1
|
Hou CW, Zhao BY, Liu SL, Chen YS. Anti-Inflammatory Effect of Medicinal Fungus Antrodia cinnamomea Cultivated on Pinus morrisonicola Hayata. Food Technol Biotechnol 2024; 62:292-301. [PMID: 39497698 PMCID: PMC11531683 DOI: 10.17113/ftb.62.03.24.8257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/29/2024] [Indexed: 11/07/2024] Open
Abstract
Research background The fungus Antrodia cinnamomea, which grows on Cinnamomum kanehirae tree, has many medicinal uses. However, its cultivation using the traditional method of growing on the C. kanehirae tree is costly and time-consuming. A possible alternative method of cultivating A. cinnamomea is to use Pinus morrisonicola Hayata tree, as it contains α-terpineol, which stimulates the synthesis of triterpenoids. Experimental approach To compare the cultivation of A. cinnamomea on P. morrisonicola and C. kanehirae, the contents of triterpenoids and antcin were determined using high-performance liquid chromatography. Anti-inflammatory effects of the extracts of each product were investigated in lipopolysaccharide (LPS)-stimulated BV-2 cells. Their mechanisms on mitogen-activated protein kinase (MAPK) signalling pathways (p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK)) were determined using Western blot analysis. Results and conclusions The results showed that the cultivation times of A. cinnamomea on P. morrisonicola and traditional C. kanehirae discs were drastically different, lasting 6 and 18 months, respectively. The concentration of triterpenoids in the corresponding fruiting bodies was (70.0±3.0) and (20.0±4.0) mg/mL, respectively. More antcins were produced in the P. morrisonicola culture. Similar anti-inflammatory effect was obtained by both cultures, which is confirmed by the reduced production of IL-1β, IL-6, COX-2 and nitrogen monoxide. Their mechanisms were confirmed by the suppression of MAPK signalling pathways. Novelty and scientific contribution Cultivation on P. morrisonicola is an innovative and more cost-effective method for growing A. cinnamomea. The same anti-inflammatory effect is achieved in a shorter production time.
Collapse
Affiliation(s)
- Chien-Wei Hou
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, N0. 306, Yuanpei Street, Hsinchu City, Taiwan
| | - Bo-Yun Zhao
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, N0. 306, Yuanpei Street, Hsinchu City, Taiwan
| | - Shih-Lun Liu
- Department of Food Science and Technology, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung City, Taiwan
- Department of Nutrition, China Medical University, No. 100, Section 1, Jingmao Road, Beitun District, Taichung City, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, South District, Taichung City, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung City, Taiwan
| | - Yuh-Shuen Chen
- Department of Food Science and Technology, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung City, Taiwan
| |
Collapse
|
2
|
Macalalad MAB, Orosco FL. In silico identification of multi-target inhibitors from medicinal fungal metabolites against the base excision repair pathway proteins of African swine fever virus. RSC Adv 2024; 14:10039-10055. [PMID: 38533097 PMCID: PMC10964135 DOI: 10.1039/d4ra00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
African swine fever virus (ASFV) has emerged as a serious threat to the pork industry resulting in significant economic losses and heightened concerns about food security. With no known cure presently available, existing control measures center on animal quarantine and culling. Considering the severity and challenges posed by ASFV, it is imperative to discover new treatment strategies and implement additional measures to prevent its further spread. This study recognized the potential of 1830 fungal metabolites from medicinal fungi as antiviral compounds against base excision repair (BER) proteins of ASFV, specifically ASFVAP, ASFVPolX, and ASFVLig. A wide array of computer-aided drug discovery techniques were employed to carry out the virtual screening process: ADMET profiling revealed 319 molecules with excellent bioavailability and toxicity properties; consensus docking identified the 10 best-scoring ligands against all targets; molecular dynamics simulation elucidated the stability of the protein-ligand complexes; and MM/PB(GB)SA energy calculations predicted the binding energies of the compounds as well as the key residues integral to binding. Through in silico methods, we identified two theoretical lead candidates against ASFVAP, four against ASFVLig, and five against ASFVPolX. Two compounds, methyl ganoderate E and antcamphin M, exhibited potential multi-target inhibitory characteristics against ASFVPolX and ASFVLig, while compound cochlactone A showed promising antagonistic results against all three BER proteins. It is recommended to prioritize these hit compounds in future in vitro and in vivo studies to validate their potential as antiviral drugs against ASFV.
Collapse
Affiliation(s)
- Mark Andrian B Macalalad
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute Taguig Metro Manila 1632 Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute Taguig Metro Manila 1632 Philippines
- S&T Fellows Program, Department of Science and Technology Taguig Metro Manila 1632 Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila Manila Metro Manila 1000 Philippines
| |
Collapse
|
3
|
Jamioł-Milc D, Gudan A, Kaźmierczak-Siedlecka K, Hołowko-Ziółek J, Maciejewska-Markiewicz D, Janda-Milczarek K, Stachowska E. Nutritional Support for Liver Diseases. Nutrients 2023; 15:3640. [PMID: 37630830 PMCID: PMC10459677 DOI: 10.3390/nu15163640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a key organ that is responsible for the metabolism of proteins, fats, and carbohydrates and the absorption and storage of micronutrients. Unfortunately, the prevalence of chronic liver diseases at various stages of advancement in the world population is significant. Due to the physiological function of the liver, its dysfunction can lead to malnutrition and sarcopenia, and the patient's nutritional status is an important prognostic factor. This review discusses key issues related to the diet therapy of patients with chronic liver diseases, as well as those qualified for liver transplantation and in the postoperative period.
