1
|
In-vitro antioxidant, lipoxygenase inhibitory, and in-vivo muscle relaxant potential of the extract and constituent isolated from Diospyros kaki (Japanese Persimmon). Heliyon 2023; 9:e13816. [PMID: 36895410 PMCID: PMC9989937 DOI: 10.1016/j.heliyon.2023.e13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Diospyros kaki (Japanese persimmon) is cultivated specious of the Diospyros genus. D. kaki is a multi-medicinal application in the folk system for the cure of ischemic stroke, angina, atherosclerosis, muscle relaxation, internal hemorrhage, hypertension, high cough, and infectious disease. The main objective of this study was the isolated bioactive metabolites from chloroform fractions of D. kaki. The extract and fractions were then tested for various in-vitro (antioxidant and lipoxygenase) and in-vivo (muscle relaxant) activities. The repeated chromatographic separation of chloroform extract afforded compound 1. Compound 1, n-hexane, and chloroform fractions were evaluated for in vitro antioxidant, lipoxygenase inhibitory, and in vivo muscle relaxant potency. The chloroform extract has 79.54% interaction with DPPH at higher concentrations (100 μg/ml) while the compound exhibited a maximum effect of 95.09% at 100 μg/ml. Compound 1 exhibited significant lipoxygenase inhibitory activity with an IC50 value of 36.98 μM followed by a chloroform extract of 57.09 μM. Similarly, compound 1 and chloroform extract showed excellent muscle relaxant effects at a higher dose. From this investigation, it is concluded that extracts and pure compounds exhibited promising antioxidant, lipoxygenase inhibitory, and muscle relaxant activity. This study excellently rationalizes the traditional usage of D. kaki in curing various diseases. Furthermore, the docking results indicate, that the isolated compound fits well into the active site of the lipoxygenase, and makes strong interactions with the target protein.
Collapse
|
2
|
Formulation of tizanidine hydrochloride-loaded provesicular system for improved oral delivery and therapeutic activity employing a 2 3 full factorial design. Drug Deliv Transl Res 2023; 13:580-592. [PMID: 35927549 PMCID: PMC9794545 DOI: 10.1007/s13346-022-01217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Tizanidine hydrochloride (TZN) is one of the most effective centrally acting skeletal muscle relaxants. The objective of this study is to prepare TZN-loaded proniosomes (TZN-PN) aiming at enhanced oral delivery and therapeutic activity. TZN-PN were prepared by coacervation phase separation method. The developed vesicles were characterized via entrapment efficiency percentage (EE%), vesicular size (VS), and zeta potential (ZP). A 23 full factorial design was employed to attain an optimized TZN-PN formulation. The optimized TZN-PN were further characterized via in vitro release study and transmission electron microscopy (TEM). In vivo rotarod test was employed for determination of the muscle relaxant activities of rats and levels of GABA and EAAT2 were detected. The developed TZN-PN exhibited relatively high EE% (75.78-85.45%), a VS ranging between (348-559 nm), and a ZP (-26.47 to -59.64). In vitro release profiles revealed sustained release of TZN from the optimized TZN-PN, compared to free drug up to 24 h. In vivo rotarod study revealed that the elevation in coordination was in the following order: normal control < free TZN < market product < TZN-PN (F6). Moreover, the optimized TZN-PN exhibited significant elevated coordination activity by 39% and 26% compared to control group and market product group, respectively. This was accompanied with an elevation in both GABA and EAAT2 serum levels. Thus, it could be concluded that encapsulation of TZN in the provesicular nanosystem proniosomes has enhanced the anti-nociceptive effect of the drug and consequently its therapeutic activity.
Collapse
|
3
|
Al-Awthan YS, Rauf A, Rashid U, Bawazeer S, Naz S, Bahattab O, Bawazeer S, Muhammad N, Waggas DS, Batiha GES, Shariati MA, Derkho M, Suleria HAR. Sedative-hypnotic effect and in silico study of dinaphthodiospyrols isolated from Diospyros lotus Linn. Biomed Pharmacother 2021; 140:111745. [PMID: 34020246 DOI: 10.1016/j.biopha.2021.111745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Traditionally, Diospyros lotus Linn is used for insomnia and other associated disorders. Insomnia is a worldwide disorder with different etiology which is treated with different synthetic medicine associated with addiction. Natural products are generally devoid of such addition with good efficacy. Current research was conducted to evaluate the sedative and hypnotic effects of dimeric naphthoquinones such as dinaphthodiospyrol A (1), dinaphthodiospyrol B (2), dinaphthodiospyrol C (3), dinaphthodiospyrol D (4), dinaphthodiospyrol E (5) and dinaphthodiospyrol F (6) isolated from the chloroform fractions of D. lotus. The sedative and hypnotic effects at the dose of 5 and 10 mg/kg (each compound) were assessed through open field and phenobarbital induced sleep test, respectively. In the case of open field test the administration of tested compounds significantly hindered the movement of animals, while in case of hypnotic effect the tested samples significantly improved the onset and duration of sleep as compared to control. The overall effects were in a dose dependent manner. The compounds were also assessed for acute toxicity, but no toxicity was observed. In this regard, our research triumphantly announced the strong chemical base for the folkloric values of the plant with their fringe benefits and implemented a platform for further aspects of mechanistic and clinical studies. A possible mechanism of in vivo inhibition was studied by using docking simulations on GABA receptors. Binding orientations and types of interactions revealed that a possible mechanism behind these pharmacological actions might be interaction with GABA receptors.
