1
|
Yu H, Lee H, Cheong J, Woo SW, Oh J, Oh HK, Lee JH, Zheng H, Castro CM, Yoo YE, Kim MG, Cheon J, Weissleder R, Lee H. A rapid assay provides on-site quantification of tetrahydrocannabinol in oral fluid. Sci Transl Med 2021; 13:eabe2352. [PMID: 34669441 PMCID: PMC9126021 DOI: 10.1126/scitranslmed.abe2352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tetrahydrocannabinol (THC), the primary psychoactive ingredient of cannabis, impairs cognitive and motor function in a concentration-dependent fashion. Drug testing is commonly performed for employment and law enforcement purposes; however, available tests produce low-sensitive binary results (lateral flow assays) or have long turnaround (gas chromatography–mass spectrometry). To enable on-site THC quantification in minutes, we developed a rapid assay for oral THC analysis called EPOCH (express probe for on-site cannabis inhalation). EPOCH features distinctive sensor design such as a radial membrane and transmission optics, all contained in a compact cartridge. This integrated approach permitted assay completion within 5 min with a detection limit of 0.17 ng/ml THC, which is below the regulatory guideline (1 ng/ml). As a proof of concept for field testing, we applied EPOCH to assess oral fluid samples from cannabis users (n = 43) and controls (n = 43). EPOCH detected oral THC in all specimens from cannabis smokers (median concentration, 478 ng/ml) and THC-infused food consumers. Longitudinal monitoring showed a fast drop in THC concentrations within the first 6 hours of cannabis smoking (half-life, 1.4 hours).
Collapse
Affiliation(s)
- Hojeong Yu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, South Korea
| | - Hoyeon Lee
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jiyong Cheong
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, South Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Sang Won Woo
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hyun-Kyung Oh
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, South Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yeong-Eun Yoo
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, South Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Prini P, Zamberletti E, Manenti C, Gabaglio M, Parolaro D, Rubino T. Neurobiological mechanisms underlying cannabis-induced memory impairment. Eur Neuropsychopharmacol 2020; 36:181-190. [PMID: 32139186 DOI: 10.1016/j.euroneuro.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 01/23/2023]
Abstract
A growing body of literature suggests that cannabis intake can induce memory loss in humans and animals. Besides the recreational use, daily cannabis users may also belong to the ever-increasing population of patients who are administered cannabis as a medicine. As such, they also can experience impairments in memory as a negative side effect of their therapy. Comprehension of the neurobiological mechanisms responsible for such detrimental effects would be therefore of paramount relevance to public health. The investigation of neurobiological mechanisms in humans, despite the progress in the development of imaging technologies that allow the study of brain structure and function, still suffers substantial limitations. Animal models, instead, enable us to establish a causal relationship and thus to better elucidate the neurobiological mechanisms underlying the process under study. In this review, we will attempt to collect the insight coming from animal models about cannabis effects on memory, trying to depict a picture of the neurobiological mechanisms contributing to the development of cognitive deficits following cannabis use.
Collapse
Affiliation(s)
- Pamela Prini
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy
| | - Cristina Manenti
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy
| | - Marina Gabaglio
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy; Zardi-Gori Foundation, Milan, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy.
