1
|
Shimizu D, Miura A, Mori M. The perspective for next-generation lung replacement therapies: functional whole lung generation by blastocyst complementation. Curr Opin Organ Transplant 2024; 29:340-348. [PMID: 39150364 DOI: 10.1097/mot.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW Blastocyst complementation represents a promising frontier in next-generation lung replacement therapies. This review aims to elucidate the future prospects of lung blastocyst complementation within clinical settings, summarizing the latest studies on generating functional lungs through this technique. It also explores and discusses host animal selection relevant to interspecific chimera formation, a challenge integral to creating functional human lungs via blastocyst complementation. RECENT FINDINGS Various gene mutations have been utilized to create vacant lung niches, enhancing the efficacy of donor cell contribution to the complemented lungs in rodent models. By controlling the lineage to induce gene mutations, chimerism in both the lung epithelium and mesenchyme has been improved. Interspecific blastocyst complementation underscores the complexity of developmental programs across species, with several genes identified that enhance chimera formation between humans and other mammals. SUMMARY While functional lungs have been generated via intraspecies blastocyst complementation, the generation of functional interspecific lungs remains unrealized. Addressing the challenges of controlling the host lung niche and selecting host animals relevant to interspecific barriers between donor human and host cells is critical to enabling the generation of functional humanized or entire human lungs in large animals.
Collapse
Affiliation(s)
- Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Dou Y, Nian Z, Wang D, Sun G, Zhou L, Hu Z, Ke J, Zhu X, Sun R, Tian Z, Fu B, Zhou Y, Wei H. Reconstituted CD74 + NK cells trigger chronic graft versus host disease after allogeneic bone marrow transplantation. J Autoimmun 2024; 147:103274. [PMID: 38936148 DOI: 10.1016/j.jaut.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chronic graft-versus-host disease (cGVHD) is the most common long-term complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The patients with pulmonary cGVHD in particular have a very poor prognosis. NK cells are the first reconstituted lymphocyte subset after allo-HSCT; however, the impact of reconstituted NK cells on cGVHD is unclear. Here, we found allogeneic recipients showed obvious pulmonary cGVHD. Surprisingly, deletion of reconstituted NK cells resulted in maximal relief of pulmonary cGVHD. Mechanistically, reconstituted NK cells with donor profiles modulated the pulmonary inflammatory microenvironment to trigger cGVHD. Reconstituted NK cells secreted IFN-γ and TNF-α to induce CXCL10 production by epithelial cells, which recruited macrophages and CD4+ T cells to the lungs. Then macrophages and CD4+ T cells were activated by the inflammatory microenvironment, thereby mediating lung injury. Through assessment of differences in cellular energy, we found that CD74+ NK cells with high mitochondrial potential and pro-inflammatory activity triggered pulmonary cGVHD. Furthermore, targeted elimination of CD74+ NK cells using the anti-CD74 antibody significantly alleviated pulmonary cGVHD but preserved the CD74- NK cells to exert graft-versus-leukemia (GVL) effects. Data from human samples corroborated our findings in mouse models. Collectively, our results reveal that reconstituted CD74+ NK cells trigger pulmonary cGVHD and suggest that administration of CD74 antibody was a potential therapeutic for patients with cGVHD.
Collapse
Affiliation(s)
- Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Nian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Dongyao Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Li Zhou
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziming Hu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Zajacova A, Scaramozzino MU, Bellini A, Purwar P, Ricciardi S, Migliore M, Meloni F, Esendagli D. ERS International Congress 2023: highlights from the Thoracic Surgery and Lung Transplantation Assembly. ERJ Open Res 2024; 10:00854-2023. [PMID: 38590936 PMCID: PMC11000272 DOI: 10.1183/23120541.00854-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 04/10/2024] Open
Abstract
Five sessions presented at the European Respiratory Society Congress 2023 were selected by Assembly 8, consisting of thoracic surgeons and lung transplant professionals. Highlights covering management of adult spontaneous pneumothorax, malignant pleural effusion, infectious and immune-mediated complications after lung transplantation, as well as the pro and con debate on age limit in lung transplantation and results of the ScanCLAD study were summarised by early career members, supervised by the assembly faculty.