Collapse
Affiliation(s)
- Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Islamabad 22060, Pakistan
| | - Sami Bawazeer
- Pharmacognosy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saima Naz
- Department of Biotechnology, Woman University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dania Saad Waggas
- Department of Pharmacology, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, El-Beheira, Egypt
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Marina Derkho
- South-Ural State Agrarian University, Troitsk, Russian Federation
| | | |
Collapse
|
4
|
Yin H, Yan HH, Qin CQ, Li HR, Li X, Ren DF. Protective effect of fermented Diospyros lotus L. extracts against the high glucose-induced apoptosis of MIN6 cells. J Food Biochem 2021; 45:e13685. [PMID: 33682148 DOI: 10.1111/jfbc.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
Date plum persimmon (Diospyros lotus L.) is a fruit crop from the Ebenaceae family. Its microorganism-fermented extract (DPEML) was shown to exhibit a hypoglycemic effect in our previous work. Here, we investigated the effects of DPEML fermented by Microbacterium flavum YM18-098 and Lactobacillus plantarum B7 on the high glucose-induced apoptosis of MIN6 cells and explored its potential cell protective mechanisms. DPEML ameliorated the apoptosis of MIN6 cells cultured under high glucose conditions, thereby improving cell viability. DPEML upregulated the Bcl-2/Bax mRNA ratio to obstruct an intrinsic apoptotic pathway and concomitantly downregulated the expression of the apoptosis-linked proteins, AIF, and Cyt-C, in high glucose-induced MIN6 cells. Furthermore, DPEML promoted the insulin secretion of MIN6 cells grown under chronically high-glucose conditions by upregulating Ins mRNA expression. In summary, our study suggested that DPEML is a promising functional food for the development of therapeutics for the treatment of Type 2 diabetes mellitus. PRACTICAL APPLICATIONS: We investigated the effects of DPEML fermented by Microbacterium flavum YM18-098 and Lactobacillus plantarum B7 on the high glucose-induced apoptosis of MIN6 cells and explored its potential cell protective mechanisms. DPEML ameliorated the apoptosis of MIN6 cells cultured under high glucose conditions, thereby improving cell viability. DPEML upregulated the Bcl-2/Bax mRNA ratio to obstruct an intrinsic apoptotic pathway and concomitantly downregulated the expression of the apoptosis-linked proteins, AIF and Cyt-C, in high glucose-induced MIN6 cells. Furthermore, DPEML promoted the insulin secretion of MIN6 cells grown under chronically high-glucose conditions by upregulating Ins mRNA expression. We suggested that DPEML is a promising functional food for the development of therapeutics for the treatment of Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hao Yin
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Huan-Huan Yan
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Chen-Qiang Qin
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Hai-Rong Li
- Shexian Junqian Winery Co., LTD., Hebei, People's Republic of China
| | - Xue Li
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Aljohny B, Rauf A, Anwar Y, Naz S, Wadood A. Antibacterial, Antifungal, Antioxidant, and Docking Studies of Potential Dinaphthodiospyrols from Diospyros lotus Linn Roots. ACS OMEGA 2021; 6:5878-5885. [PMID: 33681626 PMCID: PMC7931376 DOI: 10.1021/acsomega.0c06297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The main aims of this investigation were the isolation of dimeric naphthoquinones, a new class of dinaphthodiospyrols (1-7), from chloroform fractions and screening them for antibacterial, antifungal, and antioxidant potential. The susceptibility of the isolated compounds, namely, dinaphthodiospyrol A (1), dinaphthodiospyrol B (2), dinaphthodiospyrol C (3), dinaphthodiospyrol D (4), dinaphthodiospyrol E (5), dinaphthodiospyrol F (6), and dinaphthodiospyrol G (7) was assessed for antibacterial potential using well diffusion methods. The isolated compounds showed excellent antibacterial activity against selected bacterial strains, including Gram-positive Bacillus subtilis, Streptococcus epidermis, and Bacillus subtilis, and Gram-negative bacteria Klebsiella pneumonia with the zones of inhibition 6 to 26 nm. The standard drug Imipenem showed a maximum inhibitory zone 30 to 35 nm. Similarly, the isolated compounds were screened for antifungal properties, which showed an excellent reduction in the growth of selected