1
|
Batiha GES, Lukman HY, Shaheen HM, Wasef L, Hafiz AA, Conte-Junior CA, Al-Farga A, Chamba MVM, Lawal B. A Systematic Review of Phytochemistry, Nutritional Composition, and Pharmacologic Application of Species of the Genus Viola in Noncommunicable Diseases (NCDs). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5406039. [PMID: 37941895 PMCID: PMC10630019 DOI: 10.1155/2023/5406039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/03/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Viola L. is the largest genus of the Violaceae family with more than 500 species across the globe. The present extensive literature survey revealed Viola species to be a group of important nutritional and medicinal plants used for the ethnomedicinal treatment of noncommunicable diseases (NCDs) such as diabetes, asthma, lung diseases, and fatigue. Many plant species of this genus have also received scientific validation of their pharmacological activities including neuroprotective, immunomodulatory, anticancer, antihypertensive, antidyslipidemic, analgesic, antipyretic, diuretic, anti-inflammatory, anthelmintic, and antioxidant. Viola is highly rich in different natural products some of which have been isolated and identified in the past few decades; these include flavonoids terpenoids and phenylpropanoids of different pharmacological activities. The pharmacokinetics and clinical studies on this genus are lacking, and the present review is aimed at summarizing the current understanding of the ethnopharmacology, phytochemistry, nutritional composition, and pharmacological profile of medicinal plants from the Viola genus to reveal its therapeutic potentials, gaps, and subsequently open a new window for future pharmacological research.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Halimat Yusuf Lukman
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Nigeria
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Lamiaa Wasef
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Amin A. Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro RJ 21941-909, Brazil
| | - Ammar Al-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Moses V. M. Chamba
- Department of Physics and Biochemical Sciences, Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri, Blantyre 3, Malawi
| | - Bashir Lawal
- Faculty of Medical Science, New Gate University, Minna, Nigeria
| |
Collapse
|
2
|
Abdulrasheed-Adeleke T, Lawal B, Agwupuye EI, Kuo Y, Eni AM, Ekoh OF, Lukman HY, Onikanni AS, Olawale F, Saidu S, Ibrahim YO, Al Ghamdi MAS, Aggad SS, Alsayegh AA, Aljarba NH, Batiha GES, Wu AT, Huang HS. Apigetrin-enriched Pulmeria alba extract prevents assault of STZ on pancreatic β-cells and neuronal oxidative stress with concomitant attenuation of tissue damage and suppression of inflammation in the brain of diabetic rats. Biomed Pharmacother 2023; 162:114582. [PMID: 36989727 DOI: 10.1016/j.biopha.2023.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
In the present study, in vitro, in vivo, and in silico models were used to evaluate the therapeutic potential of Pulmeria alba methanolic (PAm) extract, and we identified the major phytocompound, apigetrin. Our in vitro studies revealed dose-dependent increased glucose uptake and inhibition of α-amylase (50% inhibitory concentration (IC50)= 217.19 µg/mL), antioxidant (DPPH, ferric-reducing activity of plasma (FRAP), and lipid peroxidation (LPO) [IC50 = 103.23, 58.72, and 114.16 µg/mL respectively]), and anti-inflammatory potential (stabilizes human red blood cell (HRBC) membranes, and inhibits proteinase and protein denaturation [IC50 = 143.73, 131.63, and 198.57 µg/mL]) by the PAm extract. In an in vivo model, PAm treatment reversed hyperglycemia and attenuated insulin deficiency in rats with streptozotocin (STZ)-induced diabetes. A post-treatment tissue analysis revealed that PAm attenuated neuronal oxidative stress, neuronal inflammation, and neuro-cognitive deficiencies. This was evidenced by increased levels of antioxidants enzymes (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), and decreased malondialdehyde (MDA), proinflammatory markers (cyclooxygenase 2 (COX2), nuclear factor (NF)-κB and nitric oxide (NOx)), and acetylcholinesterase (AChE) activities in the brain of PAm-treated rats compared to the STZ-induced diabetic controls. However, no treatment-related changes were observed in levels of neurotransmitters, including serotonin and dopamine. Furthermore, STZ-induced dyslipidemia and alterations in serum biochemical markers of hepatorenal dysfunction were also reversed by PAm treatment. Extract characterization identified apigetrin (retention time: 21,227 s, 30.48%, m/z: 433.15) as the major bioactive compound in the PAm extract. Consequently, we provide in silico insights into the potential of apigetrin to target AChE/COX-2/NOX/NF-κB Altogether the present study provides preclinical evidence of the therapeutic potential of the apigetrin-enriched PAm extract for treating oxidative stress and neuro-inflammation associated with diabetes.