Collapse
Affiliation(s)
- Andrea Zajacova
- Prague Lung Transplant Program, Department of Pneumology, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Marco Umberto Scaramozzino
- Pulmonology “La Madonnina” Reggio Calabria, Reggio Calabria, Italy
- Villa aurora Hospital Reggio Calabria, Reggio Calabria, Italy
| | - Alice Bellini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC) of the Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Giovanni Battista Morgagni-Luigi Pierantoni Hospital, Forlì, Italy
| | | | - Sara Ricciardi
- Unit of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
- Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marcello Migliore
- Program of Minimally Invasive Thoracic Surgery and New Technologies, Policlinic Hospital, Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- Thoracic Surgery and Lung Transplantation, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Federica Meloni
- Transplant Center, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Dorina Esendagli
- Baskent University, Faculty of Medicine, Chest Diseases Department, Ankara, Turkey
| |
Collapse
|
4
|
Bos S, Murray J, Marchetti M, Cheng GS, Bergeron A, Wolff D, Sander C, Sharma A, Badawy SM, Peric Z, Piekarska A, Pidala J, Raj K, Penack O, Kulkarni S, Beestrum M, Linke A, Rutter M, Coleman C, Tonia T, Schoemans H, Stolz D, Vos R. ERS/EBMT clinical practice guidelines on treatment of pulmonary chronic graft- versus-host disease in adults. Eur Respir J 2024; 63:2301727. [PMID: 38485149 DOI: 10.1183/13993003.01727-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 04/02/2024]
Abstract
Chronic graft-versus-host disease (cGvHD) is a common complication after allogeneic haematopoietic stem cell transplantation, characterised by a broad disease spectrum that can affect virtually any organ. Although pulmonary cGvHD is a less common manifestation, it is of great concern due to its severity and poor prognosis. Optimal management of patients with pulmonary cGvHD is complicated and no standardised approach is available. The purpose of this joint European Respiratory Society (ERS) and European Society for Blood and Marrow Transplantation task force was to develop evidence-based recommendations regarding the treatment of pulmonary cGvHD phenotype bronchiolitis obliterans syndrome in adults. A multidisciplinary group representing specialists in haematology, respiratory medicine and methodology, as well as patient advocates, formulated eight PICO (patient, intervention, comparison, outcome) and two narrative questions. Following the ERS standardised methodology, we conducted systematic reviews to address these questions and used the Grading of Recommendations Assessment, Development and Evaluation approach to develop recommendations. The resulting guideline addresses common therapeutic options (inhalation therapy, fluticasone-azithromycin-montelukast, imatinib, ibrutinib, ruxolitinib, belumosudil, extracorporeal photopheresis and lung transplantation), as well as other aspects of general management, such as lung functional and radiological follow-up and pulmonary rehabilitation, for adults with pulmonary cGvHD phenotype bronchiolitis obliterans syndrome. These recommendations include important advancements that could be incorporated in the management of adults with pulmonary cGvHD, primarily aimed at improving and standardising treatment and improving outcomes.