Collapse
Affiliation(s)
- Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Hołowko-Ziółek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| |
Collapse
|
4
|
Liao YT, Huang KW, Chen WJ, Lai TH. A Botanical Drug Extracted From Antrodia cinnamomea: A First-in-human Phase I Study in Healthy Volunteers. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:274-284. [PMID: 35512765 DOI: 10.1080/07315724.2022.2032868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
LEAC-102 is an emerging drug extracted from the medicinal fungus Antrodia cinnamomea (AC), which is traditionally used to ameliorate fatigue and liver disorders arising from excessive alcohol consumption. AC has been used as a health product with an immunomodulatory function, but its anticancer effect has not been applied in clinical therapy as a drug. This first-in-human study examined the safety and tolerability of LEAC-102 as a new drug in healthy adults. This standard 3 + 3 dose-escalation study included 18 participants administered LEAC-102 at doses of 597.6, 1195.2, 1792.8, 2390.4, or 2988 mg/day for 1 month plus 7 days of safety follow-up. The maximum planned dose was 2988 mg. Dose-limiting toxicity (DLT) was monitored from the start of LEAC-102 administration up to the final visit. The dose of LEAC-102 was escalated to the subsequent cohort as long as there was no DLT in the previous cohort. Tolerability, clinical status, safety (by laboratory parameters), and adverse event occurrence were documented weekly during the treatment and 1 week after the conclusion of the treatment. All clinical biochemistry profiles were in the normal range, and no serious adverse effects were observed. The maximum tolerated dose of LEAC-102 was determined to be 2988 mg/day because one participant experienced urticaria. Additionally, our exploratory objectives revealed that LEAC-102 significantly elevated natural killer, natural killer T, and dendritic cells in a dose-dependent manner, activated effector T cells, and upregulated programmed cell death-1 expression. The outcomes suggested that LEAC-102 was well tolerated and safe in healthy adults and exhibited potential immunomodulatory function. Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2022.2032868 .
Collapse
Affiliation(s)
- Yu-Tso Liao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Biomedical Park Hospital, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kai-Wen Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan.,Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei City, Taiwan
| | | | | |
Collapse
|
5
|
Ye J, Zhang C, Fan Q, Lin X, Wang Y, Azzam M, Alhotan R, Alqhtani A, Jiang S. Antrodia cinnamomea polysaccharide improves liver antioxidant, anti-inflammatory capacity, and cecal flora structure of slow-growing broiler breeds challenged with lipopolysaccharide. Front Vet Sci 2022; 9:994782. [PMID: 36299632 PMCID: PMC9588918 DOI: 10.3389/fvets.2022.994782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Lipopolysaccharides (LPS) induces liver inflammatory response by activating the TLR4/NF-κB signaling pathway. Antrodia cinnamomea polysaccharide (ACP) is a medicinal mushroom that can protect from intoxication, liver injury, and inflammation. Nevertheless, the effect of ACP on the liver antioxidant, anti-inflammatory capacity and cecal flora structure of LPS-challenged broilers remains unclear. The aim of this experiment was to investigate the effects of ACP on the anti-oxidative and anti-inflammatory capacities of the liver, and cecal microbiota in slow-growing broilers stimulated by LPS. A total of 750 slow-growing broilers (9-day-old) were assigned to five treatments with 6 replicates of 25 chicks per replicate: a control diet, the chicks were fed a control diet and challenged with LPS. Dietary treatments 3 to 5 were the control diet supplemented with 100, 200, 400 mg/kg ACP challenged with LPS, respectively. The groups of 100 mg/kg ACP supplementation significantly increased liver index, pancreas index, and bursa of Fabricius index (P < 0.05). The GSH-Px content of LPS-challenged broilers was lower than that of the control group (P < 0.001), but the content of MDA increased (P < 0.001). Feeding with 100 mg/kg ACP resulted in increased the activity of T-AOC, GSH-Px, and T-SOD, and decreased MDA content (P < 0.05). The activity of TNF-α, IL-1β, and IL-6 of the LPS group increased, but these indicators were decreased with supplemental 100 mg/kg ACP (P < 0.05). Dietary application of ACP up to 100 mg/kg down-regulated (P < 0.05) the expression of TLR4/NF-κB pathway in the liver induced by LPS. The results of 16S rRNA demonstrated that feeding with 100 mg/kg ACP can change the diversity and composition of the gut microbiota, and restrained the decline of beneficial cecal microbiota (typically Lactobacillus, Faecalibacterium, and Christensenellaceae R-7 group) in the challenged LPS group (P < 0.05). Conclusively, feeding a diet with 100 mg/kg ACP may have beneficial effects on liver damage and the bacterial microbiota diversity and composition in the ceca of LPS-stressed slow-growing broiler breeds, probably because of its combined favorable effects on antioxidants and cytokines contents, and restoration the decline of beneficial cecal microbiota.