| |
Collapse
|
3
|
Almog S, Aharon-Peretz J, Vulfsons S, Ogintz M, Abalia H, Lupo T, Hayon Y, Eisenberg E. The pharmacokinetics, efficacy, and safety of a novel selective-dose cannabis inhaler in patients with chronic pain: A randomized, double-blinded, placebo-controlled trial. Eur J Pain 2020; 24:1505-1516. [PMID: 32445190 PMCID: PMC7496774 DOI: 10.1002/ejp.1605] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Background Precise cannabis treatment dosing remains a major challenge, leading to physicians’ reluctance to prescribe medical cannabis. Objective To test the pharmacokinetics, analgesic effect, cognitive performance and safety effects of an innovative medical device that enables the delivery of inhaled therapeutic doses of Δ9‐Tetrahydrocannabinol (THC) in patients with chronic pain. Methods In a randomized, three‐arms, double‐blinded, placebo‐controlled, cross‐over trial, 27 patients received a single inhalation of Δ9‐THC: 0.5mg, 1mg, or a placebo. Δ9‐THC plasma levels were measured at baseline and up to 150‐min post‐inhalation. Pain intensity and safety parameters were recorded on a 10‐cm visual analogue scale (VAS) at pre‐defined time points. The cognitive performance was evaluated using the selective sub‐tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB). Results Following inhalation of 0.5 mg or 1mg, Δ9‐THC plasma Cmax ± SD were 14.3 ± 7.7 and 33.8 ± 25.7 ng/ml. Tmax ± SD were 3.7 ± 1.4 and 4.4 ± 2.1 min, and AUC0 → infinity±SD were 300 ± 144 and 769 ± 331 ng*min/ml, respectively. Both doses, but not the placebo, demonstrated a significant reduction in pain intensity compared with baseline and remained stable for 150‐min. The 1‐mg dose showed a significant pain decrease compared to the placebo. Adverse events were mostly mild and resolved spontaneously. There was no evidence of consistent impairments in cognitive performance. Conclusion This feasibility trial demonstrated that a metered‐dose cannabis inhaler delivered precise and low THC doses, produced a dose‐dependent and safe analgesic effect in patients with neuropathic pain/ complex‐regional pain syndrome (CRPS). Thus, it enables individualization of medical cannabis regimens that can be evaluated pharmacokinetically and pharmacodynamically by accepted pharmaceutical models. Significance Evidence suggests that cannabis‐based medicines are an effective treatment for chronic pain in adults. The pharmacokinetics of THC varies as a function of its route of administration. Pulmonary assimilation of inhaled THC causes rapid onset of analgesia. However, currently used routes of cannabinoids delivery provide unknown doses, making it impossible to implement a pharmaceutical standard treatment plan. A novel selective‐dose cannabis inhaler delivers significantly low and precise doses of THC, thus allowing the administration of inhaled cannabis‐based medicines according to high pharmaceutical standards. These low doses of THC can produce safe and effective analgesia in patients with chronic pain.
Collapse
Affiliation(s)
- Shlomo Almog
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel-Aviv University, and Institute of Pharmacology & Toxicology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Judith Aharon-Peretz
- Neuropsychology Unit, Rambam Health Care Campus, Haifa, Israel.,Faculty of Medicine, Technion, Haifa, Israel
| | - Simon Vulfsons
- Faculty of Medicine, Technion, Haifa, Israel.,Institute of Pain Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Miri Ogintz
- Institute of Pain Medicine, Rambam Health Care Campus, Haifa, Israel.,Syqe Medical LTD, Tel-Aviv, Israel
| | | | - Tal Lupo
- Syqe Medical LTD, Tel-Aviv, Israel
| | | | - Elon Eisenberg
- Faculty of Medicine, Technion, Haifa, Israel.,Institute of Pain Medicine, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
4
|
Levinsohn EA, Hill KP. Clinical uses of cannabis and cannabinoids in the United States. J Neurol Sci 2020; 411:116717. [PMID: 32044684 DOI: 10.1016/j.jns.2020.116717] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
The role of cannabis in medicine is rapidly evolving. Medical cannabis is now legal in a majority of states, and THC and CBD, the prominent cannabinoids found in cannabis, have both been utilized in the development of FDA-approved drugs. Due to the complicated legal status of cannabis and cannabinoids, as well as regulations that vary from state to state, the appropriate use of these substances for both patients as well as clinicians is often unclear. Advancements in the understanding of the pharmacology of cannabis have led to numerous proposed uses of these drugs, including as antidepressant or analgesic agents. However, clinical trial data for these substances suggests that many purported indications of cannabis and cannabinoids are not supported by good clinical data. Furthermore, cannabis and several cannabinoid-based medications have potentially concerning side effect profiles that may limit their use in certain patient populations. As the legal status and clinical database of these medications continue to evolve, physicians will need to continue to balance the real potential of these compounds with their limitations and adverse effects.
Collapse
Affiliation(s)
- Erik A Levinsohn
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Kevin P Hill
- Addiction Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|