Collapse
Affiliation(s)
- Saskia Bos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Murray
- Dept of Haematology and Transplant Unit, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Monia Marchetti
- Dept of Haematology, Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Guang-Shing Cheng
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - Anne Bergeron
- Dept of Pulmonology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Daniel Wolff
- Dept of Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensberg, Germany
| | - Clare Sander
- Dept of Respiratory Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Akshay Sharma
- Dept of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif M Badawy
- Dept of Pediatrics, Division of Haematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zinaida Peric
- Dept of Haematology, University Hospital Zagreb, Zagreb, Croatia
- TCWP (Transplant Complications Working Party) of the EBMT
| | - Agnieszka Piekarska
- Dept of Haematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Joseph Pidala
- Dept of Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kavita Raj
- Dept of Haematology, University College London Hospital NHS Foundation Trust, London, UK
| | - Olaf Penack
- TCWP (Transplant Complications Working Party) of the EBMT
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept of Hematology, Oncology and Tumorimmunology, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Samar Kulkarni
- Dept of Haematology and Transplant Unit, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Molly Beestrum
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Matthew Rutter
- ERS Patient Advocacy Committee
- Dept of Respiratory Physiology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Hélène Schoemans
- Dept of Haematology, University Hospitals Leuven, Leuven, Belgium
- Dept of Public Health and Primary Care, ACCENT VV, KU Leuven - University of Leuven, Leuven, Belgium
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Contributed equally as senior author
| | - Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Contributed equally as senior author
| |
Collapse
|
5
|
Bos S, Pradère P, Beeckmans H, Zajacova A, Vanaudenaerde BM, Fisher AJ, Vos R. Lymphocyte Depleting and Modulating Therapies for Chronic Lung Allograft Dysfunction. Pharmacol Rev 2023; 75:1200-1217. [PMID: 37295951 PMCID: PMC10595020 DOI: 10.1124/pharmrev.123.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic lung rejection, also called chronic lung allograft dysfunction (CLAD), remains the major hurdle limiting long-term survival after lung transplantation, and limited therapeutic options are available to slow the progressive decline in lung function. Most interventions are only temporarily effective in stabilizing the loss of or modestly improving lung function, with disease progression resuming over time in the majority of patients. Therefore, identification of effective treatments that prevent the onset or halt progression of CLAD is urgently needed. As a key effector cell in its pathophysiology, lymphocytes have been considered a therapeutic target in CLAD. The aim of this review is to evaluate the use and efficacy of lymphocyte depleting and immunomodulating therapies in progressive CLAD beyond usual maintenance immunosuppressive strategies. Modalities used include anti-thymocyte globulin, alemtuzumab, methotrexate, cyclophosphamide, total lymphoid irradiation, and extracorporeal photopheresis, and to explore possible future strategies. When considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin and total lymphoid irradiation appear to offer the best treatment options currently available for progressive CLAD patients. SIGNIFICANCE STATEMENT: Effective treatments to prevent the onset and progression of chronic lung rejection after lung transplantation are still a major shortcoming. Based on existing data to date, considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin, and total lymphoid irradiation are currently the most viable second-line treatment options. However, it is important to note that interpretation of most results is hampered by the lack of randomized controlled trials.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Hanne Beeckmans
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrea Zajacova
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Bart M Vanaudenaerde
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Robin Vos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| |
Collapse
|
6
|
Van Herck A, Beeckmans H, Kerckhof P, Sacreas A, Bos S, Kaes J, Vanstapel A, Vanaudenaerde BM, Van Slambrouck J, Orlitová M, Jin X, Ceulemans LJ, Van Raemdonck DE, Neyrinck AP, Godinas L, Dupont LJ, Verleden GM, Dubbeldam A, De Wever W, Vos R. Prognostic Value of Chest CT Findings at BOS Diagnosis in Lung Transplant Recipients. Transplantation 2023; 107:e292-e304. [PMID: 37870882 DOI: 10.1097/tp.0000000000004726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) after lung transplantation is characterized by fibrotic small airway remodeling, recognizable on high-resolution computed tomography (HRCT). We studied the prognostic value of key HRCT features at BOS diagnosis after lung transplantation. METHODS The presence and severity of bronchiectasis, mucous plugging, peribronchial thickening, parenchymal anomalies, and air trapping, summarized in a total severity score, were assessed using a simplified Brody II scoring system on HRCT at BOS diagnosis, in a cohort of 106 bilateral lung transplant recipients transplanted between January 2004 and January 2016. Obtained scores were subsequently evaluated regarding post-BOS graft survival, spirometric parameters, and preceding airway infections. RESULTS A high total Brody II severity score at BOS diagnosis (P = 0.046) and high subscores for mucous plugging (P = 0.0018), peribronchial thickening (P = 0.0004), or parenchymal involvement (P = 0.0121) are related to worse graft survival. A high total Brody II score was associated with a shorter time to BOS onset (P = 0.0058), lower forced expiratory volume in 1 s (P = 0.0006) forced vital capacity (0.0418), more preceding airway infections (P = 0.004), specifically with Pseudomonas aeruginosa (P = 0.002), and increased airway inflammation (P = 0.032). CONCLUSIONS HRCT findings at BOS diagnosis after lung transplantation provide additional information regarding its underlying pathophysiology and for future prognosis of graft survival.