Collapse
|
3
|
Attenuation of hyperglycemia-associated dyslipidemic, oxidative, cognitive, and inflammatory crises via modulation of neuronal ChEs/NF-κB/COX-2/NOx, and hepatorenal functional deficits by the Tridax procumbens extract. Biomed Pharmacother 2023; 158:114114. [PMID: 36525818 DOI: 10.1016/j.biopha.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Tridax procumbens (cotton buttons) is a flowering plant with a medicinal reputation for treating infections, wounds, diabetes, and liver and kidney diseases. The present research was conducted to evaluate the possible protective effects of the T. procumbens methanolic extract (TPME) on an experimentally induced type 2 diabetes rat model. Wistar rats with streptozotocin (STZ)-induced diabetes were randomly allocated into five groups of five animals each, viz., a normal glycemic group (I), diabetic rats receiving distilled water group (II), diabetic rats with 150 (III) and 300 mg/kg of TPME (IV) groups, and diabetic rats with 100 mg/kg metformin group (V). All treatments were administered for 21 consecutive days through oral gavage. Results: Administration of the T. procumbens extract to diabetic rats significantly restored alterations in levels of fasting blood glucose (FBG), body weight loss, serum and pancreatic insulin levels, and pancreatic histology. Furthermore, T. procumbens significantly attenuated the dyslipidemia (increased cholesterol, low-density lipoprotein-cholesterol (LDL-C), triglycerides, and high-density lipoprotein (HDL) in diabetic rats), serum biochemical alterations (alanine transaminase (ALT), aspartate transaminase (AST), alanine phosphatase (ALP), blood urea nitrogen (BUN), creatinine, uric acid, and urea) and full blood count distortion in rats with STZ-induced diabetes. The TPME also improved the antioxidant status as evidenced by increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and decreased malondialdehyde (MDA); and decreased levels of cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), and proinflammatory mediators including nuclear factor (NF)-κB, cyclooxygenase (COX)- 2, and nitrogen oxide (NOx) in the brain of rats with STZ-induced diabetes compared to rats with STZ-induced diabetes that received distilled water. However, TPME treatment failed to attenuate the elevated monoamine oxidases and decreased dopamine levels in the brain of rats with STZ-induced diabetes. Extract characterization by liquid chromatography mass spectrometry (LC-MS) identified isorhamnetin (retention time (RT)= 3.69 min, 8.8%), bixin (RT: 25.06 min, 4.72%), and lupeol (RT: 25.25 min, 2.88%) as the three most abundant bioactive compounds that could be responsible for the bioactivity of the plant. In conclusion, the TPME can be considered a promising alternative therapeutic option for managing diabetic complications owing to its antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory effects in rats with STZ-prompted diabetes.