Collapse
Affiliation(s)
- Jinling Ye
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mahmoud Azzam
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rashed Alhotan
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alqhtani
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China,*Correspondence: Shouqun Jiang
| |
Collapse
|
6
|
Cao YN, Yue SS, Wang AY, Xu L, Hu YT, Qiao X, Wu TY, Ye M, Wu YC, Qi R. Antrodia cinnamomea and its compound dehydroeburicoic acid attenuate nonalcoholic fatty liver disease by upregulating ALDH2 activity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115146. [PMID: 35304272 DOI: 10.1016/j.jep.2022.115146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disease, but currently has no specific medication in clinic. Antrodia cinnamomea (AC) is a medicinal fungus and it has been shown that AC can inhibit high fat diet (HFD)-induced lipid deposition in mouse livers, but the effective monomer in AC and mechanism against NAFLD remain unclear. It has been reported that aldehyde dehydrogenase 2 (ALDH2) activation shows protective effects on NAFLD. Our previous study demonstrates that AC and its monomer dehydroeburicoic acid (DEA) can upregulate the ALDH2 activity on alcoholic fatty liver disease mouse model, but it is not clear whether the anti-NAFLD effects of AC and DEA are mediated by ALDH2. AIM TO STUDY To elucidate the active compound in AC against NAFLD, study whether ALDH2 mediates the anti-NAFLD effects of AC and its effective monomer. MATERIALS AND METHODS WT mice, ALDH2-/- mice and ALDH2-/- mice re-expressed ALDH2 by lentivirus were fed with a methionine-choline deficient (MCD) diet or high fat diet (HFD) to induce NAFLD, and AC at the different doses (200 and/or 500 mg/kg body weight per day) was administrated by gavage at the same time. Primary hepatocytes derived from WT and ALDH2-/-mice were stimulated by oleic acid (OA) to induce lipid deposition, and the cells were treated with AC or DEA in the meantime. Lentivirus-mediated ALDH2-KD or ALDH2-OE were used to knock down or overexpress ALDH2 expression in HepG2 cells, respectively. Finally, the effects of DEA against NAFLD as well as its effects on upregulating liver ALDH2 and removing the harmful aldehyde 4-hydroxynonenal (4-HNE) were studied in the MCD diet-induced NAFLD mouse model. RESULTS In WT mice fed with a MCD diet or HFD, AC administration reduced hepatic lipid accumulation, upregulated ALDH2 activity in mouse livers, decreased 4-HNE contents both in mouse livers and serum, inhibited lipogenesis, inflammation and oxidative stress and promoted fatty acid β-oxidation. These effects were abolished in ALDH2 KO mice but could be restored by re-expression of ALDH2 by lentivirus. In primary hepatocytes of WT mice, AC and DEA inhibited OA-induced lipid accumulation and triglyceride (TG) synthesis, promoting the β-oxidation of fatty acid in the meantime. However, these effects were lost in primary hepatocytes of ALDH2 KO mice. Moreover, the expression level of ALDH2 significantly affected the inhibitory effects of AC and DEA on OA-induced lipid deposition in HepG2 cells. The effects of AC and DEA on suppressing lipid deposition, inhibiting mitochondrial ROS levels, reducing TG synthesis, and promoting β-oxidation of fatty acid were all enhanced with the overexpression of ALDH2 and reduced with the knockdown of ALDH2 expression. DEA showed dose-dependent effects on inhibiting liver lipid deposition, elevating ALDH2 activity and reducing 4-HNE levels in the livers of MCD diet-induced NAFLD mice. CONCLUSION DEA is the effective compound in AC against NAFLD. The related anti-NAFLD mechanisms of AC and DEA were through upregulating ALDH2 expression and activity, thus enhancing the elimination of 4-HNE in the livers, and sequentially alleviating oxidative stress and inflammation, promoting fatty acid β-oxidation and decreasing lipogenesis.
Collapse
Affiliation(s)
- Yi-Ni Cao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Shan-Shan Yue
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China; School of Basic Medical Science, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - An-Yi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Lu Xu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Yi-Tong Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tung-Ying Wu
- Department of Biological Science and Technology, Meiho University, Pingtung, 91202, Taiwan
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Chinese Medicine Research and Development Center, China Medical University Hospital, The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China; School of Basic Medical Science, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
7
|
Yen YT, Park JH, Kang SH, Su T, Cheng H, Wen WC, Lin SS, Tai YL, Chen PN, Tsai SC. Clinical Benefits of Golden-Antrodia Camphorata Containing Antroquinonol in Liver Protection and Liver Fat Reduction After Alcoholic Hepatitis. Front Pharmacol 2022; 13:757494. [PMID: 35800453 PMCID: PMC9253287 DOI: 10.3389/fphar.2022.757494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Objective: It has been reported that antroquinonol extracted from Golden-Antrodia camphorate exerts protective effects on liver function both in vitro and in vivo. However, the protective effects of Golden-Antrodia camphorata on liver function have not been fully investigated in human clinical studies. Therefore, the present study aimed to evaluate the beneficial effects of Golden-Antrodia camphorata on hepatic function after alcohol consumption in human subjects. Methods: A total of 80 participants with increased γ-glutamyl transferase levels (60–180 U/L) were enrolled in the current study and were randomly divided into two groups. Participants in the first group were orally administrated with 300 mg/day Golden-Antrodia camphorata (tablets), while those in the second group received placebo tablets for 12 weeks. Biochemical routine blood tests were performed at 6 and 12 weeks following the first administration. Results: At 12 weeks post the first Golden-Antrodia camphorata administration, the serum levels of aspartate aminotransferase (AST; p < 0.0001), alanine aminotransferase (ALT; p = 0.0002) and triglyceride (p = 0.0158) were notably declined in the Golden-Antrodia camphorata treatment group compared with the placebo group. No clinically significant differences were observed between the Golden-Antrodia camphorata treatment and placebo groups in terms of general safety parameters. Conclusion: A statistically significant difference was obtained in the serum levels of AST, ALT and triglycerides between the Golden-Antrodia camphorata and placebo groups. However, no clinical significance was observed in any of the safety parameters examined. Overall, these findings indicated that treatment with Golden-Antrodia camphorata exerted protective effects on liver function.
