1
|
Wen TZ, Li TR, Chen XY, Chen HY, Wang S, Fu WJ, Xiao SQ, Luo J, Tang R, Ji JL, Huang JF, He ZC, Luo T, Zhao HL, Chen C, Miao JY, Niu Q, Wang Y, Bian XW, Yao XH. Increased adrenal steroidogenesis and suppressed corticosteroid responsiveness in critical COVID-19. Metabolism 2024; 160:155980. [PMID: 39053691 DOI: 10.1016/j.metabol.2024.155980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The effect of coronavirus disease 2019 (COVID-19) on adrenal endocrine metabolism in critically ill patients remains unclear. This study aimed to investigate the alterations in adrenal steroidogenic activity, elucidate underlying mechanisms, provide in situ histopathological evidence, and examine the clinical implications. METHODS The comparative analyses of the adrenal cortices from 24 patients with fatal COVID-19 and 20 matched controls were performed, excluding patients previously treated with glucocorticoids. SARS-CoV-2 and its receptors were identified and pathological alterations were examined. Furthermore, histological examinations, immunohistochemical staining and ultrastructural analyses were performed to assess corticosteroid biosynthesis. The zona glomerulosa (ZG) and zona fasciculata (ZF) were then dissected for proteomic analyses. The biological processes that affected steroidogenesis were analyzed by integrating histological, proteomic, and clinical data. Finally, the immunoreactivity and responsive genes of mineralocorticoid and glucocorticoid receptors in essential tissues were quantitatively measured to evaluate corticosteroid responsiveness. FINDINGS The demographic characteristics of COVID-19 patients were comparable with those of controls. SARS-CoV-2-like particles were identified in the adrenocortical cells of three patients; however, these particles did not affect cellular morphology or steroid synthesis compared with SARS-CoV-2-negative specimens. Although the adrenals exhibited focal necrosis, vacuolization, microthrombi, and inflammation, widespread degeneration was not evident. Notably, corticosteroid biosynthesis was significantly enhanced in both the ZG and ZF of COVID-19 patients. The increase in the inflammatory response and cellular differentiation in the adrenal cortices of patients with critical COVID-19 was positively correlated with heightened steroidogenic activity. Additionally, the appearance of more dual-ZG/ZF identity cells in COVID-19 adrenals was in accordance with the increased steroidogenic function. However, activated mineralocorticoid and glucocorticoid receptors and their responsive genes in vital tissues were markedly reduced in patients with critical COVID-19. INTERPRETATION Critical COVID-19 was characterized by potentiated adrenal steroidogenesis, associated with increased inflammation, enhanced differentiation and elevated dual-ZG/ZF identity cells, alongside suppressed corticosteroid responsiveness. These alterations implied the reduced effectiveness of conventional corticosteroid therapy and underscored the need for evaluation of the adrenal axis and corticosteroid sensitivity.
Collapse
Affiliation(s)
- Tian-Zi Wen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tian-Ran Li
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xin-Yu Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - He-Yuan Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai Wang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shi-Qi Xiao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jie Luo
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Rui Tang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jia-Le Ji
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jia-Feng Huang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhi-Cheng He
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hong-Liang Zhao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Cong Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qin Niu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yan Wang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; Jinfeng Laboratory, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; YuYue Laboratory, Chongqing, China.
| | - Xiao-Hong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
2
|
Siejka A, Lawnicka H, Fakir S, Barabutis N. Growth hormone - releasing hormone in the immune system. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09913-w. [PMID: 39370499 DOI: 10.1007/s11154-024-09913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
GHRH is a neuropeptide associated with a diverse variety of activities in human physiology and immune responses. The present study reviews the latest information on the involvement of GHRH in the immune system and inflammation, suggesting that GHRH antagonists may deliver a new therapeutic possibility in disorders related to immune system dysfunction and inflammation.
Collapse
Affiliation(s)
- Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland.
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Medical University of Lodz, Lodz, Poland
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
3
|
Farrell G, Chapple C, Kennedy E, Reily-Bell M, Sampath K, Gisselman AS, Cook C, Katare R, Tumilty S. Autonomic nervous system and endocrine system response to upper or lower cervical spine mobilization in males with persistent post-concussion symptoms: a proof-of-concept trial. J Man Manip Ther 2024:1-17. [PMID: 38904298 DOI: 10.1080/10669817.2024.2363018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION The peripheral stress response, consisting of the autonomic nervous system (ANS) and hypothalamic pituitary adrenal-axis (HPA-axis), functions to maintain homeostasis in response to stressors. Cervical spine manual therapy has been shown to differentially modulate the stress response in healthy populations. No study has investigated whether cervical spine mobilizations can differentially modulate the stress response in individuals with persistent post-concussion symptoms (PPCS), a population characterized by a dysfunctional stress response. METHODS A randomized, controlled, parallel design trial was performed to investigate whether upper or lower cervical spine mobilization can differentially modulate components of the stress response in individuals with PPCS. The outcomes were salivary cortisol (sCOR) concentration (primary) and the HRV metric, rMSSD, measured with a smartphone application (secondary). Nineteen males diagnosed with PPCS, aged 19-35, were included. Participants were randomly assigned into either intervention group, upper (n = 10) or lower (n = 9) cervical spine mobilization. Each outcome was collected at different time points, pre- and post-intervention. Statistical analyses were performed using the Friedman's Two-Way ANOVA, Mann-Whitney U test, and Wilcoxon Signed Rank Test. RESULTS There was a statistically significant within-group reduction in sCOR concentration 30 minutes following lower cervical spine mobilizations and statistically significant within-group increase in rMSSD 30 minutes following upper cervical spine mobilizations. CONCLUSION The results of this trial provide preliminary evidence for cervical spine mobilizations to differentially modulate components of the stress response at specific time points. Understanding the mechanisms of the effect of cervical spine mobilizations on the stress response provides a novel rationale for selecting cervical spine mobilizations to rehabilitate individuals with PPCS.
Collapse
Affiliation(s)
- Gerard Farrell
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Cathy Chapple
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Ewan Kennedy
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Matthew Reily-Bell
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kesava Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology-Rotokauri Campus, Hamilton, Waikato, New Zealand
| | | | - Chad Cook
- Doctor of Physical Therapy Program, Duke University, Durham, NC, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| |
Collapse
|
4
|
Hou XY, Danzeng LM, Wu YL, Ma QH, Yu Z, Li MY, Li LS. Mesenchymal stem cells and their derived exosomes for the treatment of COVID-19. World J Stem Cells 2024; 16:353-374. [PMID: 38690515 PMCID: PMC11056634 DOI: 10.4252/wjsc.v16.i4.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang-Yi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - La-Mu Danzeng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qian-Hui Ma
- Department of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng Yu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Mei-Ying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
5
|
Athanasiou N, Diamantopoulos A, Keskinidou C, Katsaounou P, Angelousi A, Jahaj E, Mourelatos P, Vrettou CS, Botoula E, Vassiliou AG, Kotanidou A, Tsagarakis S, Dimopoulou I, Vassiliadi DA. Adrenal function in relation to cytokines and outcome in non-critically ill patients with COVID-19. J Endocrinol Invest 2024; 47:721-728. [PMID: 37702927 DOI: 10.1007/s40618-023-02189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE We aimed to identify whether hypothalamic-pituitary-adrenal (HPA) axis dysfunction is related to deterioration in a percentage of patients who progress to severe COVID-19. METHODS In this cohort observational study, we evaluated HPA axis activation by measuring cortisol, adrenocorticotropic hormone (ACTH), dehydroepiandrosterone sulfate (DHEA-S) levels, whole blood expression levels of the key glucocorticoid receptor, GCR-α, and the glucocorticoid-induced leucine zipper (GILZ), and cytokines, as markers of the inflammatory phase, in 149 patients with respiratory infection admitted in the ward, without known adrenal disease and/or confounding medications (glucocorticoids). One hundred and four (104) patients were SARS-CoV-2 positive (C +) and controls consisted of 45 SARS-CoV-2-negative patients (NC). RESULTS No differences in cortisol levels were observed between the C + and the NC patients. Cortisol levels correlated with ACTH (r = 0.284, p = 0.001) and IL-6 (r = 0.289, p = 0.04). In C + patients, cortisol levels mainly correlated with IL-6 levels (r = 0.28; p = 0.017). GCR-α expression was significantly higher in C + patients compared to NC. Patients with higher cortisol levels were more likely to progress to respiratory function deterioration or die. Both GCR-α and GILZ expression were significantly higher in C + non-survivors. CONCLUSION Our findings indicate that cortisol serves as an indicator of disease severity. GILZ expression appears to be a more effective marker of mortality prediction in moderate COVID-19 cases. However, routine measurement of GILZ levels is currently unavailable. Elevated levels of cortisol may be indicative of patients with moderate COVID-19 who are at a higher risk of deterioration. This information can aid in identifying individuals who require early medical attention.