Collapse
|
4
|
Biochemical and tissue physiopathological evaluation of the preclinical efficacy of Solanum torvum Swartz leaves for treating oxidative impairment in rats administered a β-cell-toxicant (STZ). Biomed Pharmacother 2022; 154:113605. [PMID: 36030588 DOI: 10.1016/j.biopha.2022.113605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/06/2022] Open
Abstract
The current study evaluated the protective role of Solanum torvum Swartz against diabetes-induced oxidative stress and tissue impairment in streptozotocin (STZ)-intoxicated rats. Rats with STZ (40 mg/kg intraperitoneally (i.p.))-induced diabetes were divided into five groups (n = 5) and treated with (i) normal saline, (ii) 150 mg/kg body weight (BW) of the ethanol extract of S. torvum leaf (EESTL), (ii) 300 mg/kg BW EESTL, (iv) 100 mg/kg BW metformin, and (v) 50 m/kg BW metformin + 100 mg/kg BW EESTL orally for 21 days. Our results revealed that the EESTL displayed dose-dependent ferric-reducing antioxidant power (FRAP) activity, scavenged DPPH radicals (IC50) = 13.52 ± 0.45 µg/mL), and inhibited lipid peroxidation in an in vitro models. In addition, the EESTL demonstrated dose-dependent inhibitory activity against α-amylase (IC50 =138.46 ± 3.97 µg/mL) and promoted glucose uptake across plasma membranes of yeast cells in a manner comparable to that of metformin. Interestingly, the extract demonstrated in vivo blood glucose normalization effects with concomitant increased activities of antioxidant parameters (superoxide dismutase (SOD), catalase, and reduced glutathione (GSH)) while decreasing malondialdehyde (MDA) levels when compared to untreated rats. Similarly, serum biochemical alterations, and tissues (liver, kidney, and pancreases) histopathological aberrations in untreated rats with STZ-induced diabetes were attenuated by treatment with the EESTL. Biometabolite characterization of the extract identified gallic acid (45.81 ppm), catechin (1.18 ppm), p-coumaric acid (1.43e-1 ppm), DL-proline 5-oxo-methyl ester (9.16 %, retention time (RT): 8.57 min), salicylic acid (3.26% and 7.61 min), and butylated hydroxytoluene (4.75%, RT: 10.18 min) as the major polyphenolic compounds in the plant extract. In conclusion, our study provides preclinical evidence of the antioxidant properties and oxidative stress-preventing role of S. torvum in STZ-dosed diabetic rats. Taken together, the EESTL represents a reserve of bioactive metabolites for managing diabetes and associated complications.
Collapse
|
5
|
Alorabi M, Mohammed DS, Mostafa-Hedeab G, El-Sherbeni SA, Negm WA, Mohammed AIA, Al-kuraishy HM, Nasreldin N, Alotaibi SS, Lawal B, Batiha GES, Conte-Junior CA. Combination Treatment of Omega-3 Fatty Acids and Vitamin C Exhibited Promising Therapeutic Effect against Oxidative Impairment of the Liver in Methotrexate-Intoxicated Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4122166. [PMID: 35496049 PMCID: PMC9045995 DOI: 10.1155/2022/4122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is the main cause of liver damage mediated by the excretion of toxic active drug metabolites. Omega-3 fatty acids and vitamin C have potent antioxidant, anti-inflammatory, and antiapoptotic effects that could offer protection against oxidative stress and liver damage. This study evaluated the hepatoprotective effect of omega-3 and vitamin C alone as well as in a combined form in methotrexate- (MTX-) induced acute liver injury in mice. Male ICR mice of seven groups (7 mice per group) were used. Groups 1 (control group) and 2 (MTX) received 0.9% saline/day (po) for 9 days. Groups 3 and 4 received 100 and 200 mg/kg bw/day omega-3 (po), respectively, for 9 days. Groups 5 and 6 received 100 and 200 mg/kg bw/day vitamin C (po), respectively, for 9 days, while group 7 received omega-3 (100 mg/kg bw/day) and vitamin C (100 mg/kg bw/day) (po) for 9 days. All animals in groups 2 to 7 received 20 mg/kg/day MTX (I.P.) once on the 10th day. Our results revealed that MTX significantly induced the elevation of transaminases, alkaline phosphates (ALP), lactate dehydrogenase (LDH), and malonaldehyde (MDA) while depleting the levels of superoxide dismutase (SOD) and glutathione (GSH) when compared to the control group. Treatment with omega-3 fatty acids or vitamin C significantly attenuated the antioxidants and biochemical alterations in a dose-independent manner. Our molecular docking study of ligand-receptor interaction revealed that both ascorbic acid and omega-3 docked well to the binding cavity of LDH with high binding affinities of -5.20 and -4.50 kcal/mol, respectively. The histopathological features were also improved by treatment with omega-3 and vitamin C. The combined form of omega-3 and vitamin C showed a remarkable improvement in the liver enzymes, oxidative stress biomarkers, and the histopathological architecture of the mice. Conclusively, the combination of omega-3 and vitamin C demonstrated a synergistic therapeutic effect against MTX-intoxicated mice, hence representing a potential novel strategy for the management of drug-induced liver disorders.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Doha Saad Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department–Faculty of Medicine, Beni-Suef University, Egypt