fungal strain including Candida albicans, Aspergillus flavus, Fusarium solani, Trichyton logifusus, Microsporum canis , and Candida glabrata. Among all the screened compounds, 7 exhibited good activity (30-49 mm), followed by compounds 5 and 6, (35-46 mm), while compounds 1-4 showed a moderate effect (8-28 mm) against the selected fungal strain against miconazole which showed potent effects (101-110.98 mm). The isolated compounds were also screened for 1, 1-diphenyl-2-picrylhydrazyl (DPPH) activity. In vitro-based free radical was employed using ascorbic acid as a standard antioxidant. The tested compounds (1-7) exhibited significant antioxidant activity in a concentration-dependent manner. The dinaphthodiospyrol 7 exhibited 97.32% scavenging activity, followed by dinaphthodiospyrol 6, 92.01%, and compounds 5 and 4 with 89.90 and 88.43% scavenging activity at 100 μg/mL, respectively; ascorbic acid showed 96.45% scavenging effect. Furthermore, docking analysis was performed to know the exact binding mode of the tetra-substituted derivatives of dinaphthodiospyrols to the selected target proteins. From the docking analysis, it was found that the docking results are well correlated with the experimental observations. In conclusion, the dinaphthodiospyrols exhibited excellent antibacterial, antifungal, and free radical scavenging potential.
Collapse
Affiliation(s)
- Bassam
Oudh Aljohny
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441 Kingdom
of Saudi Arabia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Swabi, Ambar 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Yasir Anwar
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441 Kingdom
of Saudi Arabia
| | - Saima Naz
- Department
of Biotechnology, Woman University Mardan, Mardan 23200, Khyber Pakhtunkhwa (KP), Pakistan
| | - Abdul Wadood
- Department
of Biochemistry, Abdul Wali Khan, University
Mardan, Mardan, KPK 23200 Pakistan
| |
Collapse
|
6
|
Rauf A, Abu-Izneid T, Alhumaydhi FA, Muhammad N, Aljohani ASM, Naz S, Bawazeer S, Wadood A, Mubarak MS. In vivo analgesic, anti-inflammatory, and sedative activity and a molecular docking study of dinaphthodiospyrol G isolated from Diospyros lotus. BMC Complement Med Ther 2020; 20:237. [PMID: 32711536 PMCID: PMC7382863 DOI: 10.1186/s12906-020-03030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Analgesic, anti-inflammatory, and sedative drugs are available with potential side effects such as peptic ulcer and addiction among other things. In this regard, research is underway to find safe, effective, and economical drugs free of these side effects. In this study, an isolated natural product from Diospyros lotus, was tested for the aforementioned bioactivities. OBJECTIVES To evaluate analgesic, anti-inflammatory, and sedative potential of D. lotus extracts in animal paradigms using BALB/c mice as experimental model. METHODS Analgesic, anti-inflammatory and sedative activities of dinaphthodiospyrol G (1) isolated from the chloroform fraction of D. lotus were evaluated using different experimental procedures. Anti-inflammatory effect was evaluated using the carrageenan and histamine-induced paw edema, whereas the antinociceptive effect was quantified by means of the hot plate analgesiometer. On the other hand, the sedative effect was determined using animal assay for screening the locomotors effects of compound 1. Compound 1 was also subjected to molecular modeling studies against cyclooxygenase enzymes. RESULTS Results from this investigation showed that the extract is devoid of anti-inflammatory and antinociceptive potentials but has a significant sedative effect, whereas the tested compound exhibited 55.23 and 78.34% attenuation in paw edema by carrageenan and histamine assays, respectively. A significant (p < 0.001) and dose-dependent antinociceptive and sedative effects were demonstrated by the isolated compound. Molecular docking and dynamics simulation studies of the isolated compound against cyclooxygenase enzyme indicated that compound 1 forms specific interactions with key residues in the active site of the target receptor, which validates the potential use of the isolated compound as cyclooxygenase inhibitor. CONCLUSIONS Compound 1 exhibited remarkable analgesic, anti-inflammatory, and sedative activities. These findings strongly justify the traditional use of D. lotus in the treatment of inflammation, pain, and insomnia.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi Anbar KPK, Swabi, Pakistan.