Collapse
Affiliation(s)
- N Athanasiou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - A Diamantopoulos
- Department of Endocrinology Diabetes and Metabolism, National and European Expertise Center for Rare Endocrine Diseases, Evangelismos Hospital, Athens, Greece
| | - C Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - P Katsaounou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - A Angelousi
- First Department of Internal Medicine, Unit of Endocrinology, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - E Jahaj
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - P Mourelatos
- Department of Endocrinology Diabetes and Metabolism, National and European Expertise Center for Rare Endocrine Diseases, Evangelismos Hospital, Athens, Greece
| | - C S Vrettou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - E Botoula
- Department of Endocrinology Diabetes and Metabolism, National and European Expertise Center for Rare Endocrine Diseases, Evangelismos Hospital, Athens, Greece
| | - A G Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - A Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - S Tsagarakis
- Department of Endocrinology Diabetes and Metabolism, National and European Expertise Center for Rare Endocrine Diseases, Evangelismos Hospital, Athens, Greece
| | - I Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - D A Vassiliadi
- Department of Endocrinology Diabetes and Metabolism, National and European Expertise Center for Rare Endocrine Diseases, Evangelismos Hospital, Athens, Greece.
| |
Collapse
|
6
|
Bozic Antic I, Djurisic I, Nikolic S. Adrenal Cysts: To Operate or Not to Operate? J Clin Med 2024; 13:846. [PMID: 38337539 PMCID: PMC10856713 DOI: 10.3390/jcm13030846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Adrenal cysts are uncommon and usually asymptomatic, and therefore are usually incidentally discovered adrenal lesions. They have a broad pathohistological spectrum that includes pseudocysts and endothelial (vascular), parasitic, and epithelial (mesothelial) cysts. Although most adrenal cysts are benign and hormonally non-functional lesions, some can have ambiguous imaging appearances and mimic malignant adrenal neoplasms. On the other hand, the actual malignant neoplasms could undergo cystic transformation. Additionally, immune cell infiltrations, thrombosis, or haemorrhage seen in sepsis can frequently cause adrenal cyst development, raising a question about the possible connection between severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and adrenal cystic lesions. Due to the disease's rarity, the likelihood of malignancy, and the lack of specific guidelines, the management of adrenal cysts is always challenging especially in a young person. This review discusses the important diagnostic and the current treatment possibilities for adrenal cystic lesions. Aiming to emphasize clinical dilemmas and help clinicians navigate the challenges when encountering a patient with an adrenal cyst in everyday practice, we based our review on a practical question-answer framework centred around the case of a young woman with an incidentally discovered large adrenal cyst.
Collapse
Affiliation(s)
- Ivana Bozic Antic
- Department of Endocrinology, Euromedik General Hospital, 11000 Belgrade, Serbia
- Faculty of Dentistry Pancevo, University Business Academy, 21000 Novi Sad, Serbia
| | - Igor Djurisic
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Srdjan Nikolic
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Szabo S. The post-COVID stress syndrome: from the three-stage stress response of Hans Selye to COVID-19. Inflammopharmacology 2023; 31:2799-2806. [PMID: 37184668 PMCID: PMC10183685 DOI: 10.1007/s10787-023-01179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 05/16/2023]
Abstract
Stress is the nonspecific response of the body to any demand made upon it, as defined by Hans Selye more than 80 years ago, based on his animal experiments at McGill University in Montreal, Canada. By emphasizing 'nonspecificity' he tried to underline that stress response is elicited my several factors, like nowadays in COVID-19, e.g., fear of infection, social isolation, death in family, loss of employment, etc. Thus, COVID-19 has been the largest new human stressor in the twenty-first century. Selye's studies in rats also revealed 3 stages of stress response: the short initial "alarm reaction" is followed by a longer "stage of resistance", associated with increased levels of corticosterone that is often terminated by a "stage of exhaustion", referring to an exhausted adrenal cortex when the secretion of glucocorticoids drops. Fast forward, that is exactly what has been documented in severe cases of infections caused by the SARS-CoV-2 virus: in hospitalized COVID-19 patients initially the blood levels of cortisol not only have been elevated, but only those with high concentration of this natural anti-inflammatory corticosteroid survived vs. those who had low levels of cortisol, suggesting diminished adrenocortical functions. Furthermore, patients with very severe cases of COVID-19 who ended up in intensive care units had significantly low cortisol blood levels, compared to patients with equal severity of diseases due to other causes. Thus, these 'natural phenomena' in clinical medicine, unfortunately confirmed Selye's studies in experimental animals several decades ago. Still, the good news is that astute clinicians empirically recognized this and started to give potent synthetic glucocorticoids such as dexamethasone to severe COVD-19 patients and this beneficial effect of exogenous corticoids has been extensively confirmed in the scientific literature.
Collapse
Affiliation(s)
- Sandor Szabo
- School of Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill/Long Beach, CA, 90755, USA.
| |
Collapse
|
8
|
Capó X, Annunziata G, Jiménez-Garcia M, Muscogiuri G, Barrea L. COVID-19 and endocrine disorders: a potential new trigger. Minerva Med 2023; 114:767-769. [PMID: 37800449 DOI: 10.23736/s0026-4806.23.08936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Affiliation(s)
- Xavier Capó
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Giuseppe Annunziata
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuel Jiménez-Garcia
- Group of Neurophysiology, Department of Biology, Faculty of Science, University of the Balearic Islands, Palma, Spain -
- Group of Neurophysiology, Behavioral Studies and Biomarkers, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Diabetology and Andrology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Cattedra Unesco "Educazione alla Salute e allo Sviluppo Sostenibile", University of Naples Federico II, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Naples, Italy
| |
Collapse
|
9
|
Farrell G, Reily-Bell M, Chapple C, Kennedy E, Sampath K, Gisselman AS, Cook C, Katare R, Tumilty S. Autonomic nervous system and endocrine system response to upper and lower cervical spine mobilization in healthy male adults: a randomized crossover trial. J Man Manip Ther 2023; 31:421-434. [PMID: 36794952 PMCID: PMC10642313 DOI: 10.1080/10669817.2023.2177071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Cervical spine mobilizations may differentially modulate both components of the stress response, consisting of the autonomic nervous system and hypothalamic pituitary adrenal-axis, depending on whether the target location is the upper or lower cervical spine. To date, no study has investigated this. METHODS A randomized, crossover trial investigated the effects of upper versus lower cervical mobilization on both components of the stress response simultaneously. The primary outcome was salivary cortisol (sCOR) concentration. The secondary outcome was heart rate variability measured with a smartphone application. Twenty healthy males, aged 21-35, were included. Participants were randomly assigned to block-AB (upper then lower cervical mobilization, n = 10) or block-BA (lower than upper cervical mobilization, n = 10), separated by a one-week washout period. All interventions were performed in the same room (University clinic) under controlled conditions. Statistical analyses were performed with a Friedman's Two-Way ANOVA and Wilcoxon Signed Rank Test. RESULTS Within groups, sCOR concentration reduced thirty-minutes following lower cervical mobilization (p = 0.049). Between groups, sCOR concentration was different at thirty-minutes following the intervention (p = 0.018). CONCLUSION There was a statistically significant reduction in sCOR concentration following lower cervical spine mobilization, and between-group difference, 30 min following the intervention. This indicates that mobilizations applied to separate target locations within the cervical spine can differentially modulate the stress response.
Collapse
Affiliation(s)
- Gerard Farrell
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Matthew Reily-Bell
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Cathy Chapple
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Ewan Kennedy
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Kesava Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology-Rotokauri Campus, Hamilton, Waikato, New Zealand
| | | | - Chad Cook
- Doctor of Physical Therapy Program, Duke University, Durham, North Carolina, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| |
Collapse
|
10
|
Liu Y, Gu X, Li H, Zhang H, Xu J. Mechanisms of long COVID: An updated review. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:231-240. [PMID: 39171285 PMCID: PMC11332859 DOI: 10.1016/j.pccm.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 08/23/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous impact on global health and economies. In some patients, symptoms and signs may remain after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alternate diagnosis; this condition has been defined as long COVID. Long COVID may exist in patients with both mild and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symptoms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized the clinical presentations and current evidence regarding the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xiaoying Gu
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
11
|
Lauri C, Campagna G, Glaudemans AWJM, Slart RHJA, van Leer B, Pillay J, Colandrea M, Grana CM, Stigliano A, Signore A. SARS-CoV-2 Affects Thyroid and Adrenal Glands: An 18F-FDG PET/CT Study. Biomedicines 2023; 11:2899. [PMID: 38001898 PMCID: PMC10669868 DOI: 10.3390/biomedicines11112899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Since most endocrine glands express ACE-2 receptors and can be infected by SARS-CoV-2 virus, this retrospective multicentre observational study aims to assess the metabolic activity of thyroid and adrenal glands of COVID-19 patients by 18F-FDG PET/CT. METHODS We retrospectively evaluated the 18F-FDG PET/CT scans of COVID-19 patients admitted by three different centres, either in a low-intensity department or in the intensive care unit (ICU). A visual assessment and a semi-quantitative evaluation of areas of interest in thyroid and adrenal glands were performed by recording SUVmax and SUVmean. The 18F-FDG PET/CT uptake in COVID-19 patients was compared with those observed in normal age-matched controls. RESULTS Between March 2020 and March 2022, 33 patients from three different centres (twenty-eight patients in a low-intensity department and five patients in ICU), were studied by 18F-FDG PET/CT during active illness. Seven of them were also studied after clinical remission (3-6 months after disease onset). Thirty-six normal subjects were used as age-matched controls. In the thyroid gland, no statistically significant differences were observed between control subjects and COVID-19 patients at diagnosis. However, at the follow-up PET/CT study, we found a statistically higher SUVmax and SUVmean (p = 0.009 and p = 0.004, respectively) in the thyroid of COVID-19 patients. In adrenal glands, we observed lower SUVmax and SUVmean in COVID-19 patients at baseline compared to control subjects (p < 0.0001) and this finding did not normalize after clinical recovery (p = 0.0018 for SUVmax and p = 0.002 for SUV mean). CONCLUSIONS In our series, we observed persistent low 18F-FDG uptake in adrenal glands of patients at diagnosis of COVID-19 and after recovery, suggesting a chronic hypofunction. By contrast, thyroid uptake was comparable to normal subjects at disease onset, but after recovery, a subgroup of patients showed an increased metabolism, thus possibly suggesting the onset of an inflammatory thyroiditis. Our results should alert clinicians to investigate the pituitary-adrenal axis and thyroid functionality at the time of infection and to monitor them after recovery.