| | - Suzy A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Ali Ismail A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, P.O. Box 72511, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
6
|
Yeh YC, Lawal B, Hsiao M, Huang TH, Huang CYF. Identification of NSP3 ( SH2D3C) as a Prognostic Biomarker of Tumor Progression and Immune Evasion for Lung Cancer and Evaluation of Organosulfur Compounds from Allium sativum L. as Therapeutic Candidates. Biomedicines 2021; 9:1582. [PMID: 34829812 PMCID: PMC8615911 DOI: 10.3390/biomedicines9111582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The novel SH2-containing protein 3 (NSP3) is an oncogenic molecule that has been concomitantly associated with T cell trafficking. However, its oncological role in lung cancer and whether it plays a role in modulating the tumor immune microenvironment is not properly understood. In the present in silico study, we demonstrated that NSP3 (SH2D3C) is associated with advanced stage and poor prognoses of lung cancer cohorts. Genetic alterations of NSP3 (SH2D3C) co-occurred inversely with Epidermal Growth Factor Receptor (EGFR) alterations and elicited its pathological role via modulation of various components of the immune and inflammatory pathways in lung cancer. Our correlation analysis suggested that NSP3 (SH2D3C) promotes tumor immune evasion via dysfunctional T-cell phenotypes and T-cell exclusion mechanisms in lung cancer patients. NSP3 (SH2D3C) demonstrated a high predictive value and association with therapy resistance in lung cancer, hence serving as an attractive target for therapy exploration. We evaluated the in silico drug-likeness and NSP3 (SH2D3C) target efficacy of six organosulfur small molecules from Allium sativum using a molecular docking study. We found that the six organosulfur compounds demonstrated selective cytotoxic potential against cancer cell lines and good predictions for ADMET properties, drug-likeness, and safety profile. E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin, allicin, and S-allyl-cysteine docked well into the NSP3 (SH2D3C)-binding cavity with binding affinities ranging from −3.5~−6.70 Ă and random forest (RF) scores ranging from 4.31~5.26 pKd. In conclusion, our study revealed that NSP3 is an important onco-immunological biomarker encompassing the tumor microenvironment, disease staging and prognosis in lung cancer and could serve as an attractive target for cancer therapy. The organosulfur compounds from A. sativum have molecular properties to efficiently interact with the binding site of NSP3 and are currently under vigorous preclinical study in our laboratory.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan;
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department & Graduate Institute of Chemical Engineering & Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chi-Ying F. Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
7
|
Computational and Preclinical Evidence of Anti-ischemic Properties of L-Carnitine-Rich Supplement via Stimulation of Anti-inflammatory and Antioxidant Events in Testicular Torsed Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5543340. [PMID: 34326917 PMCID: PMC8277515 DOI: 10.1155/2021/5543340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022]
Abstract
Ischemia-reperfusion injury is a urological emergency condition that could lead to necrosis, testicular damage subfertility, and infertility. The purpose of this study was to identify changes taking place in the rat testis at short-term (4 hr) as well as long-term (7 days) reperfusion following testicular torsion and to evaluate the effects of Proxeed Plus (PP), L-carnitine-rich antioxidant supplement, on preventing these changes using the biochemical parameters and histopathology. Thirty adult male rats were divided into five groups: in groups, 1-4 testicular ischemia was achieved by rotating the left testis 720° clockwise for 4 h and dividing into the sham, torsion/detorsion (T/D), T/D+1000 mg/kg BW PP, and T/D+5000 mg/kg BW PP groups, respectively. PP was administered intraperitoneally 30 min before detorsion while group 5 served as the normal control. All rats were sacrificed 4 h after detorsion. The same experimental design was set up, and animals were sacrificed after 7 days of detorsion. The testicular levels of human cyclooxygenase-2; tumor necrosis factor; interleukins-1β, 6, and 10; hydrogen peroxide; malonaldehyde; superoxide dismutase; catalase; glutathione transferase; glutathione peroxidase; glutathione reductase; and histopathological damage were evaluated. Our results revealed that rats in the torsion/detorsion group exhibited elevated testicular levels of oxidative markers and proinflammatory cytokines, low levels of antioxidant enzymes, and severe histological alterations relative to the control and sham groups. Treatments with 1000 and 5000 mg/kg BW of PP for 4 hr and 7 days significantly (p < 0.05) decreased the levels of the proinflammatory and oxidative markers while increasing the spermatogenesis, testicular levels of antioxidant enzymes, and anti-inflammatory cytokine (IL-10) in a dose-dependent manner. This suggested that PP exhibited anti-inflammatory and antioxidant activities against I/R testes thus serving as an effective supplement to protect against testicular assault.
