| | - Richard Duff
- Department of Pulmonary and Critical Care Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| | - Gregory Becker
- Department of Pulmonary and Critical Care Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| |
Collapse
|
46
|
Azithromycin for the Treatment of Chronic Cough in Idiopathic Pulmonary Fibrosis: A Randomized Controlled Cross-over Trial. Ann Am Thorac Soc 2021; 18:2018-2026. [PMID: 34015241 DOI: 10.1513/annalsats.202103-266oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Patients with idiopathic pulmonary fibrosis (IPF) frequently suffer from difficult to treat chronic cough, which substantially affects their quality of life. Azithromycin has been demonstrated to relieve chronic cough in some populations, however this has not been investigated in IPF. OBJECTIVES To determine the safety and efficacy of azithromycin for the treatment of chronic cough in patients with IPF. METHODS In a double-blind randomized controlled cross-over trial, patients with IPF underwent two 12-week intervention periods (azithromycin 500mg or placebo 3 times per week). The primary outcome was change in cough-related quality of life measured by the Leicester cough questionnaire (LCQ). Secondary outcomes included cough severity measured using Visual Analog Scale (VAS), health-related quality of life assessed by the St. George's Respiratory Questionnaire (SGRQ), and objective cough frequency using audiovisual readings from 24h respiratory polygraphy. RESULTS 25 patients were randomized (23 men, 2 women), 20 patients completed the study. Mean (standard deviation, SD) age was 67 (8) years, mean (SD) forced vital capacity (FVC) was 65 (16) %-predicted, and diffusion capacity (DLCO) 43 (16) %-predicted. Mean (SD) baseline LCQ was 11.7 (3.7) and 11.3 (3.3) for the azithromycin and the placebo period, respectively, and the corresponding mean (SD) cough VAS 5.6 (2.3) and 5.8 (2.1). There was no significant change in LCQ and VAS with azithromycin or placebo. Similarly, there was no significant difference in change in polygraphy measured cough frequency between the azithromycin and placebo periods. Gastrointestinal adverse effects were more frequent with azithromycin than with placebo (diarrhea 43% vs 5%, p=0.03). CONCLUSIONS This randomized controlled trial does not support the use of low dose azithromycin for chronic cough in patients with IPF. Clinical trial registered with ClinicalTrials.gov (NCT02173145).
Collapse
|
47
|
Matson S, Lee J, Eickelberg O. Two sides of the same coin? A review of the similarities and differences between idiopathic pulmonary fibrosis and rheumatoid arthritis-associated interstitial lung disease. Eur Respir J 2021; 57:13993003.02533-2020. [PMID: 33303554 DOI: 10.1183/13993003.02533-2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis associated interstitial lung disease (RA-ILD) and idiopathic pulmonary fibrosis (IPF) are distinct diseases; however, they share several clinical, radiographic and genetic features. For instance, usual interstitial pneumonia (UIP), which is an ILD pattern required for a diagnosis of IPF, is also the most common ILD pattern in RA-ILD. The presence of UIP in RA-ILD is a poor prognostic sign with outcomes similar to those seen in IPF. The recent finding of a shared genetic susceptibility between IPF and RA-ILD has sparked additional interest in this relationship. This review outlines these similarities and differences in clinical presentation, appearance and outcomes in RA-ILD and IPF.In addition, this review highlights previous research in molecular biomarkers in both conditions, exploring areas of overlap and distinction. This focus on biomarkers in IPF and RA-ILD aims to highlight potential areas of discovery and clues to a potential shared pathobiology through investigation of novel molecular markers or the repurposing of biomarkers from one condition to the other.The drive to better understand RA-ILD by leveraging our knowledge of IPF is underscored by our divergent treatment paradigms for these conditions and the concern for potential harm. As a result of advancing our understanding of the links between IPF and RA-ILD, current strategies for diagnosis, screening and treatment of ILD may fundamentally change in the coming years. Until then, clinicians face difficult clinical questions regarding the co-management of the articular disease and the ILD in RA.
Collapse
Affiliation(s)
- Scott Matson
- University of Kansas School of Medicine, Division of Pulmonary and Critical Care, Kansas City, KS, USA
| | - Joyce Lee
- University of Colorado, Division of Pulmonary Sciences and Critical Care Medicine, Aurora, CO, USA
| | - Oliver Eickelberg
- University of Pittsburgh Medical Center, Division of Pulmonary and Critical Care, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Kershaw CD, Batra K, Torrealba JR, Terada LS. Characteristics and evaluation of acute exacerbations in chronic interstitial lung diseases. Respir Med 2021; 183:106400. [PMID: 33957435 DOI: 10.1016/j.rmed.2021.106400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/13/2020] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
Acute exacerbations of fibrosing interstitial lung disease (ILD) occur in both idiopathic pulmonary fibrosis (IPF) as well as non-IPF ILDs. An expert consensus definition has allowed for more frequent reporting of IPF exacerbations. The same is lacking for non-IPF ILD exacerbations. The incidence of non-IPF ILD exacerbations is likely less than in IPF, but the two entities share similar risk factors, such as increased frequency as physiologic derangements advance. The radiologic and histopathologic spectrum of acute ILD exacerbations extends from organizing pneumonia (OP) to the more treatment-refractory diffuse alveolar damage (DAD) pattern. Indeed, responsiveness to various therapies may depend on the relative components of these entities, favoring OP over DAD. There are no proven therapies for acute ILD exacerbations. Corticosteroids are a mainstay in any regimen although clear evidence of benefit does not exist. A variety of immunosuppressant agents have purported success in historical cohort studies - cyclophosphamide, cyclosporine A, and tacrolimus most commonly. Only one randomized controlled trial has been published, studying recombinant thrombomodulin for IPF exacerbation, but the primary outcome of survivor proportion at 90 days was not met. Other novel therapies for ILD exacerbations are still under investigation. The short and long-term prognosis of acute exacerbations of ILD is poor, especially in patients with IPF. Transplant referral should be considered early for both IPF as well as fibrosing non-IPF ILDs, given the unpredictability of the exacerbation event.