Collapse
Affiliation(s)
- Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (G.C.); (A.S.)
| | - Giuseppe Campagna
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (G.C.); (A.S.)
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.W.J.M.G.); (R.H.J.A.S.); (B.v.L.)
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.W.J.M.G.); (R.H.J.A.S.); (B.v.L.)
| | - Bram van Leer
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.W.J.M.G.); (R.H.J.A.S.); (B.v.L.)
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Janesh Pillay
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Marzia Colandrea
- Nuclear Medicine Division, European Institute of Oncology—IRCCS, 20141 Milan, Italy; (M.C.); (C.M.G.)
| | - Chiara Maria Grana
- Nuclear Medicine Division, European Institute of Oncology—IRCCS, 20141 Milan, Italy; (M.C.); (C.M.G.)
| | - Antonio Stigliano
- Endocrinology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (G.C.); (A.S.)
| |
Collapse
|
12
|
K G R, Perumal N, Cherian A, Wyawahare M, Prasad A, Sahoo J, Kamalanathan SK, R A, Naik D. Hypothalamic-Pituitary Adrenal Axis Status 3 Months After Recovery From COVID-19 Infection. Endocr Res 2023; 48:85-93. [PMID: 37565765 DOI: 10.1080/07435800.2023.2245907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
CONTEXT Coronavirus disease 2019 (COVID-19) predominantly involves the lungs, albeit many other organ systems, including the hypothalamic-pituitary-adrenal (HPA) axis, can be affected due to the expression of the angiotensin-converting enzyme 2 (ACE2) binding receptor. Few studies have reported the involvement of adrenal gland and the HPA axis during the acute phase of COVID-19; however, the data on the long-term effect of COVID-19 on the HPA axis after acute infection is scarce. OBJECTIVE To assess and compare the changes in HPA axis in mild, moderate and severe COVID-19 categories at ≥ 3 months after acute infection. METHODS A prospective, observational study was conducted to assess the HPA axis status among COVID-19 subjects at least 3 months after recovery from acute infection. The study was conducted from June 2021 to May 2022. Subjects visited the hospital in the fasting state (8.00-9.00am), serum cortisol levels were measured at baseline, 30 and 60 minutes after a 1-μg short Synacthen test (SST). RESULTS A total of 66 subjects ≥ 18 years of age were included in the study. The mean age (SD) was 49.13 ± 11.9 years, 45(68.18%) were male and 21 (31.81%) were female subjects. The mean BMI in the study was 25.91 ± 4.26 kg/m2. Seventeen (25.8%) subjects had mild, twelve (18.2%) had moderate and thirty-seven (56.1%) subjects had severe COVID-19 infection. Out of the sixty-six subjects with COVID-19, nine subjects (9/66, 13.63%) had peak serum cortisol < 496.62 nmol/L suggestive of adrenal insufficiency (AI). SST peak serum cortisol levels did not differ significantly across the disease severity [Mild, (628.50 ± 214.65 nmol/L) vs moderate, [603.39 ± 161.95 nmol/L) vs severe, (597.59 ± 163.05 nmol/L), P = 0.617]. Six subjects with AI came for follow-up at 12 months, and all had normal HPA axis. CONCLUSION HPA axis is affected in 13.63% (9/66) of subjects at least 3 months after recovery from COVID-19 infection. AI in COVID-19 might be transient and would recover spontaneously. These findings have important implications for the clinical care and long-term follow-up of subjects after COVID-19 infection.
Collapse
Affiliation(s)
- Rashmi K G
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Nandhini Perumal
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Anusha Cherian
- Department of Anaesthesia and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Mukta Wyawahare
- Department of Internal Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Aravind Prasad
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sadish Kumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Anusuya R
- Department of Biostatistics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
13
|
Naik R, Avula S, Palleti SK, Gummadi J, Ramachandran R, Chandramohan D, Dhillon G, Gill AS, Paiwal K, Shaik B, Balachandran M, Patel B, Gurugubelli S, Mariswamy Arun Kumar AK, Nanjundappa A, Bellamkonda M, Rathi K, Sakhamuri PL, Nassar M, Bali A. From Emergence to Endemicity: A Comprehensive Review of COVID-19. Cureus 2023; 15:e48046. [PMID: 37916248 PMCID: PMC10617653 DOI: 10.7759/cureus.48046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later renamed coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in early December 2019. Initially, the China office of the World Health Organization was informed of numerous cases of pneumonia of unidentified etiology in Wuhan, Hubei Province at the end of 2019. This would subsequently result in a global pandemic with millions of confirmed cases of COVID-19 and millions of deaths reported to the WHO. We have analyzed most of the data published since the beginning of the pandemic to compile this comprehensive review of SARS-CoV-2. We looked at the core ideas, such as the etiology, epidemiology, pathogenesis, clinical symptoms, diagnostics, histopathologic findings, consequences, therapies, and vaccines. We have also included the long-term effects and myths associated with some therapeutics of COVID-19. This study presents a comprehensive assessment of the SARS-CoV-2 virology, vaccines, medicines, and significant variants identified during the course of the pandemic. Our review article is intended to provide medical practitioners with a better understanding of the fundamental sciences, clinical treatment, and prevention of COVID-19. As of May 2023, this paper contains the most recent data made accessible.
Collapse
Affiliation(s)
- Roopa Naik
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
- Internal Medicine/Hospital Medicine, Geisinger Health System, Wilkes Barre, USA
| | - Sreekant Avula
- Diabetes, Endocrinology, and Metabolism, University of Minnesota, Minneapolis, USA
| | - Sujith K Palleti
- Nephrology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jyotsna Gummadi
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| | | | | | - Gagandeep Dhillon
- Physician Executive MBA, University of Tennessee, Knoxville, USA
- Internal Medicine, University of Maryland Baltimore Washington Medical Center, Glen Burnie, USA
| | | | - Kapil Paiwal
- Oral & Maxillofacial Pathology, Daswani Dental College & Research Center, Kota, IND
| | - Bushra Shaik
- Internal Medicine, Onslow Memorial Hospital, Jacksonville, USA
| | | | - Bhumika Patel
- Oral Medicine and Radiology, Howard University, Washington, D.C., USA
| | | | | | | | - Mahita Bellamkonda
- Hospital Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kanika Rathi
- Internal Medicine, University of Florida, Gainesville, USA
| | | | - Mahmoud Nassar
- Endocrinology, Diabetes, and Metabolism, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Atul Bali
- Internal Medicine/Nephrology, Geisinger Medical Center, Danville, USA
- Internal Medicine/Nephrology, Geisinger Health System, Wilkes-Barre, USA
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
14
|
Cozzolino A, Hasenmajer V, Newell-Price J, Isidori AM. COVID-19 pandemic and adrenals: deep insights and implications in patients with glucocorticoid disorders. Endocrine 2023; 82:1-14. [PMID: 37338722 PMCID: PMC10462567 DOI: 10.1007/s12020-023-03411-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Coronavirus disease-19 (COVID-19) has spread throughout the world. It was initially defined as a potentially severe syndrome affecting the respiratory tract, but it has since been shown to be a systemic disease with relevant extrapulmonary manifestations that increase mortality. The endocrine system has been found to be vulnerable to COVID-19 infection. The current review aims to evaluate the available data on the impact of COVID-19 infection and treatment, as well as COVID-19 vaccines, on adrenal gland function, particularly in patients with GC disorders. METHODS A thorough search of published peer-reviewed studies in PubMed was performed using proper keywords. RESULTS Adrenal viral tropism and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in the adrenal glands have been demonstrated, and adrenal insufficiency (AI) is a rare, but potentially severe complication in COVID-19 disease, whose recognition can be difficult if only for the empirical treatments administered in the early stages. Glucocorticoid (GC) treatment have had a pivotal role in preventing clinical deterioration in patients with COVID-19, but long-term GC use may increase COVID-19-related mortality and the development of iatrogenic AI. Patients with GC disorders, especially AI and Cushing's syndrome, have been identified as being at high risk of COVID-19 infection and complications. Published evidence suggests that AI patient awareness and proper education may help adjust GC replacement therapy appropriately when necessary, thereby reducing COVID-19 severity. The COVID-19 pandemic has had an impact on AI management, particularly in terms of adherence to patients' care plans and self-perceived challenges. On the other hand, published evidence suggests that the clinical course of COVID-19 may be affected by the severity of hypercortisolism in patients with CS. Therefore, to ameliorate the risk profile in these patients, cortisol levels should be adequately controlled, along with careful monitoring of metabolic and cardiovascular comorbidities. To date, the COVID-19 vaccine remains the only available tool to face SARS-CoV-2, and it should not be treated differently in patients with AI and CS. CONCLUSION SARS-CoV-2 infection has been linked to adrenal damage and AI is a rare complication in COVID-19 disease, requiring prompt recognition. Educational efforts and patient awareness may reduce COVID-19 severity in patients with AI. Control of cortisol levels and monitoring of complications may improve the clinical course of COVID-19 in patients with CS.