Collapse
Affiliation(s)
- Yu-Ting Yen
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Joo-Hyun Park
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Seung-Hyun Kang
- Clinical Research Center of H PLUS Yangji Hospital, Seoul, South Korea
| | - Today Su
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Howard Cheng
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Wu-Che Wen
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Shin-Shiou Lin
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Yu-Ling Tai
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Pei-Ni Chen
- Golden Biotechnology Corporation, New Taipei City, Taiwan
- *Correspondence: Pei-Ni Chen, ; Shih-Chang Tsai,
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- *Correspondence: Pei-Ni Chen, ; Shih-Chang Tsai,
| |
Collapse
|
8
|
Tsai YT, Ruan JW, Chang CS, Ko ML, Chou HC, Lin CC, Lin CM, Huang CT, Wei YS, Liao EC, Chen HY, Lin LH, Lin MW, Kao CY, Chan HL. Proteomic and microbial assessments on the effect of Antrodia cinnamomea in C57BL/6 mice. Arch Biochem Biophys 2021; 713:109058. [PMID: 34627749 DOI: 10.1016/j.abb.2021.109058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Cherng-Shyang Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Mei-Lan Ko
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 30059, Taiwan.
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Chi-Chien Lin
- Department of Life Sciences, Institute of Biomedical Science, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Chiao-Mei Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Chih-Ting Huang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
9
|
Chao TY, Hsieh CC, Hsu SM, Wan CH, Lian GT, Tseng YH, Kuo YH, Hsieh SC. Ergostatrien-3β-ol (EK100) from Antrodia camphorata Attenuates Oxidative Stress, Inflammation, and Liver Injury In Vitro and In Vivo. Prev Nutr Food Sci 2021; 26:58-66. [PMID: 33859960 PMCID: PMC8027041 DOI: 10.3746/pnf.2021.26.1.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischemia/reperfusion (IR) injury is a complication that occurs during liver surgery, whereby hepatic tissue is injured by oxygen deficiency during ischemia, then further damaged by a cascade of inflammatory and oxidative insults when blood is resupplied during reperfusion. Antrodia camphorata is an indigenous fungus in Taiwan and an esteemed Chinese herbal medicine with various bioactivities. This study examined the effect of ergostatrien-3β-ol (EK100), an active compound found in both the fruiting body and mycelia of A. camphorata, on IR injury pathologies in rats and cell models of oxidative and inflammatory stress. Male Sprague-Dawley rats were randomly assigned to receive a vehicle or 5 mg/kg EK100 prior to hepatic IR injury induced by 1 h ischemia followed by 24 h reperfusion, or a sham operation. RAW 264.7 murine macrophages and HepG2 hepatocytes were pretreated with EK100, then inflammation was induced with lipopolysaccharides in the former and oxidative stress was induced with hydrogen peroxide in the latter. EK100 decreased IR-induced elevation in serum levels of alanine aminotransferase and aspartate aminotransferase and lowered levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. In addition, EK100 significantly reduced hepatic mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, as well as nitrite production and iNOS gene expression in both hepatocyte and macrophage cell lines. We demonstrated that EK100 exhibits potent protec-tion against hepatic IR injury, which may be used to design strategies to ameliorate liver damage during liver surgery.
Collapse
Affiliation(s)
- Ting-Yu Chao
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Cheng-Chu Hsieh
- Biologics Division, Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei 251, Taiwan
| | - Shih-Min Hsu
- Institute of Food Science and Technology, Taipei 106, Taiwan.,Metal Industries Research and Development Centre, Kaohsiung 811, Taiwan
| | - Cho-Hua Wan
- Department and Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Guan-Ting Lian
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Yi-Han Tseng
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
10
|
Yen IC, Lin JC, Chen Y, Tu QW, Lee SY. Antrodia Cinnamomea Attenuates Non-Alcoholic Steatohepatitis by Suppressing NLRP3 Inflammasome Activation In Vitro and In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1859-1874. [PMID: 33308101 DOI: 10.1142/s0192415x20500937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blockade of the NOD-like receptor protein 3 (NLRP3) inflammasome has been shown to be effective in halting the progression of non-alcoholic steatohepatitis (NASH). Antrodia cinnamomea is a well-known indigenous medicine used by Taiwanese aboriginal tribes. However, its effect on NASH remains unclear. This study aimed to examine the mechanistic insight of Antrodia cinnamomea extract (ACE) in both in vitro and in vivo models of NASH. Murine RAW264.7 macrophages and human hepatocellular carcinoma HepG2 cells were treated with the indicated concentration of ACE 30 minutes prior to stimulation with lipopolysaccharide (LPS) for 24 h. Levels of inflammatory markers, NLRP3 inflammasome, components, and endoplasmic reticulum (ER) stress markers were analyzed by Western blotting. For the in vivo experiments, male C57BL/6 mice weighing 21-25 g were fed a methionine/choline deficient (MCD) diet along with vehicle or ACE (100 mg/kg) for 10 consecutive days. The serum glutamate pyruvate transaminase (SGPT) levels of the mice were measured. The liver tissues from the mice underwent histological analysis (hematoxylin and eosin staining), and the levels of inflammatory markers, NLRP3 inflammasome components, and autophagy-related proteins were evaluated. ACE significantly inhibited NLRP3 inflammasome activation in vitro and in vivo. In addition, ACE attenuated the severity of MCD-induced steatohepatitis, reduced the levels of oxidative stress markers, and ameliorated inflammatory responses, but restored autophagic flux. Based on these findings, Antrodia cinnamomea could be developed into an anti-non-alcoholic fatty liver disease/NASH agent.