Collapse
Affiliation(s)
- Corey D Kershaw
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Kiran Batra
- Department of Radiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jose R Torrealba
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lance S Terada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
49
|
Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res 2021; 22:109. [PMID: 33865386 PMCID: PMC8052779 DOI: 10.1186/s12931-021-01711-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with an estimated median survival time of 3–5 years after diagnosis. This condition occurs primarily in elderly subjects, and epidemiological studies suggest that the main risk factors, ageing and exposure to cigarette smoke, are associated with both pulmonary and extrapulmonary comorbidities (defined as the occurrence of two or more disorders in a single individual). Ageing and senescence, through interactions with environmental factors, may contribute to the pathogenesis of IPF by various mechanisms, causing lung epithelium damage and increasing the resistance of myofibroblasts to apoptosis, eventually resulting in extracellular matrix accumulation and pulmonary fibrosis. As a paradigm, syndromes featuring short telomeres represent archetypal premature ageing syndromes and are often associated with pulmonary fibrosis. The pathophysiological features induced by ageing and senescence in patients with IPF may translate to pulmonary and extrapulmonary features, including emphysema, pulmonary hypertension, lung cancer, coronary artery disease, gastro-oesophageal reflux, diabetes mellitus and many other chronic diseases, which may lead to substantial negative consequences in terms of various outcome parameters in IPF. Therefore, the careful diagnosis and treatment of comorbidities may represent an outstanding chance to improve quality of life and survival, and it is necessary to contemplate all possible management options for IPF, including early identification and treatment of comorbidities.
Collapse
Affiliation(s)
- Fabrizio Luppi
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Meena Kalluri
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada
| | - Paola Faverio
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Michael Kreuter
- Centre for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, University of Heidelberg, German Center for Lung Research, ThoraxklinikHeidelberg, Germany
| | - Giovanni Ferrara
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada. .,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
50
|
Kreuter M, Müller-Ladner U, Costabel U, Jonigk D, Peter Heussel C. The Diagnosis and Treatment of Pulmonary Fibrosis. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:arztebl.m2021.0018. [PMID: 33531115 PMCID: PMC8212400 DOI: 10.3238/arztebl.m2021.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/14/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The different types of pulmonary fibrosis are a subgroup of the interstitial lung diseases (ILDs). They are associated with a chronic and often progressive course. METHODS This review is based on pertinent publications retrieved by a selective search in the EMBASE and PubMed databases, with an emphasis on articles published from 2000 to 2020. RESULTS The most common type of pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF). Among other relevant types, the most important ones are fibrosing hypersensitivity pneumonitis (fHP) and ILDs associated with systemic diseases, all of which are rare and generally carry a poor prognosis. The essential prerequisite to accurate diagnosis is aninterdisciplinary approach, taking account of the clinical, histological, and radiological aspects. The main complications of pulmonary fibrosis are acute exacerbations and pulmonary hypertension; comorbidities are also of prognostic relevance. Treatment of pulmonary fibrosis depends on the subtype and clinical behavior. For IPF, antifibrotic therapy is indicated; fHP, on the other hand, is mainly treated by antigen avoidance and immune modulation. The predominant mode of treatment for systemic disease-associated pulmonary fibrosis is immune suppression. Antifibrotic agents can also be useful in the treatment of other types of progressivepulmonary fibrosis besides IPF. CONCLUSION The differential diagnosis of pulmonary fibrosis, though complex, is clinically essential, as different types of pulmonary fibrosis are treated differently.
Collapse
Affiliation(s)
- Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, Thoraxklinik at Heidelberg University Hospital
- German Center for Lung Research (DZL)
| | - Ulf Müller-Ladner
- Department of Internal Medicine and Rheumatology, Campus Kerckhoff, Justus-Liebig-University Giessen, Bad Nauheim
| | - Ulrich Costabel
- Department of Pneumology, Ruhrlandklinik, University Medical Center Essen
| | - Danny Jonigk
- German Center for Lung Research (DZL)
- Institute of Pathology, Hannover Medical School
| | - Claus Peter Heussel
- German Center for Lung Research (DZL)
- Department of Diagnostic and Interventional Radiology, Thoraxklinik at Heidelberg University Hospital
| |
Collapse
|