Collapse
|
8
|
Raji RO, Muhammad HL, Abubakar A, Maikai SS, Raji HF. Acute and sub-acute toxicity profile of crude extract and fractions of Gymnema sylvestre. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Gymnema sylvestre is a reputable medicinal plant commonly explore for the management of diabetes and other ailments in traditional medicine. In the present study, we investigated the phytochemical compositions and effect of crude extract, hexane, and ethyl-acetate fractions of Gymnema sylvestre on biochemical and hematological parameters of Wistar rats.
Methods
Albino rats were distributed randomly into a control group and nine treatment groups orally administered crude extract and fractions of Gymnema sylvestre (100, 300, and 600 mg/kg BW) for 21 days. Liver and kidney function indices, as well as hematological parameters, were monitored.
Results
Our results revealed that the crude methanol extract contains flavonoids (8.56 ± 0.50 mg/g), alkaloids (13.84 ± 0.67 mg/g), total phenol (1.98 ± 0.50 mg/g), saponins (23.85 ± 0.35 mg/g) and tannins (16.00 ± 0.34 mg/g). The crude methanol, ethyl acetate and n-hexane fractions of Gymnema sylvestre had LD50 greater than 5000 mg/kg BW in acute oral toxicity test. The extract and fractions at 300 and 600 mg/kg BW cause loss of body weight of the rats, significantly altered (p < 0.05) the levels of biochemical indices including the aspartate transaminases, alanine transaminase, alkaline phosphates, bilirubin, proteins, urea, creatinine, and white blood cells (WBC) counts when compared with the non-treated control. However, the extract and fractions at 100 mg/kg BW did not cause any significant (p > 0.05) alterations to the levels of biochemical and hematological parameters when compared with the non-treated control.
Conclusion
Gymnema sylvestre at sub-acute doses of 300 and 600 mg/kg BW could compromise the functional integrity of the rats’ liver and kidney. The study, therefore, suggested the use of Gymnema sylvestre for oral remedy at a dose of 100 mg/kg or below.