Collapse
Affiliation(s)
- I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jung-Chun Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Tri-Service General Hospital, Taipei City, Taiwan, ROC
| | - Yu Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Qian-Wen Tu
- Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
11
|
Chen HY, Cheng KC, Wang HT, Hsieh CW, Lai YJ. Extracts of Antrodia cinnamomea mycelium as a highly potent tyrosinase inhibitor. J Cosmet Dermatol 2020; 20:2341-2349. [PMID: 33200469 DOI: 10.1111/jocd.13847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ganoderma has been known as a cure for diseases since ancient times, and been used as a medicinal mushroom for more than 2000 years. By many accounts, Ganoderma lucidum extracts from fruit bodies exhibited the comparable tyrosinase inhibition activity. AIMS To validate A. cinnamomea mycelia anti-melanogenesis activity. Ethanolic extracts of A. cinnamomea mycelia were evaluated using in vitro cell-free tyrosinase assay, cell-based and zebrafish phenotype-based method. Meanwhile, safety assessment was also conducted to ensure the feasibility as the novel ingredients in cosmetic and pharmaceutic industries. METHODS The major regulatory enzymes being in charge of cutaneous pigmentation, was investigated in both cell-free and cellular enzyme systems, and in phenotype-based zebrafish model. A high-throughput TLC in vitro screening system was introduced to perform the initial evaluation of those with anti-melanin formation activity. RESULTS Among the fractions, 50% ethanol extracted fraction (AC_Et50_Hex) exhibited highest anti-melanin formation activity. AC_Et50_Hex (at 100 ppm) reduced 30% intracellular melanin of B16-F10 cells through suppression of tyrosinase activity and its protein expression. For animal study, not only does AC_Et50_Hex exhibited similar depigmenting efficacy to kojic acid (56.1% vs 52.3%) with lower dosage (50 ppm vs 1400 ppm), but showed less toxicity to zebrafish. CONCLUSION A. cinnamomea mycelium extracts can be an ideal candidate/substitute for skin-whitening since kojic acid has been reported with carcinogenic effect. AC_Et50_Hex was recognized as a potential tyrosinase inhibitor throughout in vitro and in vivo analysis studies. The mass production of A. cinnamomea mycelium from agitated fermentation realizes the natural mushroom extracts for commercial application.
Collapse
Affiliation(s)
- Hung-Yueh Chen
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsueh-Ting Wang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chang-Wei Hsieh
- Department of food science and biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Jang Lai
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| |
Collapse
|
12
|
Proteomic analysis of Antrodia Cinnamomea-induced ER stress in liver cancer cells. J Pharm Biomed Anal 2020; 187:113142. [PMID: 32460214 DOI: 10.1016/j.jpba.2020.113142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 01/01/2023]
Abstract
Antrodia Cinnamomea is a fungus species widely used as a herb medicine for hypertension, cancer and handover. Nevertheless, the biological roles of Antrodia Cinnamomea on the molecular mechanism of liver cancer are not entirely understood. To determine whether Antrodia Cinnamomea is able to be used for the treatment of liver cancer and its molecular mechanism, we examined the effect of Antrodia Cinnamomea on the differential proteomic patterns in liver cancer cell lines HepG2 and C3A as well as in Chang's liver cell, a normal liver cell, using quantitative proteomic approach. The proteomic analysis demonstrated that abundance of 82, 125 and 125 proteins was significantly altered in Chang's liver cells, C3A and HepG2, respectively. The experimental outcomes also demonstrated that Antrodia Cinnamomea-induced cytotoxicity in liver cancer cells mostly involved dysregulation of protein folding, cytoskeleton regulation, redox-regulation, glycolysis pathway as well as transcription regulation. Further analysis also revealed that Antrodia Cinnamomea promoted misfolding of intracellular proteins and dysregulate of cellular redox-balance resulting in ER-stress. To sum up our studies demonstrated that the proteomic strategy used in this study offered a tool to investigate the molecular mechanisms of Antrodia Cinnamomea-induced liver cancer cytotoxicity. The proteomic results might be further evaluated as prospective targets in liver cancer treatment.
Collapse
|
13
|
A Pilot Study to Assess Food Safety and Potential Cholesterol-Lowering Efficacy of Antrodia cinnamomea Solid-State Cultivated Mycelium in Healthy Adults. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5865764. [PMID: 32351598 PMCID: PMC7171625 DOI: 10.1155/2020/5865764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
Antrodia cinnamomea is a Taiwanese medicinal mushroom with multiple pharmacological activities. Antrodia cinnamomea solid-state cultivated mycelium (LAC) exerts health-related effects in animal and cell models, but clinical data is limited. This study aimed to determine the safety and effects of LAC on human physiological functions. In an open-label, single-arm study, 32 healthy men and women ingested LAC capsules for three months. The subjects were monitored during the study and one month after the study end-point. LAC consumption did not significantly change fasting blood glucose, blood pressure, and triglyceride levels or liver and renal function indices. No adverse events occurred during the trial. Moreover, a significant change from baseline in total cholesterol levels was observed; men and women had decreases of 5.7% and 5.3%, respectively. Based on these, the ingestion of LAC-capsule has a considerable degree of safety and has the potential to reduce total cholesterol in healthy adults.
Collapse
|
14
|
Lu KH, Pan YC, Sheen LY. Combination of cut-log cultivated fruiting body and solid-state cultured mycelia of Taiwanofungus camphoratus ameliorates CCl 4-induced liver injury in rats. J Tradit Complement Med 2020; 10:166-174. [PMID: 32257880 PMCID: PMC7109478 DOI: 10.1016/j.jtcme.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
Taiwanofungus camphoratus, a medicinal mushroom indigenous to Taiwan, possesses various pharmacological functions. The most recognized ethnopharmacological relevance of T. camphoratus is hepatoprotection since it was traditionally used for treating liver disorders by Taiwan aborigines. The aim of this study is to evaluate the hepatoprotective effect of the combination of fruiting body and solid-state cultured mycelia of T. camphoratus (LDAC) on carbon tetrachloride (CCl4)-induced chronic liver damage in rats. We treated Wistar rats daily with low, medium and high [87.5, 175 and 437.5 mg/kg body weight (bw), respectively] doses of LDAC for 9 weeks. After the first week of treatment, rats were administered 20% CCl4 (0.5 mL/0.3 kg bw) twice a week to induce liver damage until the treatment ended. The results showed that administration of LDAC by oral gavage significantly reduced the absolute weight of the liver and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in CCl4-treated rats. The activities of the antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GRd) and catalase (CAT) were increased by LDAC treatment. Moreover, LDAC improved CCl4-induced hepatic vacuolization, necrosis and fibrosis in a dose-dependent manner, and no adverse effects were observed in the LDAC-treated groups. Based on the results, LDAC is a promising hepatoprotective agent for preventing and ameliorating CCl4-induced chronic liver injury, and this effect might be exerted through activation of the antioxidant defense system. Combining cut-log fruiting body and solid-state mycelia of T. camphoratus is an efficient production. The HPLC fingerprint shows the index compounds in the combination (LDAC). LDAC decreases serum ALT and AST levels and elevates antioxidant activity in CCl4-treated rats. LDAC dramatically improves rat hepatic necrosis and fibrosis induced by CCl4.