Collapse
Affiliation(s)
- Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, IT, Rome, Italy
| | - Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, IT, Rome, Italy
| | - John Newell-Price
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, IT, Rome, Italy.
- Centre for Rare Diseases (ENDO-ERN accredited), Policlinico Umberto I, Rome, Italy.
| |
Collapse
|
15
|
Morawietz H, Brendel H, Diaba-Nuhoho P, Catar R, Perakakis N, Wolfrum C, Bornstein SR. Cross-Talk of NADPH Oxidases and Inflammation in Obesity. Antioxidants (Basel) 2023; 12:1589. [PMID: 37627585 PMCID: PMC10451527 DOI: 10.3390/antiox12081589] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular and metabolic diseases. Multiple experimental and clinical studies have shown increased oxidative stress and inflammation linked to obesity. NADPH oxidases are major sources of reactive oxygen species in the cardiovascular system and in metabolically active cells and organs. An impaired balance due to the increased formation of reactive oxygen species and a reduced antioxidative capacity contributes to the pathophysiology of cardiovascular and metabolic diseases and is linked to inflammation as a major pathomechanism in cardiometabolic diseases. Non-alcoholic fatty liver disease is particularly characterized by increased oxidative stress and inflammation. In recent years, COVID-19 infections have also increased oxidative stress and inflammation in infected cells and tissues. Increasing evidence supports the idea of an increased risk for severe clinical complications of cardiometabolic diseases after COVID-19. In this review, we discuss the role of oxidative stress and inflammation in experimental models and clinical studies of obesity, cardiovascular diseases, COVID-19 infections and potential therapeutic strategies.
Collapse
Affiliation(s)
- Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (H.B.); (P.D.-N.)
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Rusan Catar
- Department of Nephrology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nikolaos Perakakis
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse, 8603 Schwerzenbach, Switzerland;
| | - Stefan R. Bornstein
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany; (N.P.); (S.R.B.)
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Diabetes and Nutritional Sciences, King’s College London, Strand, London WC2R 2LS, UK
| |
Collapse
|
16
|
Poma AM, Bonuccelli D, Macerola E, Niballi S, Basolo A, Santini F, Basolo F, Toniolo A. Transcriptional changes in multiple endocrine organs from lethal cases of COVID-19. J Mol Med (Berl) 2023; 101:973-986. [PMID: 37246981 PMCID: PMC10225763 DOI: 10.1007/s00109-023-02334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Altered circulating hormone and metabolite levels have been reported during and post-COVID-19. Yet, studies of gene expression at the tissue level capable of identifying the causes of endocrine dysfunctions are lacking. Transcript levels of endocrine-specific genes were analyzed in five endocrine organs of lethal COVID-19 cases. Overall, 116 autoptic specimens from 77 individuals (50 COVID-19 cases and 27 uninfected controls) were included. Samples were tested for the SARS-CoV-2 genome. The adrenals, pancreas, ovary, thyroid, and white adipose tissue (WAT) were investigated. Transcript levels of 42 endocrine-specific and 3 interferon-stimulated genes (ISGs) were measured and compared between COVID-19 cases (virus-positive and virus-negative in each tissue) and uninfected controls. ISG transcript levels were enhanced in SARS-CoV-2-positive tissues. Endocrine-specific genes (e.g., HSD3B2, INS, IAPP, TSHR, FOXE1, LEP, and CRYGD) were deregulated in COVID-19 cases in an organ-specific manner. Transcription of organ-specific genes was suppressed in virus-positive specimens of the ovary, pancreas, and thyroid but enhanced in the adrenals. In WAT of COVID-19 cases, transcription of ISGs and leptin was enhanced independently of virus detection in tissue. Though vaccination and prior infection have a protective role against acute and long-term effects of COVID-19, clinicians must be aware that endocrine manifestations can derive from virus-induced and/or stress-induced transcriptional changes of individual endocrine genes. KEY MESSAGES: • SARS-CoV-2 can infect adipose tissue, adrenals, ovary, pancreas and thyroid. • Infection of endocrine organs induces interferon response. • Interferon response is observed in adipose tissue independently of virus presence. • Endocrine-specific genes are deregulated in an organ-specific manner in COVID-19. • Transcription of crucial genes such as INS, TSHR and LEP is altered in COVID-19.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.
| | - Diana Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Elisabetta Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Sara Niballi
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Alessio Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | | |
Collapse
|
17
|
Steenblock C, Toepfner N, Beuschlein F, Perakakis N, Mohan Anjana R, Mohan V, Mahapatra NR, Bornstein SR. SARS-CoV-2 infection and its effects on the endocrine system. Best Pract Res Clin Endocrinol Metab 2023; 37:101761. [PMID: 36907787 PMCID: PMC9985546 DOI: 10.1016/j.beem.2023.101761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) can infect multiple tissues, including endocrine organs, such as the pancreas, adrenal, thyroid, and adipose tissue. The main receptor for SARS-CoV-2, ACE2, is ubiquitously expressed in the cells of the endocrine organs and accordingly, the virus has been detected in various amounts in all endocrine tissues in post-mortem samples from COVID-19 patients. The infection with SARS-CoV-2 may directly lead to organ damage or dysfunction, such as hyperglycaemia or in rare cases, new-onset diabetes. Furthermore, an infection with SARS-CoV-2 may have indirect effects affecting the endocrine system. The exact mechanisms are not yet completely understood and have to be further investigated. Conversely, endocrine diseases may affect the severity of COVID-19 and emphasis has to be laid on reducing the prevalence, or enhance the treatment, of these often non-communicable diseases in the future.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW It is now recognized that SARS-CoV-2 infection can have a long-term impact on health. This review summarizes the current state of knowledge regarding Long COVID in people living with HIV (PLWH). RECENT FINDINGS PLWH may be at elevated risk of experiencing Long COVID. Although the mechanisms contributing to Long COVID are incompletely understood, there are several demographic and clinical factors that might make PLWH vulnerable to developing Long COVID. SUMMARY PLWH should be aware that new or worsening symptoms following SARS-CoV-2 infection might represent Long COVID. HIV providers should be aware of this clinical entity and be mindful that their patients recovering from SARS-CoV-2 infection may be at higher risk.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA 94110
| | - Annukka A. R. Antar
- Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
19
|
Moscucci F, Gallina S, Bucciarelli V, Aimo A, Pelà G, Cadeddu-Dessalvi C, Nodari S, Maffei S, Meloni A, Deidda M, Mercuro G, Pedrinelli R, Penco M, Sciomer S, Mattioli AV. Impact of COVID-19 on the cardiovascular health of women: a review by the Italian Society of Cardiology Working Group on 'gender cardiovascular diseases'. J Cardiovasc Med (Hagerstown) 2023; 24:e15-e23. [PMID: 36729627 PMCID: PMC10100638 DOI: 10.2459/jcm.0000000000001398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/02/2022] [Indexed: 02/03/2023]
Abstract
The coronavirus disease 19 (COVID-19), due to coronavirus 2 (SARS-CoV-2) infection, presents with an extremely heterogeneous spectrum of symptoms and signs. COVID-19 susceptibility and mortality show a significant sex imbalance, with men being more prone to infection and showing a higher rate of hospitalization and mortality than women. In particular, cardiovascular diseases (preexistent or arising upon infection) play a central role in COVID-19 outcomes, differently in men and women. This review will discuss the potential mechanisms accounting for sex/gender influence in vulnerability to COVID-19. Such variability can be ascribed to both sex-related biological factors and sex-related behavioural traits. Sex differences in cardiovascular disease and COVID-19 involve the endothelial dysfunction, the innate immune system and the renin-angiotensin system (RAS). Furthermore, the angiotensin-converting enzyme 2 (ACE2) is involved in disease pathogenesis in cardiovascular disease and COVID-19 and it shows hormone-dependent actions. The incidence of myocardial injury during COVID-19 is sex-dependent, predominantly in association with a greater degree of inflammation and coagulation disorders among men. Its pathogenesis is not fully elucidated, but the main theories foresee a direct role for the ACE2 receptor, the hyperimmune response and the RAS imbalance, which may also lead to isolated presentation of COVID-19-mediated myopericarditis. Moreover, the latest evidence on cardiovascular diseases and their relationship with COVID-19 during pregnancy will be discussed. Finally, authors will analyse the prevalence of the long-covid syndrome between the two sexes and its impact on the quality of life and cardiovascular health.