Collapse
|
9
|
Lawal B, Liu YL, Mokgautsi N, Khedkar H, Sumitra MR, Wu ATH, Huang HS. Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines. Biomedicines 2021; 9:biomedicines9010092. [PMID: 33477856 PMCID: PMC7832910 DOI: 10.3390/biomedicines9010092] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional regulator of a number of biological processes including cell differentiation, proliferation, survival, and angiogenesis, while cyclin-dependent kinases (CDKs) are a critical regulator of cell cycle progression. These proteins appear to play central roles in angiogenesis and cell survival and are widely implicated in tumor progression. In this study, we used the well-characterized US National Cancer Institute 60 (NCI60) human tumor cell lines to screen the in vitro anti-cancer activities of our novel small molecule derivatives (NSC765690 and NSC765599) of salicylanilide. Furthermore, we used the DTP-COMPARE algorithm and in silico drug target prediction to identify the potential molecular targets, and finally, we used molecular docking to assess the interaction between the compounds and prominent potential targets. We found that NSC765690 and NSC765599 exhibited an anti-proliferative effect against the 60 panels of NCI human cancer cell lines, and dose-dependent cytotoxic preference for NSCLC, melanoma, renal, and breast cancer cell lines. Protein–ligand interactions studies revealed that NSC765690 and NSC765599 were favored ligands for STAT3/CDK2/4/6. Moreover, cyclization of the salicylanilide core scaffold of NSC765690 mediated its higher anti-cancer activities and had greater potential to interact with STAT3/CDK2/4/6 than did NSC765599 with an open-ring structure. NSC765690 and NSC765599 met the required safety and criteria of a good drug candidate, and are thus worthy of further in-vitro and in-vivo investigations in tumor-bearing mice to assess their full therapeutic efficacy.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Harshita Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T. H. Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (B.L.); (N.M.); (H.K.); (M.R.S.)
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| |
Collapse
|
10
|
Sangodele JO, Inuwa Z, Lawal B, Adebayo-Gege G, Okoli BJ, Mtunzi F. Proxeed plus salvage rat testis from ischemia- reperfused injury by enhancing antioxidant's activities and inhibition of iNOS expression. Biomed Pharmacother 2020; 133:111086. [PMID: 33378987 DOI: 10.1016/j.biopha.2020.111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Testicular torsion is an acute urological emergency condition that occurs due to obstruction of blood flow to the testicles which may result in ischemia and loss of testicular functions. This study examined the protective effects of Proxeed Plus (PP), a dietary supplement on testicular ischemia/reperfusion (I/R) injured rats using oxidative stress markers, hormonal levels, apoptotic parameters, histological and immunohistochemistry analysis at 4 h and after 7 days of reperfusion. The protective treatment of the I/R injured rats with PP at 1000 and 5000 mg/kg body weight (bw) resulted in significant increases in the serum and tissue antioxidative defense capacities (superoxide dismutase, reduced glutathione, catalase, glutathione-s-transferase, and glutathione peroxidase), sex hormones (luteinizing hormone, follicle-stimulating hormone, and testosterone), also reduce pro-oxidative markers (malondialdehyde and hydrogen peroxide), serum iNOS and apoptotic parameters (Caspase -3 and Caspase -9) in comparison to the results detected in the I/R untreated rats. It was also observed that PP ameliorated histological changes of I/R injured rats; increased spermatogenetic activity, seminiferous tubular diameter, Leydig cell mass, and reduced expressions of testicular inducible nitric oxide synthase (iNOS). Therefore, the therapeutic use of Proxeed Plus could be considered a promising approach in averting testicular damage against I/R injury.
Collapse
Affiliation(s)
- Janet Olayemi Sangodele
- Department of Biochemistry, Bingham University, Abuja-Keffi Expressway Road, P.M.B 005, Karu, Nigeria.
| | - Zephaniah Inuwa
- Department of Biochemistry, Bingham University, Abuja-Keffi Expressway Road, P.M.B 005, Karu, Nigeria.
| | - Bashir Lawal
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan.
| | - Grace Adebayo-Gege
- Department of Human Physiology, Faculty of Basic Medical Sciences, Baze University, Abuja, Nigeria.
| | - Bamidele Joseph Okoli
- Institute of Chemical and Biotechnology, Vaal University of Technology, Science Park, Private Bag x021, South Africa; Department of Chemical Sciences, Faculty of Science and Technology, Bingham University Karu, Nigeria.
| | - Fanyana Mtunzi
- Institute of Chemical and Biotechnology, Vaal University of Technology, Science Park, Private Bag x021, South Africa.
| |
Collapse
|
11
|
Characterization of anti-plasmodial, analgesic and anti-inflammatory fraction of Maytenus senegalensis (lam.) Exell leaf extract in mice. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00201-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The treatment inadequacy and toxicity associated with conventional anti-malarial, anti-inflammatory and analgesic drugs has called for the search of alternatives from medicinal plants, particularly, their phytochemicals with inherent pharmacological properties. In the present study, purified fraction of M. senegalensis leaf was evaluated for antimalarial, anti-inflammatory and analgesic properties.