Collapse
Affiliation(s)
- Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chun Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.,Department of Hospitality Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County 266, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.,Center for Food and Biomolecules, National Taiwan University, Taipei 106, Taiwan.,National Center for Food Safety Education and Research, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
15
|
Hsiao YH, Lin CW, Wang PH, Hsin MC, Yang SF. The Potential of Chinese Herbal Medicines in the Treatment of Cervical Cancer. Integr Cancer Ther 2020; 18:1534735419861693. [PMID: 31271066 PMCID: PMC6611015 DOI: 10.1177/1534735419861693] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cervical cancer is a global health issue and places a considerable economic and medical burden on society. Thus, a concerted effort to improve the treatment of cervical cancer is warranted. Although several treatment options are currently available for treating patients with cervical cancer, such as chemoradiation and neoadjuvant or adjuvant chemotherapy, more aggressive systemic therapies and newer therapeutic agents are under investigation. Medicinal herbs have long been used to treat diseases. In this review, we summarize studies analyzing the antitumor effects and underlying mechanisms of Chinese herbal medicines, including the effects of crude extracts and compounds in vitro or in animal models for inducing apoptosis and inhibiting invasion or metastasis. Chinese herbal medicines with therapeutic targeting, such as those that interfere with tumor growth and progression in cervical cancer, have been widely investigated. To apply Chinese herbal medicine in the treatment of cervical cancer, adequate clinical studies are required to confirm its clinical safety and efficiency. Further investigations focused on the purification, pharmacokinetics, and identification of compounds from Chinese herbal medicines in cervical cancer treatment are necessary to achieve the aforementioned treatment goals.
Collapse
Affiliation(s)
- Yi-Hsuan Hsiao
- 1 Institute of Medicine, Chung Shan Medical University, Taichung.,2 School of Medicine, Chung Shan Medical University, Taichung.,3 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua
| | - Chiao-Wen Lin
- 4 Institute of Oral Sciences, Chung Shan Medical University, Taichung.,5 Department of Dentistry, Chung Shan Medical University Hospital, Taichung
| | - Po-Hui Wang
- 1 Institute of Medicine, Chung Shan Medical University, Taichung.,2 School of Medicine, Chung Shan Medical University, Taichung.,6 Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung
| | - Min-Chien Hsin
- 1 Institute of Medicine, Chung Shan Medical University, Taichung
| | - Shun-Fa Yang
- 1 Institute of Medicine, Chung Shan Medical University, Taichung.,7 Department of Medical Research, Chung Shan Medical University Hospital, Taichung
| |
Collapse
|
16
|
Chyau CC, Wang HF, Zhang WJ, Chen CC, Huang SH, Chang CC, Peng RY. Antrodan Alleviates High-Fat and High-Fructose Diet-Induced Fatty Liver Disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ Pathway. Int J Mol Sci 2020; 21:ijms21010360. [PMID: 31935815 PMCID: PMC6981486 DOI: 10.3390/ijms21010360] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and -steatohepatitis (NASH) imply a state of excessive fat built-up in livers with/or without inflammation and have led to serious medical concerns in recent years. Antrodan (Ant), a purified β-glucan from A. cinnamomea has been shown to exhibit tremendous bioactivity, including hepatoprotective, antihyperlipidemic, antiliver cancer, and anti-inflammatory effects. Considering the already well-known alleviating bioactivity of A. cinnamomea for the alcoholic steatohepatitis (ASH), we propose that Ant can be beneficial to NAFLD, and that the AMPK/Sirt1/PPARγ/SREBP-1c pathways may be involved in such alleviations. To uncover this, we carried out this study with 60 male C57BL/6 mice fed high-fat high-fructose diet (HFD) for 60 days, in order to induce NAFLD/NASH. Mice were then grouped and treated (by oral administration) as: G1: control; G2: HFD (HFD control); G3: Ant, 40 mgkg (Ant control); G4: HFD+Orlistat (10 mg/kg) (as Orlistat control); G5: HFD+Ant L (20 mg/kg); and G6: HFD+Ant H (40 mg/kg) for 45 days. The results indicated Ant at 40 mg/kg effectively suppressed the plasma levels of malondialdehyde, total cholesterol, triglycerides, GOT, GPT, uric acid, glucose, and insulin; upregulated leptin, adiponectin, pAMPK, Sirt1, and down-regulated PPARγ and SREBP-1c. Conclusively, Ant effectively alleviates NAFLD via AMPK/Sirt1/CREBP-1c/PPARγ pathway.