Collapse
Affiliation(s)
- Federica Moscucci
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, University of Rome ‘Sapienza’, Policlinico Umberto I, Rome
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti
| | - Valentina Bucciarelli
- Department of Paediatric and Congenital Cardiac Surgery and Cardiology, Azienda Ospedaliero-Universitaria Ospedali Riuniti Ancona ‘Umberto I, G. M. Lancisi, G. Salesi’, Ancona
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio
- Scuola Superiore Sant’Anna, Pisa
| | - Giovanna Pelà
- Department of Medicine and Surgery, University of Parma
- Department of General and Specialistic Medicine, University-Hospital of Parma, Parma
| | | | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Silvia Maffei
- Cardiovascular and Gynaecological Endocrinology Unit, Fondazione G Monasterio CNR-Regione Toscana
| | - Antonella Meloni
- Department of Radiology, Fondazione G Monasterio CNR-Regione Toscana, Pisa
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Roberto Pedrinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa
| | - Maria Penco
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila
| | - Susanna Sciomer
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, University of Rome ‘Sapienza’, Policlinico Umberto I, Rome
| | - Anna Vittoria Mattioli
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Asakawa T, Cai Q, Shen J, Zhang Y, Li Y, Chen P, Luo W, Zhang J, Zhou J, Zeng H, Weng R, Hu F, Feng H, Chen J, Huang J, Zhang X, Zhao Y, Fang L, Yang R, Huang J, Wang F, Liu Y, Lu H. Sequelae of long COVID, known and unknown: A review of updated information. Biosci Trends 2023; 17:85-116. [PMID: 36928222 DOI: 10.5582/bst.2023.01039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Over three years have passed since the COVID-19 pandemic started. The dangerousness and impact of COVID-19 should definitely not be ignored or underestimated. Other than the symptoms of acute infection, the long-term symptoms associated with SARS-CoV-2 infection, which are referred to here as "sequelae of long COVID (LC)", are also a conspicuous global public health concern. Although such sequelae were well-documented, the understanding of and insights regarding LC-related sequelae remain inadequate due to the limitations of previous studies (the follow-up, methodological flaws, heterogeneity among studies, etc.). Notably, robust evidence regarding diagnosis and treatment of certain LC sequelae remain insufficient and has been a stumbling block to better management of these patients. This awkward situation motivated us to conduct this review. Here, we comprehensively reviewed the updated information, particularly focusing on clinical issues. We attempt to provide the latest information regarding LC-related sequelae by systematically reviewing the involvement of main organ systems. We also propose paths for future exploration based on available knowledge and the authors' clinical experience. We believe that these take-home messages will be helpful to gain insights into LC and ultimately benefit clinical practice in treating LC-related sequelae.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Qingxian Cai
- Department of Hepatology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jiayin Shen
- Department of Science and Education, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Ying Zhang
- Department of Endocrinology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Yongshuang Li
- Department of Dermatology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Peifen Chen
- Department of Respiratory Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Wen Luo
- Department of Respiratory Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jiangguo Zhang
- Department of Gastroenterology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jinfeng Zhou
- Department of Gastroenterology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Hui Zeng
- Department of Cardiology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Ruihui Weng
- Department of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Feng Hu
- Department of Nephrology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Huiquan Feng
- Department of Urology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jun Chen
- Department of Hepatology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jie Huang
- Department of Dermatology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Xiaoyin Zhang
- Department of Gastroenterology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Yu Zhao
- Department of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Liekui Fang
- Department of Urology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Rongqing Yang
- Department of Dermatology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Jia Huang
- Department of Intensive Care Unit, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Fuxiang Wang
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Yingxia Liu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| | - Hongzhou Lu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China.,Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
21
|
Elhassan YS, Ronchi CL, Wijewickrama P, Baldeweg SE. Approach to the Patient With Adrenal Hemorrhage. J Clin Endocrinol Metab 2023; 108:995-1006. [PMID: 36404284 PMCID: PMC9999363 DOI: 10.1210/clinem/dgac672] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Adrenal hemorrhage is an uncommon, underrecognized condition that can be encountered in several clinical contexts. Diagnosing adrenal hemorrhage is challenging due to its nonspecific clinical features. Therefore, it remains a diagnosis that is made serendipitously on imaging of acutely unwell patients rather than with prospective clinical suspicion. Adrenal hemorrhage can follow abdominal trauma or appear on a background of predisposing conditions such as adrenal tumors, sepsis, or coagulopathy. Adrenal hemorrhage is also increasingly reported in patients with COVID-19 infection and in the context of vaccine-induced immune thrombocytopenia and thrombosis. Unexplained abdominal pain with hemodynamic instability in a patient with a predisposing condition should alert the physician to the possibility of adrenal hemorrhage. Bilateral adrenal hemorrhage can lead to adrenal insufficiency and potentially fatal adrenal crisis without timely recognition and treatment. In this article, we highlight the clinical circumstances that are associated with higher risk of adrenal hemorrhage, encouraging clinicians to prospectively consider the diagnosis, and we share a diagnostic and management strategy.
Collapse
Affiliation(s)
- Yasir S Elhassan
- Correspondence: Yasir Elhassan, MBBS, MRCP, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2WB, UK
- Division of Endocrinology and Diabetes, University Hospital University Würzburg, Würzburg 97080, Germany
| | - Piyumi Wijewickrama
- Department of Diabetes and Endocrinology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK
| | - Stephanie E Baldeweg
- Department of Diabetes and Endocrinology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK
- Centre for Obesity and Metabolism, Department of Experimental and Translational Medicine, Division of Medicine, University College London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Basolo A, Poma AM, Macerola E, Bonuccelli D, Proietti A, Salvetti A, Vignali P, Torregrossa L, Evangelisti L, Sparavelli R, Giannini R, Ugolini C, Basolo F, Santini F, Toniolo A. Autopsy Study of Testicles in COVID-19: Upregulation of Immune-Related Genes and Downregulation of Testis-Specific Genes. J Clin Endocrinol Metab 2023; 108:950-961. [PMID: 36260523 PMCID: PMC9620766 DOI: 10.1210/clinem/dgac608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Infection by SARS-CoV-2 may be associated with testicular dysfunction that could affect male fertility. OBJECTIVE Testicles of fatal COVID-19 cases were investigated to detect virus in tissue and to evaluate histopathological and transcriptomic changes. METHODS Three groups were compared: (a) uninfected controls (subjects dying of trauma or sudden cardiac death; n = 10); (b) subjects dying of COVID-19 (virus-negative in testes; n = 15); (c) subjects dying of COVID-19 (virus-positive in testes; n = 9). SARS-CoV-2 genome and nucleocapsid antigen were probed using RT-PCR, in situ hybridization, and immunohistochemistry (IHC). Infiltrating leukocytes were typed by IHC. mRNA transcripts of immune-related and testis-specific genes were quantified using the nCounter method. RESULTS SARS-CoV-2 was detected in testis tissue of 9/24 (37%) COVID-19 cases accompanied by scattered T-cell and macrophage infiltrates. Size of testicles and counts of spermatogenic cells were not significantly different among groups. Analysis of mRNA transcripts showed that in virus-positive testes immune processes were activated (interferon-alpha and -gamma pathways). By contrast, transcription of 12 testis-specific genes was downregulated, independently of virus positivity in tissue. By IHC, expression of the luteinizing hormone/choriogonadotropin receptor was enhanced in virus-positive compared to virus-negative testicles, while expression of receptors for androgens and the follicle-stimulating hormone were not significantly different among groups. CONCLUSION In lethal COVID-19 cases, infection of testicular cells is not uncommon. Viral infection associates with activation of interferon pathways and downregulation of testis-specific genes involved in spermatogenesis. Due to the exceedingly high numbers of infected people in the pandemic, the impact of virus on fertility should be further investigated.