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, UAE
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, KPK, Mardan, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Saima Naz
- Department of Woman University, Mardan, Mardan KPK, Mardan, Pakistan
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Chemistry, Abdul Wali Khan University Mardan KPK, Mardan, Pakistan
| | | |
Collapse
|
7
|
Anti-inflammatory, Antibacterial, Toxicological Profile, and In Silico Studies of Dimeric Naphthoquinones from Diospyros lotus. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/7942549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diospyros lotus, also known as date-plum, belongs to the Ebenaceae family and is mostly recognized as a rootstock for D. kaki. Similar classes of naphthoquinones in D. lotus are investigated against cancer and inflammation and have antimicrobial, sedative, and analgesic properties. Six chemical constituents (1-6) were isolated from Diospyros lotus and tested for anti-inflammatory effects at the dose of 2.5 and 5 mg/kg, i.p., using carrageenan (1%, 0.05 ml)-induced paw edema. The maximum protection against carrageenan-induced edema was observed for compounds 1 and 2. Both studied compounds demonstrated significant anti-inflammatory effect after the 3rd hour of posttreatment. The maximum anti-inflammatory effect of compound 1 was 85.96%, while that of compound 2 was 81.44%, followed by compounds 5 and 6, which exhibited 80.11% and 82.45% effect, respectively. Similarly, histamine-induced inflammation was significantly antagonized by 1, 2, 5, and 6 with 87.99%, 82.18±1.8, 80.40±1.59, and 77.44% effects, respectively, at 5 mg/kg after the 2nd hour of posttreatment. The rest of the tested compounds did not show any significant effect as compared to the negative control. Interestingly, no toxicity was observed at higher doses. Moreover, the extracted compounds showed remarkable antibacterial activity against the Gram-positive bacteria and no effect against the Gram-negative bacteria. Docking studies on target cyclooxygenases showed that all the compounds established interactions with the key amino acid residues present in the additional pocket of COX-2. Hence, these compounds may act as selective COX-2 inhibitors. In conclusion, the findings of the current study suggest that the roots of Diospyros lotus may contain some anti-inflammatory and antibacterial agents with minimal toxicological effects and accordingly this plant product is recommended for further investigations.
Collapse
|
8
|
Farooq U, Khan A, Naz S, Rauf A, Khan H, Khan A, Ullah I, Bukhari SM. Sedative and antinociceptive activities of two new sesquiterpenes isolated from Ricinus communis. Chin J Nat Med 2018; 16:225-230. [DOI: 10.1016/s1875-5364(18)30051-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 11/30/2022]
|
9
|
Rauf A, Uddin G, Patel S, Khan A, Halim SA, Bawazeer S, Ahmad K, Muhammad N, Mubarak MS. Diospyros, an under-utilized, multi-purpose plant genus: A review. Biomed Pharmacother 2017; 91:714-730. [PMID: 28499243 DOI: 10.1016/j.biopha.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
The genus Diospyros from family Ebenaceae has versatile uses including edible fruits, valuable timber, and ornamental uses. The plant parts of numerous species have been in use as remedies in various folk healing practices, which include therapy for hemorrhage, incontinence, insomnia, hiccough, diarrhea etc. Phytochemical constituents such as terpenoids, ursanes, lupanes, polyphenols, tannins, hydrocarbons, and lipids, benzopyrones, naphthoquinones, oleananes, and taraxeranes have been isolated from different species of this genus. The biological activities of these plants such as antioxidant, anti-inflammatory, analgesic, antipyretic, anti-diabetic, antibacterial, anthelmintic, antihypertensive, cosmeceutical, enzyme-inhibitory etc. have been validated by means of an in vitro, in vivo, and clinical tests. As a rich reserve of pharmacologically important components, this genus can accelerate the pace of drug discovery. Accordingly, the aim of the present review is to survey and summarize the recent literature pertaining to the medicinal and pharmacological uses of Diospyros, and to select experimental evidence on the pharmacological properties of this genus. In addition, the review also aims at identifying areas that need development to make use of this genus, especially its fruit and phytochemicals as means for economic development and for drug discovery.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Ghias Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| | - Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Sobia Ahsan Halim
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan; Department of Biochemistry Kinnaird College for Women, 93-Jail Road, Lahore, Pakistan
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| | - Khalid Ahmad
- Department of Environmental, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | |
Collapse
|
10
|
Rauf A, Hadda TB, Uddin G, Cerón-Carrasco JP, Peña-García J, Pérez-Sánchez H, Khan H, Bawazeer S, Patel S, Mubarak MS, Abu-Izneid T, Mabkhot YN. Sedative-hypnotic-like effect and molecular docking of di-naphthodiospyrol from Diospyros lotus in an animal model. Biomed Pharmacother 2017; 88:109-113. [DOI: 10.1016/j.biopha.2017.01.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/25/2022] Open
|