Collapse
Affiliation(s)
- Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Hsueh-Fang Wang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Wen-Juan Zhang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Chin-Chu Chen
- Grape King Biotechnology Center, 60, Sec 3, Longgang Rd., Chung-Li City, Taoyuan County 320, Taiwan;
| | - Shiau-Huei Huang
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11301, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Robert Y. Peng
- Research Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- School of Medicine and Health, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| |
Collapse
|
17
|
Johnson A, Cheng SC, Tsou D, Kong ZL. Attenuation of reproductive dysfunction in diabetic male rats with timber cultured Antrodia cinnamomea ethanol extract. Biomed Pharmacother 2019; 112:108684. [DOI: 10.1016/j.biopha.2019.108684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
|
18
|
Kuo TH, Kuo YH, Cho CY, Yao CJ, Lai GM, Chuang SE. Protective Effect of Antrodia cinnamomea Extract against Irradiation-Induced Acute Hepatitis. Int J Mol Sci 2019; 20:ijms20040846. [PMID: 30781399 PMCID: PMC6412687 DOI: 10.3390/ijms20040846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 01/11/2023] Open
Abstract
Radiotherapy for treatment of hepatocellular carcinoma causes severe side effects, including acute hepatitis and chronic fibrosis. Complementary and alternative medicine (CAM) has emerged as an important part of integrative medicine in the management of diseases. Antrodia cinnamomea (AC), a valuable medicinal fungus originally found only in Taiwan, has been shown to possess anti-oxidation, vaso-relaxtation, anti-inflammation, anti-hepatitis, and anti-cancer effects. In this paper we evaluate the protective effects of ethanol extract of Antrodia cinnamomea (ACE) against radiotoxicity both in normal liver cell line CL48 and in tumor-bearing mice. In CL48, ACE protects cells by eliminating irradiation-induced reactive oxygen species (ROS) through the induction of Nrf2 and the downstream redox system enzymes. The protective effect of ACE was also demonstrated in tumor-bearing mice by alleviating irradiation-induced acute hepatitis. ACE could also protect mice from CCl₄-induced hepatitis. Since both radiation and CCl₄ cause free radicals, these results indicate that ACE likely contains active components that protect normal liver cells from free radical attack and can potentially benefit hepatocellular carcinoma (HCC) patients during radiotherapy.
Collapse
Affiliation(s)
- Tsu-Hsiang Kuo
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Chih-Jung Yao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Gi-Ming Lai
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan.
| |
Collapse
|
19
|
Antrodia cinnamomea, a Treasured Medicinal Mushroom, Induces Growth Arrest in Breast Cancer Cells, T47D Cells: New Mechanisms Emerge. Int J Mol Sci 2019; 20:ijms20040833. [PMID: 30769922 PMCID: PMC6412332 DOI: 10.3390/ijms20040833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Reported cases of breast cancer have skyrocketed in the last decades with recent advances in examination techniques. Brest cancer has become the second leading cause of mortality among women worldwide, urging the scientific community to develop or find new drugs from natural sources with potent activity and a reasonable safety profile to tackle this ailment. Antrodia cinnamomea (AC) is a treasured medicinal fungus which has attracted attention due to its potent hepatoprotective and cytotoxic activities. We evaluated the antiproliferative activity of the ethanol extract of artificially cultured AC (EEAC) on breast cancer cells (T47D cells) in vivo and in vitro. Ethanol extract of artificially cultured AC inhibited T47D cells' proliferation mediated by cell cycle arrest at G1 phase as well induced autophagy. Immunoblotting assay confirmed that EEAC not only decreased the expression of the cell-cycle-related proteins but also increased the expression of transcription factor FOXO1, autophagic marker LC3 II, and p62. Ethanol extract of artificially cultured AC mediated endoplasmic reticulum stress by promoting the expression of IRE1 (inositol-requiring enzyme 1α), GRP78/Bip (glucose regulating protein 78), and CHOP (C/EBP homologous protein). Apart from previous studies, HDACs (histone deacetylases) activity was inhibited as demonstrated by a cell-free system, immunoblotting, and immunofluorescence assays following EEAC treatment. The in vivo studies demonstrated that EEAC decreased tumor volume and inhibited tumor growth without any significant side effects. High performance liquid chromatography profile demonstrated similar triterpenoids compared to the profile of wild AC ethanol extract. The multiple targets of EEAC on breast cancer cells suggested that this extract may be developed as a potential dietary supplement targeting this debilitating disease.
Collapse
|
20
|
Huang HT, Wang SL, Nguyen VB, Kuo YH. Isolation and Identification of Potent Antidiabetic Compounds from Antrodia cinnamomea-An Edible Taiwanese Mushroom. Molecules 2018; 23:E2864. [PMID: 30400247 PMCID: PMC6278467 DOI: 10.3390/molecules23112864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/20/2023] Open
Abstract
Antrodia cinnamomea (AC), an edible Taiwanese mushroom, has been recognized as a valuable natural resource with vast biological and medicinal benefits. Recently, the hypoglycemic and anti-diabetic effects of AC were mentioned in several studies. However, no studies have investigated α-glucosidase inhibitors from AC fruiting bodies (ACFB) as they relate to type 2 diabetes (T2D) treatment. The purpose of this study was to gain evidence of potent α-glucosidase inhibitory effects, as well as isolate, identify and characterize the active compounds of ACFB. The MeOH extract of ACFB demonstrated potent α-glucosidase inhibitory activity, and possessed high pH stability (pH 2⁻11) and thermostable properties at 40⁻50 °C. Further purification led to the isolation of eight constituents from ACFB, identified as: 25S-antcin K (1), 25R-antcin K (2), dehydrosulphurenic acid (3), 25S-antcin I (4), 25S-antcin B (5), 25R-antcin B (6), dehydroeburicoic acid (7) and eburicoic acid (8). Notably, the ACFB extract and its identified compounds, except 1, 4, and 6 demonstrated a greater effect (EC50 = 0.025⁻0.21 mg/mL) than acarbose (EC50 = 0.278 mg/mL). As such, these active compounds were determined to be new potent mushroom α-glucosidase inhibitors. These active compounds were also identified on the HPLC fingerprints of ACFB.