Collapse
Affiliation(s)
- Anke Van Herck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Division of Lung Transplantation, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Michaela Orlitová
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Laurent Godinas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Adriana Dubbeldam
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Walter De Wever
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Miura A, Sarmah H, Tanaka J, Hwang Y, Sawada A, Shimamura Y, Otoshi T, Kondo Y, Fang Y, Shimizu D, Ninish Z, Suer JL, Dubois NC, Davis J, Toyooka S, Wu J, Que J, Hawkins FJ, Lin CS, Mori M. Conditional blastocyst complementation of a defective Foxa2 lineage efficiently promotes the generation of the whole lung. eLife 2023; 12:e86105. [PMID: 37861292 PMCID: PMC10642968 DOI: 10.7554/elife.86105] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
Millions suffer from incurable lung diseases, and the donor lung shortage hampers organ transplants. Generating the whole organ in conjunction with the thymus is a significant milestone for organ transplantation because the thymus is the central organ to educate immune cells. Using lineage-tracing mice and human pluripotent stem cell (PSC)-derived lung-directed differentiation, we revealed that gastrulating Foxa2 lineage contributed to both lung mesenchyme and epithelium formation. Interestingly, Foxa2 lineage-derived cells in the lung mesenchyme progressively increased and occupied more than half of the mesenchyme niche, including endothelial cells, during lung development. Foxa2 promoter-driven, conditional Fgfr2 gene depletion caused the lung and thymus agenesis phenotype in mice. Wild-type donor mouse PSCs injected into their blastocysts rescued this phenotype by complementing the Fgfr2-defective niche in the lung epithelium and mesenchyme and thymic epithelium. Donor cell is shown to replace the entire lung epithelial and robust mesenchymal niche during lung development, efficiently complementing the nearly entire lung niche. Importantly, those mice survived until adulthood with normal lung function. These results suggest that our Foxa2 lineage-based model is unique for the progressive mobilization of donor cells into both epithelial and mesenchymal lung niches and thymus generation, which can provide critical insights into studying lung transplantation post-transplantation shortly.