Collapse
Affiliation(s)
- Alessio Basolo
- Corresponding author: Alessio Basolo, MD, Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124, Pisa, Italy, Telephone number: +39-050-997334,
| | - Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Elisabetta Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Diana Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Agnese Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Vignali
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Laura Evangelisti
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Rebecca Sparavelli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124, Pisa, Italy
| | - Antonio Toniolo
- Global Virus Network, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
23
|
Abstract
The multifaceted interaction between coronavirus disease 2019 (COVID-19) and the endocrine system has been a major area of scientific research over the past two years. While common endocrine/metabolic disorders such as obesity and diabetes have been recognized among significant risk factors for COVID-19 severity, several endocrine organs were identified to be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). New-onset endocrine disorders related to COVID-19 were reported while long-term effects, if any, are yet to be determined. Meanwhile, the "stay home" measures during the pandemic caused interruption in the care of patients with pre-existing endocrine disorders and may have impeded the diagnosis and treatment of new ones. This review aims to outline this complex interaction between COVID-19 and endocrine disorders by synthesizing the current scientific knowledge obtained from clinical and pathophysiological studies, and to emphasize considerations for future research.
Collapse
Affiliation(s)
- Seda Hanife Oguz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey;
| | - Bulent Okan Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey;
| |
Collapse
|
24
|
Ling D, Wan N, Afzal MZ, Kaeppeli R, Hollington P. Waterhouse‐Friderichsen
syndrome: a rare but potentially fatal presentation of abdominal pain. ANZ J Surg 2022; 93:1390-1391. [DOI: 10.1111/ans.18210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Affiliation(s)
- David Ling
- Colorectal Surgery Unit Flinders Medical Centre Adelaide South Australia Australia
| | - Nicholas Wan
- Colorectal Surgery Unit Flinders Medical Centre Adelaide South Australia Australia
| | - Mohamed Zaafer Afzal
- Colorectal Surgery Unit Flinders Medical Centre Adelaide South Australia Australia
| | - Reto Kaeppeli
- Colorectal Surgery Unit Flinders Medical Centre Adelaide South Australia Australia
| | - Paul Hollington
- Colorectal Surgery Unit Flinders Medical Centre Adelaide South Australia Australia
- College of Medicine and Public Health Flinders University Adelaide South Australia Australia
| |
Collapse
|
25
|
Fleseriu M, Biller BMK. Treatment of Cushing's syndrome with osilodrostat: practical applications of recent studies with case examples. Pituitary 2022; 25:795-809. [PMID: 36002784 PMCID: PMC9401199 DOI: 10.1007/s11102-022-01268-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
Endogenous Cushing's syndrome (CS) is a rare endocrine condition frequently caused by a tumor resulting in elevated cortisol levels. Cushing's disease (CD) caused by an adrenocorticotropic hormone-secreting pituitary adenoma is the most common form of endogenous CS. Medical therapy for CD is mostly used as second-line treatment after failed surgery or recurrence and comprises several pituitary-directed drugs, adrenal steroidogenesis inhibitors, and a glucocorticoid receptor blocker, some of which are US Food and Drug Administration (FDA)-approved for this condition. The recent Pituitary Society consensus guidelines for diagnosis and management of CD described osilodrostat, an oral inhibitor of 11β-hydroxylase, as an effective, FDA-approved medical therapy for CD. Because clinical experience outside clinical trials is limited, we provide here a review of published data about osilodrostat and offer example case studies demonstrating practical considerations on the use of this medication. Recommendations regarding osilodrostat are provided for the following situations: specific assessments needed before treatment initiation; monitoring for adrenal insufficiency, hypokalemia, and changes in QTc; the potential value of a slow up-titration in patients with mild disease; managing temporary treatment cessation for patients with CD who have acquired coronavirus disease 2019; monitoring for increased testosterone levels in women; exercising caution with concomitant medication use; considering whether a higher dose at nighttime might be beneficial; and managing cortisol excess in ectopic and adrenal CS. This review highlights key clinical situations that physicians may encounter when using osilodrostat and provides practical recommendations for optimal patient care when treating CS, with a focus on CD.
Collapse
Affiliation(s)
- Maria Fleseriu
- Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA.
| | | |
Collapse
|
26
|
Yavropoulou MP, Tsokos GC, Chrousos GP, Sfikakis PP. Protracted stress-induced hypocortisolemia may account for the clinical and immune manifestations of Long COVID. Clin Immunol 2022; 245:109133. [PMID: 36182048 PMCID: PMC9519365 DOI: 10.1016/j.clim.2022.109133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022]
Abstract
About one out of eight people to convalesce from COVID-19 suffer from the so called Long COVID, a syndrome of non-specific symptoms with unclear pathogenesis. In a recent study published in Cell Long COVID participants reporting respiratory symptoms had low cortisol levels. In an as yet unpublished analysis from Yale University low plasma cortisol levels discriminated Long COVID from asymptomatic convalescent or healthy non-infected controls. Although various immune perturbations were present in Long COVID, low levels of cortisol were prominent and strikingly, depression and anxiety were increased. It has become clear that Long COVID features may be similar to those described in myalgic encephalomyelitis/chronic fatigue syndrome, post-SARS sickness syndrome, and various chronic stress syndromes which have been linked to hypocortisolemia. Notably, lack of response of the hypothalamic-pituitary-adrenal axis to hypocortisolemia shows a suppressed axis in Long COVID. We suggest that the inability of hypothalamic-pituitary-adrenal axis to recover after the acute illness, perhaps due to protracted stress in predisposed individuals, may represent the pathogenetic basis of the Long COVID-associated clinical and immunological manifestations.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- 1(st) Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros P Sfikakis
- 1(st) Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
27
|
Steenblock C, Walther R, Tselmin S, Jarzebska N, Voit-Bak K, Toepfner N, Siepmann T, Passauer J, Hugo C, Wintermann G, Julius U, Barbir M, Khan TZ, Puhan MA, Straube R, Hohenstein B, Bornstein SR, Rodionov RN. Post COVID and Apheresis - Where are we Standing? Horm Metab Res 2022; 54:715-720. [PMID: 36113501 DOI: 10.1055/a-1945-9694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A continual increase in cases of Long/Post COVID constitutes a medical and socioeconomic challenge to health systems around the globe. While the true extent of this problem cannot yet be fully evaluated, recent data suggest that up to 20% of people with confirmed SARS-CoV-2 suffer from clinically relevant symptoms of Long/Post COVID several weeks to months after the acute phase. The clinical presentation is highly variable with the main symptoms being chronic fatigue, dyspnea, and cognitive symptoms. Extracorporeal apheresis has been suggested to alleviate symptoms of Post/COVID. Thus, numerous patients are currently treated with apheresis. However, at present there is no data from randomized controlled trials available to confirm the efficacy. Therefore, physicians rely on the experience of practitioners and centers performing this treatment. Here, we summarize clinical experience on extracorporeal apheresis in patients with Post/COVID from centers across Germany.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Romy Walther
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sergey Tselmin
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Natalia Jarzebska
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karin Voit-Bak
- Zentrum für Apherese- und Hämofiltration am INUS Tagesklinikum, Cham, Germany
| | - Nicole Toepfner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timo Siepmann
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jens Passauer
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gloria Wintermann
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mahmoud Barbir
- Department of Cardiology, Harefield Hospital, Harefield, United Kingdom of Great Britain and Northern Ireland
| | - Tina Z Khan
- Department of Cardiology, Harefield Hospital, Harefield, United Kingdom of Great Britain and Northern Ireland
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Richard Straube
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernd Hohenstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Roman N Rodionov
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Kirschbaum C. What to do now that hypocortisol appears to be a predominant sign of long COVID? Psychoneuroendocrinology 2022; 145:105919. [PMID: 36126384 PMCID: PMC9446679 DOI: 10.1016/j.psyneuen.2022.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Clemens Kirschbaum
- Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
29
|
Assessing and improving the validity of COVID-19 autopsy studies - A multicentre approach to establish essential standards for immunohistochemical and ultrastructural analyses. EBioMedicine 2022; 83:104193. [PMID: 35930888 PMCID: PMC9344879 DOI: 10.1016/j.ebiom.2022.104193] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain about whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, such as overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. Methods We assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 proteins in cultured cell lines and COVID-19 autopsy tissues. In a multicentre study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 IHC. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. Findings Publications show high variability in detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. We show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (N= 35; r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and provide recommendations for optimized sampling and analysis. 135 of 144 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM sections as a reference and for training purposes. Interpretation Since detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2. Funding German Federal Ministry of Health, German Federal Ministry of Education and Research, Berlin University Alliance, German Research Foundation, German Center for Infectious Research.