Method
Antimalarial study was conducted against Plasmodium chabaudi and Plasmodium berghei using 4 days suppressive test, while anti-inflammatory and analgesic studies were conducted using egg albumin induced paw oedema and acetic acid induced pain model respectively. Sub-acute toxicity was assessed using serum biochemical parameters following 3 weeks administrations of the purified fraction.
Results
The purified fraction of M. senegalensis leaf shows dose dependent antiplasmodial activity with percentage curative effects of 15.24 ± 0.89, 45.70 ± 3.43 and 48.50 ± 4.56 at 75, 150 and 300 mg/kg bw against Plasmodium chabaudi and % curative effects of 44.25 ± 3.21, 72.74 ± 6.54 and 76.30 ± 8.32 respectively against Plasmodium berghei. The purified fraction exhibited 53.16 ± 4.09 and 60.76 ± 7.54 anti-inflammatory effect, 43.35 ± 4.98% and 44.83 ± 3.86% analgesic effect at 75 and 150 mg/kg bw respectively. GC-MS analysis confirmed the presence of 20α)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-tetraen-carboxylic acid-(29)-methylester, 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro- and 3-hydroxy-20(29)-lupen-28-ol and a terpenes (phytol) as the major antimalarial compounds in the fraction. The purified fraction increases the serum total proteins and transaminases concentrations but had no effect on serum levels of sodium, potassium, chloride, alkaline phosphatase, triglyceride and glucose in the mice.
Conclusion
The purified fraction of M. senegalensis leaf exhibited promising antimalarial, analgesic and anti-inflammatory activities. Thus, could serve as a template for the synthesis of new drug.
Collapse
|
12
|
Adesina DA, Adefolalu SF, Jigam AA, Lawal B. Antiplasmodial effect and sub-acute toxicity of alkaloid, flavonoid and phenolic extracts of Sida acuta leaf on Plasmodium berghei-infected animals. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1790912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Ali Audu Jigam
- Department of Biochemistry, Federal University of Technology Minna, Minna, Nigeria
| | - Bashir Lawal
- Department of Biochemistry, Federal University of Technology Minna, Minna, Nigeria
- PhD Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Ibrahim J, Kabiru AY, Abdulrasheed-Adeleke T, Lawal B, Adewuyi AH. Antioxidant and hepatoprotective potentials of curcuminoid isolates from turmeric (Curcuma longa) rhizome on CCl4-induced hepatic damage in Wistar rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1790928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jonathan Ibrahim
- Gombe State College of Health Science and Technology, Kaltungo, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Minna, Nigeria
| | - Adamu Yusuf Kabiru
- Department of Biochemistry, Federal University of Technology Minna, Minna, Nigeria
| | | | - Bashir Lawal
- Department of Biochemistry, Federal University of Technology Minna, Minna, Nigeria
- PhD Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
14
|
Omonije OO, Saidu AN, Muhammad HL. Anti-diabetic activities of Chromolaena odorata methanol root extract and its attenuation effect on diabetic induced hepatorenal impairments in rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Yusuf AA, Lawal B, Abubakar AN, Berinyuy EB, Omonije YO, Umar SI, Shebe MN, Alhaji YM. In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0070-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Lawal B, Shittu OK, Oibiokpa FI, Berinyuy EB, Mohammed H. African natural products with potential antioxidants and hepatoprotectives properties: a review. CLINICAL PHYTOSCIENCE 2016. [DOI: 10.1186/s40816-016-0037-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Antimicrobial evaluation, acute and sub-acute toxicity studies of Allium sativum. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Lawal B, Shittu OK, Rotimi AA, Olalekan IA, Kamooru AA, Ossai PC. Effect of Methanol Extract of Telfairia occcidentalis on Haematological Parameters in Wister Rats. JOURNAL OF MEDICAL SCIENCES 2015. [DOI: 10.3923/jms.2015.246.250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|