Collapse
Affiliation(s)
- Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hemanta Sarmah
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Junichi Tanaka
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Youngmin Hwang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Anri Sawada
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yuko Shimamura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Takehiro Otoshi
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yuri Kondo
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yinshan Fang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Zurab Ninish
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Jake Le Suer
- The Pulmonary Center and Department of Medicine, Boston University School of MedicineBostonUnited States
- Center for Regenerative Medicine, Boston University and Boston Medical CenterBostonUnited States
| | - Nicole C Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jennifer Davis
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jianwen Que
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Finn J Hawkins
- The Pulmonary Center and Department of Medicine, Boston University School of MedicineBostonUnited States
- Center for Regenerative Medicine, Boston University and Boston Medical CenterBostonUnited States
| | - Chyuan-Sheng Lin
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
8
|
Traunero A, Peri F, Badina L, Amaddeo A, Zuliani E, Maschio M, Barbi E, Ghirardo S. Hematopoietic Stem Cells Transplant (HSCT)-Related Chronic Pulmonary Diseases: An Overview. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1535. [PMID: 37761496 PMCID: PMC10530143 DOI: 10.3390/children10091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Recipients of HSCT have a high risk of infective and non-infective pulmonary diseases. Most patients with pulmonary involvement present multiple pathogenetic mechanisms simultaneously with complex interactions. Therefore, it can be difficult to distinguish the contributions of each one and to perform studies on this subject. In this opinion article, we discuss only chronic pulmonary manifestations, focusing on LONIPCs (late-onset non-infectious pulmonary complications). This term embraces drug-related toxicity, allergies, and chronic pulmonary graft versus host disease (GvHD) in all its recently identified clinical variants. Among LONIPCs, GvHD represents the most critical in terms of morbidity and mortality, despite the rapid development of new treatment options. A recently emerging perspective suggests that pulmonary lung rejection in transplant patients shares striking similarities with the pathogenesis of GvHD. In a pulmonary transplant, the donor organ is damaged by the host immune system, whereas in GvHD, the donor immune system damages the host organs. It constitutes the most significant breakthrough in recent years and is highly promising for both hematologists and thoracic transplant surgeons. The number of patients with LONIPCs is scarce, with heterogenous clinical characteristics often involving several pathogenetic mechanisms, making it challenging to conduct randomized controlled trials. Therefore, the body of evidence in this field is scarce and generally of low quality, leading to jeopardized choices in terms of immunosuppressive treatment. Moreover, it risks being outdated by common practice due to the quick evolution of knowledge about the diagnosis and treatment of LONIPCs. The literature is even more pitiful for children with pulmonary involvement related to HSCT.
Collapse
Affiliation(s)
- Arianna Traunero
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34126 Trieste, Italy
| | - Francesca Peri
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34126 Trieste, Italy
| | - Laura Badina
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Alessandro Amaddeo
- Emergency Department, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Elettra Zuliani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34126 Trieste, Italy
| | - Massimo Maschio
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Egidio Barbi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34126 Trieste, Italy
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Sergio Ghirardo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34126 Trieste, Italy
| |
Collapse
|
9
|
Beeckmans H, Bos S, Vos R, Glanville AR. Acute Rejection and Chronic Lung Allograft Dysfunction: Obstructive and Restrictive Allograft Dysfunction. Clin Chest Med 2023; 44:137-157. [PMID: 36774160 DOI: 10.1016/j.ccm.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Lung transplantation is an established treatment of well-selected patients with end-stage respiratory diseases. However, lung transplant recipients have the highest rates of acute and chronic rejection among transplanted solid organs. Owing to ongoing alloimmune recognition and associated immune-driven airway/vascular remodeling, precipitated by multifactorial, endogenous or exogenous, post-transplant injuries to the bronchovascular axis of the secondary pulmonary lobule, most lung transplant recipients will suffer from a pathophysiological decline of their allograft, either functionally and/or structurally. This review discusses current knowledge, barriers, and gaps in acute cellular rejection and chronic lung allograft dysfunction-the greatest impediment to long-term post-transplant survival.
Collapse
Affiliation(s)
- Hanne Beeckmans
- Department of Chronic Diseases and Metabolism, KU Leuven, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
| | - Saskia Bos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium; Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, KU Leuven, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.
| | | |
Collapse
|
10
|
Tissot A, Burgel PR. No patient left behind! Therapeutic options for cystic fibrosis patients living with lung transplantation. J Cyst Fibros 2022; 21:735-736. [PMID: 35667974 DOI: 10.1016/j.jcf.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Adrien Tissot
- CHU Nantes, Service de Pneumologie, Institut du Thorax, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Pierre-Régis Burgel
- Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France; Pulmonary Department and National Cystic Fibrosis Reference Centre, Cochin Hospital; Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|