Collapse
|
30
|
Cadegiani FA. Catecholamines Are the Key Trigger of COVID-19 mRNA Vaccine-Induced Myocarditis: A Compelling Hypothesis Supported by Epidemiological, Anatomopathological, Molecular, and Physiological Findings. Cureus 2022; 14:e27883. [PMID: 35971401 PMCID: PMC9372380 DOI: 10.7759/cureus.27883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine-induced myocarditis is a rare but well-documented complication in young males. The increased incidence of sudden death among athletes following vaccination has been reported and requires further investigation. Whether the risk of myocarditis, a known major cause of sudden death in young male athletes, also increases after coronavirus disease 2019 (COVID-19) infection is unknown. The severity and implications of these critical adverse effects require a thorough analysis to elucidate their key triggering mechanisms. The present review aimed to evaluate whether there is a justification to hypothesize that catecholamines in a "hypercatecholaminergic" state are the key trigger of SARS-CoV-2 mRNA vaccine-induced myocarditis and related outcomes and whether similar risks are also present following COVID-19 infection. A thorough, structured scoping review of the literature was performed to build the hypothesis through three pillars: detection of myocarditis risk, potential alterations and abnormalities identified after SARS-CoV-2 mRNA vaccination or COVID-19 infection and consequent events, and physiological characteristics of the most affected population. The following terms were searched in indexed and non-indexed peer review articles and recent preprints (<12 months): agent, "SARS-CoV-2" or "COVID-19"; event, "myocarditis" or "sudden death(s)" or "myocarditis+sudden death(s)" or "cardiac event(s)"; underlying cause, "mRNA" or "spike protein" or "infection" or "vaccine"; proposed trigger, "catecholamine(s)" or "adrenaline" or "epinephrine" or "noradrenaline" or "norepinephrine" or "testosterone"; and affected population, "young male(s)" or "athlete(s)." The rationale and data that supported the hypothesis were as follows: SARS-CoV-2 mRNA vaccine-induced myocarditis primarily affected young males, while the risk was not observed following COVID-19 infection; independent autopsies or biopsies of patients who presented post-SARS-CoV-2 mRNA vaccine myocarditis in different geographical regions enabled the conclusion that a primary hypercatecholaminergic state was the key trigger of these events; SARS-CoV-2 mRNA was densely present, and SARS-CoV-2 spike protein was progressively produced in adrenal medulla chromaffin cells, which are responsible for catecholamine production; the dihydroxyphenylalanine decarboxylase enzyme that converts dopamine into noradrenaline was overexpressed in the presence of SARS-CoV-2 mRNA, leading to enhanced noradrenaline activity; catecholamine responses were physiologically higher in young adults and males than in other populations; catecholamine responses and resting catecholamine production were higher in male athletes than in non-athletes; catecholamine responses to stress and its sensitivity were enhanced in the presence of androgens; and catecholamine expressions in young male athletes were already high at baseline, were higher following vaccination, and were higher than those in non-vaccinated athletes. The epidemiological, autopsy, molecular, and physiological findings unanimously and strongly suggest that a hypercatecholaminergic state is the critical trigger of the rare cases of myocarditis due to components from SARS-CoV-2, potentially increasing sudden deaths among elite male athletes.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Clinical Endocrinology, Corpometria Institute, Brasilia, BRA
- Clinical Endocrinology, Applied Biology, Inc., Irvine, USA
| |
Collapse
|
31
|
Abstract
The symptoms of long COVID and chronic adrenal insufficiency have striking similarities. Therefore, we aim to raise awareness of assessing adrenal function in patients with long COVID.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
32
|
Kanczkowski W, Gaba WH, Krone N, Varga Z, Beuschlein F, Hantel C, Andoniadou C, Bornstein SR. Adrenal Gland Function and Dysfunction During COVID-19. Horm Metab Res 2022; 54:532-539. [PMID: 35944524 DOI: 10.1055/a-1873-2150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is currently one of the major health concerns worldwide accounting for many deaths and posing a great social and economic burden. Early activation of adrenal hormone secretion is pivotal to surviving systemic microbial infections. In addition, clinical studies demonstrated that glucocorticoids might also be beneficial in reducing disease progression and life deterioration in certain patients with COVID-19. Recent studies demonstrated that SARS-CoV-2 might target the adrenal glands, raising the possibility that at least some COVID-19 complications may be associated with adrenal dysfunction. Whether SARS-CoV-2 infection might cause adrenal dysfunction remains unknown. Histopathological examinations provided evidence that SARS-CoV-2 infection might indeed cause certain structural damage to the adrenal glands, especially concerning its vascular system. However, since no widespread cellular damage to cortical cells was observed, it is less likely that those changes could lead to an immediate adrenal crisis. This assumption is supported by the limited number of studies reporting rather adequate cortisol levels in patients with acute COVID-19. Those studies, however, could not exclude a potential late-onset or milder form of adrenal insufficiency. Although structural damage to adrenal glands is a rarely reported complication of COVID-19, some patients might develop a critical illness-related corticosteroid insufficiency (CIRCI), or iatrogenic adrenal insufficiency resulting from prolonged treatment with synthetic glucocorticoids. In this mini-review article, we aimed at describing and discussing factors involved in the adrenal gland function and possible dysfunction during COVID-19.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waqar Haider Gaba
- Internal Medicine, Shaikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom of Great Britain and Northern Ireland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - Constanze Hantel
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - Cynthia Andoniadou
- Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
33
|
Bornstein SR, Cozma D, Kamel M, Hamad M, Mohammad MG, Khan NA, Saber MM, Semreen MH, Steenblock C. Long-COVID, Metabolic and Endocrine Disease. Horm Metab Res 2022; 54:562-566. [PMID: 35724687 PMCID: PMC9363148 DOI: 10.1055/a-1878-9307] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the aftermath of the corona pandemic, long-COVID or post-acute COVID-19 syndrome still represents a great challenge, and this topic will continue to represent a significant health problem in the coming years. At present, the impact of long-COVID on our health system cannot be fully assessed but according to current studies, up to 40% of people who have been infected with SARS-CoV-2 suffer from clinically relevant symptoms of long-COVID syndrome several weeks to months after the acute phase. The main symptoms are chronic fatigue, dyspnea, and various cognitive symptoms. Initial studies have shown that people with overweight and diabetes mellitus have a higher risk of developing long-COVID associated symptoms. Furthermore, repeated treatment of acute COVID-19 and long-COVID with steroids can contribute to long-term metabolic and endocrine disorders. Therefore, a structured program with rehabilitation and physical activity as well as optimal dietary management is of utmost importance, especially for patients with metabolic diseases and/or long-COVID. Furthermore, the removal of autoantibodies and specific therapeutic apheresis procedures could lead to a significant improvement in the symptoms of long-COVID in individual patients.
Collapse
Affiliation(s)
- Stefan R. Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty
of Life Sciences & Medicine, King’s College London, London,
UK
| | - Diana Cozma
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
| | - Margrit Kamel
- Center for Regenerative Therapies Dresden, Technische
Universität Dresden, Dresden, Germany
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah College
of Health Sciences, Sharjah, United Arab Emirates
| | - Mohammad G. Mohammad
- Department of Medical Laboratory Sciences, College of Health Sciences,
University of Sharjah, Sharjah, United Arab Emirates
| | - Naveed A. Khan
- College of Medicine, University of Sharjah, Sharjah, United Arab
Emirates
| | - Maha M. Saber
- College of Medicine, University of Sharjah, Sharjah, United Arab
Emirates
| | | | - Charlotte Steenblock
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
- Correspondence Dr. Charlotte
Steenblock University Hospital Carl Gustav Carus,
Technische Universität DresdenDepartment of
Medicine IIIFetscherstraße
7401307
DresdenGermany+493514586130+493514586336
| |
Collapse
|
34
|
Poma AM, Proietti A, Macerola E, Bonuccelli D, Conti M, Salvetti A, Dolo V, Chillà A, Basolo A, Santini F, Toniolo A, Basolo F. Suppression of Pituitary Hormone Genes in Subjects Who Died From COVID-19 Independently of Virus Detection in the Gland. J Clin Endocrinol Metab 2022; 107:2243-2253. [PMID: 35567590 PMCID: PMC9129148 DOI: 10.1210/clinem/dgac312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/08/2023]
Abstract
CONTEXT Involvement of the pituitary gland in SARS-CoV-2 infection has been clinically suggested by pituitary hormone deficiency in severe COVID-19 cases, by altered serum adrenocorticotropic hormone (ACTH) levels in hospitalized patients, and by cases of pituitary apoplexy. However, the direct viral infection of the gland has not been investigated. OBJECTIVE To evaluate whether the SARS-CoV-2 genome and antigens could be present in pituitary glands of lethal cases of COVID-19, and to assess possible changes in the expression of immune-related and pituitary-specific genes. METHODS SARS-CoV-2 genome and antigens were searched in the pituitary gland of 23 patients who died from COVID-19 and, as controls, in 12 subjects who died from trauma or sudden cardiac death. Real-time reverse transcription polymerase chain reaction (PCR), in situ hybridization, immunohistochemistry, and transmission electron microscopy were utilized. Levels of mRNA transcripts of immune-related and pituitary-specific genes were measured by the nCounter assay. RESULTS The SARS-CoV-2 genome and antigens were detected in 14/23 (61%) pituitary glands of the COVID-19 group, not in controls. In SARS-CoV-2-positive pituitaries, the viral genome was consistently detected by PCR in the adeno- and the neurohypophysis. Immunohistochemistry, in situ hybridization, and transmission electron microscopy confirmed the presence of SARS-CoV-2 in the pituitary. Activation of type I interferon signaling and enhanced levels of neutrophil and cytotoxic cell scores were found in virus-positive glands. mRNA transcripts of pituitary hormones and pituitary developmental/regulatory genes were suppressed in all COVID-19 cases irrespective of virus positivity. CONCLUSION Our study supports the tropism of SARS-CoV-2 for human pituitary and encourages exploration of pituitary dysfunction after COVID-19.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Agnese Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Elisabetta Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Diana Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Marco Conti
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Chillà
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessio Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | | | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
- Corresponding author: Fulvio Basolo, MD, PhD, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126 Pisa, Italy,
| |
Collapse
|
35
|
VZV Infection of Primary Human Adrenal Cortical Cells Produces a Proinflammatory Environment without Cell Death. Viruses 2022; 14:v14040674. [PMID: 35458404 PMCID: PMC9030771 DOI: 10.3390/v14040674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Virus infection of adrenal glands can disrupt secretion of mineralocorticoids, glucocorticoids, and sex hormones from the cortex and catecholamines from the medulla, leading to a constellation of symptoms such as fatigue, dizziness, weight loss, nausea, and muscle and joint pain. Specifically, varicella zoster virus (VZV) can produce bilateral adrenal hemorrhage and adrenal insufficiency during primary infection or following reactivation. However, the mechanisms by which VZV affects the adrenal glands are not well-characterized. Herein, we determined if primary human adrenal cortical cells (HAdCCs) infected with VZV support viral replication and produce a proinflammatory environment. Quantitative PCR showed VZV DNA increasing over time in HAdCCs, yet no cell death was seen at 3 days post-infection by TUNEL staining or Western Blot analysis with PARP and caspase 9 antibodies. Compared to conditioned supernatant from mock-infected cells, supernatant from VZV-infected cells contained significantly elevated IL-6, IL-8, IL-12p70, IL-13, IL-4, and TNF-α. Overall, VZV can productively infect adrenal cortical cells in the absence of cell death, suggesting that these cells may be a potential reservoir for ongoing viral replication and proinflammatory cytokine production, leading to chronic adrenalitis and dysfunction.
Collapse
|
36
|
Paul T, Ledderose S, Bartsch H, Sun N, Soliman S, Märkl B, Ruf V, Herms J, Stern M, Keppler OT, Delbridge C, Müller S, Piontek G, Kimoto YS, Schreiber F, Williams TA, Neumann J, Knösel T, Schulz H, Spallek R, Graw M, Kirchner T, Walch A, Rudelius M. Adrenal tropism of SARS-CoV-2 and adrenal findings in a post-mortem case series of patients with severe fatal COVID-19. Nat Commun 2022; 13:1589. [PMID: 35332140 PMCID: PMC8948269 DOI: 10.1038/s41467-022-29145-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Progressive respiratory failure and hyperinflammatory response is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. Despite mounting evidence of disruption of the hypothalamus-pituitary-adrenal axis in COVID-19, relatively little is known about the tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to adrenal glands and associated changes. Here we demonstrate adrenal viral tropism and replication in COVID-19 patients. Adrenal glands showed inflammation accompanied by inflammatory cell death. Histopathologic analysis revealed widespread microthrombosis and severe adrenal injury. In addition, activation of the glycerophospholipid metabolism and reduction of cortisone intensities were characteristic for COVID-19 specimens. In conclusion, our autopsy series suggests that SARS-CoV-2 facilitates the induction of adrenalitis. Given the central role of adrenal glands in immunoregulation and taking into account the significant adrenal injury observed, monitoring of developing adrenal insufficiency might be essential in acute SARS-CoV-2 infection and during recovery.
Collapse
Affiliation(s)
- Tanja Paul
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Harald Bartsch
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Sarah Soliman
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bruno Märkl
- Institute of Pathology, University of Augsburg, Augsburg, Germany
| | - Viktoria Ruf
- Institute of Neuropathology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jochen Herms
- Institute of Neuropathology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institut, Ludwig-Maximilians University Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institut, Ludwig-Maximilians University Munich, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, Division of Neuropathology, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Susanna Müller
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Yuki Schneider Kimoto
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Franziska Schreiber
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der University Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Heiko Schulz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ria Spallek
- Medizinische Klinik und Poliklinik III, Technical University Munich, Munich, Germany
| | - Matthias Graw
- Institute of Forensic Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
37
|
Reincke M. [Adrenal diseases]. Internist (Berl) 2022; 63:1-3. [PMID: 35029713 PMCID: PMC8758982 DOI: 10.1007/s00108-021-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Reincke
- Medizinische Klinik und Poliklinik IV, Innenstadt Klinikum der Universität München, Ludwig-Maximilians-Universität München, Ziemssenstr. 1, 80336, München, Deutschland.
| |
Collapse
|
38
|
Rossetti CL, Cazarin J, Hecht F, Beltrão FEDL, Ferreira ACF, Fortunato RS, Ramos HE, de Carvalho DP. COVID-19 and thyroid function: What do we know so far? Front Endocrinol (Lausanne) 2022; 13:1041676. [PMID: 36601011 PMCID: PMC9806267 DOI: 10.3389/fendo.2022.1041676] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) was characterized as a pandemic in March, 2020 by the World Health Organization. COVID-19 is a respiratory syndrome that can progress to acute respiratory distress syndrome, multiorgan dysfunction, and eventually death. Despite being considered a respiratory disease, it is known that other organs and systems can be affected in COVID-19, including the thyroid gland. Thyroid gland, as well as hypothalamus and pituitary, which regulate the functioning of most endocrine glands, express angiotensin-converting enzyme 2 (ACE2), the main protein that functions as a receptor to which SARS-CoV-2 binds to enter host cells. In addition, thyroid gland is extremely sensitive to changes in body homeostasis and metabolism. Immune system cells are targets for thyroid hormones and T3 and T4 modulate specific immune responses, including cell-mediated immunity, natural killer cell activity, the antiviral action of interferon (IFN) and proliferation of T- and B-lymphocytes. However, studies show that patients with controlled hypothyroidism and hyperthyroidism do not have a higher prevalence of COVID-19, nor do they have a worse prognosis when infected with the virus. On the other hand, retrospective observational studies, prospective studies, and case reports published in the last two years reported abnormal thyroid function related to acute SARS-CoV-2 infection or even several weeks after its resolution. Indeed, a variety of thyroid disorders have been documented in COVID-19 patients, including non-thyroidal illness syndrome (NTIS), subacute thyroiditis and thyrotoxicosis. In addition, thyroid disease has already been reported as a consequence of the administration of vaccines against SARS-CoV-2. Overall, the data revealed that abnormal thyroid function may occur during and in the convalescence post-COVID condition phase. Although the cellular and molecular mechanisms are not completely understood, the evidence suggests that the "cytokine storm" is an important mediator in this context. Thus, future studies are needed to better investigate the pathophysiology of thyroid dysfunction induced by COVID-19 at both molecular and clinical levels.
Collapse
Affiliation(s)
- Camila Lüdke Rossetti
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Cazarin
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Hecht
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabyan Esberard de Lima Beltrão
- Postgraduate Program in Nutritional Sciences, Department of Nutrition, Center for Health Sciences, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Andrea Cláudia Freitas Ferreira
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helton Estrela Ramos
- Department of Biorregulation, Health Sciences Institute, Universidade Federal da Bahia, Salvador, Brazil
- *Correspondence: Helton Estrela Ramos,
| | - Denise Pires de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Masjkur J, Barthel A, Kanczkowski W, Müller G, Bornstein SR. [Practical recommendations for screening and management of functional disorders of the adrenal cortex in cases of SARS-CoV-2 infections]. Internist (Berl) 2022; 63:4-11. [PMID: 34928398 PMCID: PMC8686096 DOI: 10.1007/s00108-021-01236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
Abstract
Diseases of the adrenal cortex require particular attention during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Firstly, SARS-CoV‑2 infections can give rise to extrapulmonary manifestations and cause endocrine disorders, particularly in the adrenal cortex. Furthermore, patients with pre-existing insufficiency of the adrenal cortex or hypercortisonism are particularly at risk from a severe infection such as SARS-CoV‑2, to suffer from additional complications or a more severe course of a SARS-CoV‑2 infection with a higher mortality. Especially in hemodynamically unstable patients with a SARS-CoV‑2 infection, diseases of the adrenal glands should also be considered in the differential diagnostics and if necessary clarified, if this is not already known. Prolonged treatment of patients with a SARS-CoV‑2 infection with regimens containing high doses of glucocorticoids can also result in a secondary adrenal insufficiency. In order to address these special aspects, some practical recommendations for the diagnostic and therapeutic management of functional disorders of the adrenal glands in patients with a SARS-CoV‑2 infection are therefore presented.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland.
- Else Kröner-Fresenius-Stiftung (EKFS) Clinician Scientist-Programm, UniversitätsCentrum für Seltene Erkrankungen (USE) am Universitätsklinikum Dresden, Dresden, Deutschland.
| | - Andreas Barthel
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland
- Medicover Bochum MVZ, Bochum, Deutschland
| | - Waldemar Kanczkowski
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland
| | - Gregor Müller
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland
| | - Stefan R Bornstein
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland
| |
Collapse
|