Collapse
Affiliation(s)
- Hung Tse Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan.
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Ph.D. Program for Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
21
|
Antrodia cinnamomea boosts the anti-tumor activity of sorafenib in xenograft models of human hepatocellular carcinoma. Sci Rep 2018; 8:12914. [PMID: 30150684 PMCID: PMC6110745 DOI: 10.1038/s41598-018-31209-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been recognized worldwide as one of the major causes of cancer death. The medicinal fungus Antrodia cinnamomea (A. cinnamomea) has been served as a functional food for liver protection. The aim of the present study was to investigate the potential activity of A. cinnamomea extracts as a safe booster for the anticancer activity of sorafenib, a multi-kinase inhibitor approved for the treatment of HCC. The biologically active triterpenoids in the ethanolic extracts of A. cinnamomea (EAC) were initially identified by HPLC/LC/MS then the different extracts and sorafenib were assessed in vitro and in vivo. EAC could effectively sensitize HCC cells to low doses of sorafenib, which was perceived via the ability of the combination to repress cell viability and to induce cell cycle arrest and apoptosis in HCC cells. The ability of EAC to enhance sorafenib activity was mediated through targeting mitogen-activated protein (MAP) kinases, modulating cyclin proteins expression and inhibiting cancer cell invasion. Moreover, the proposed combination significantly suppressed ectopic tumor growth in mice with high safety margins compared to single-agent treatment. Thus, this study highlights the advantage of combining EAC with sorafenib as a potential adjuvant therapeutic strategy against HCC.
Collapse
|
22
|
Draft Genome Sequence of Burkholderia sp. Strain WAC0059, a Bacterium Isolated from the Medicinal Fungus Antrodia cinnamomea. GENOME ANNOUNCEMENTS 2018; 6:6/6/e00027-18. [PMID: 29439035 PMCID: PMC5805873 DOI: 10.1128/genomea.00027-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Burkholderia sp. strain WAC0059 was isolated from a fruiting body of the medicinal fungus Antrodia cinnamomea collected in Taiwan. Here, we report the draft genome sequence of this bacterium to facilitate the investigation of its biology.
Collapse
|
23
|
Lin CH, Kuo YH, Shih CC. Antidiabetic and hypolipidemic activities of eburicoic acid, a triterpenoid compound from Antrodia camphorata, by regulation of Akt phosphorylation, gluconeogenesis, and PPARα in streptozotocin-induced diabetic mice. RSC Adv 2018; 8:20462-20476. [PMID: 35542324 PMCID: PMC9080793 DOI: 10.1039/c8ra01841c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022] Open
Abstract
The study is designed to examine the potential effects and underlying mechanisms of eburicoic acid (TRR), a compound from Antrodia camphorata, in streptozotocin (STZ)-induced diabetic mice. Diabetic mice were randomly divided into six groups and given TRR orally by gavage (at three dosage rates) or fenofibrate (Feno) (250 mg kg−1 body weight) or metformin (Metf) (300 mg kg−1 body weight) or vehicle for 2 weeks. STZ-induced diabetic mice were found to have increased blood glucose, HbA1C, plasma triglyceride (TG) and total cholesterol (TC) levels, but reduced blood insulin, adiponectin, and leptin levels as compared with the CON group. TRR was found to lower blood glucose and HbA1C, but increase insulin levels. Plasma TG and TC levels were significantly lowered in TRR, Feno, or Metf-treated STZ-induced diabetic mice as compared with the vehicle-treated STZ group, indicating that TRR, Feno, and Metf ameliorated hyperlipidemia. The islet cells of STZ-induced diabetic mice exhibited a marked reduction from their classic round-shape as compared to the CON mice. The TRR-treated STZ mice revealed restoration of the size of Langerhans islet cells with β-cell repair as compared with the vehicle-treated STZ mice, implying that TRR ameliorated STZ-induced diabetic states within the pancreas. STZ-induction was found to decrease the expressions of membrane glucose transporter 4 (GLUT4), and phosphorylation of Akt in skeletal muscles, and administration of TRR reversed all the decreases. Moreover, administration of TRR increased blood insulin levels and enhanced hepatic expression levels of phospho-Akt and phospho-FoxO1 but decreased the mRNA levels of glucose-6-phosphatase (G6 Pase) and phosphoenolpyruvate carboxykinase (PEPCK) to suppress hepatic glucose production, thus leading to TRR's antidiabetic activity. Additionally, TRR caused an increase in the expression levels of fatty acid oxidation gene peroxisome proliferator-activated receptor α (PPARα), but a decrease in lipogenic fatty acid synthase (FAS) and PPARγ expressions in the liver. TRR treatment suppressed hepatic mRNA levels of sterol regulatory element binding protein (SREBP) 1c and SREBP2, leading to decreased plasma triglyceride and total cholesterol levels. These findings indicate that TRR may effectively enhance therapeutic potential in the treatment of type 1 diabetes mellitus and/or hyperlipidemia. The study is designed to examine the potential effects and underlying mechanisms of eburicoic acid (TRR), a compound from Antrodia camphorata, in streptozotocin (STZ)-induced diabetic mice.![]()
Collapse
Affiliation(s)
- Cheng-Hsiu Lin
- Department of Internal Medicine
- Fengyuan Hospital
- Ministry of Health and Welfare
- Taichung City 42055
- Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources
- China Medical University
- Taichung City 40402
- Taiwan
| | - Chun-Ching Shih
- Graduate Institute of Biotechnology and Biomedical Engineering
- College of Health Science
- Central Taiwan University of Science and Technology
- Taichung City 40601
- Taiwan
| |
Collapse
|
24
|
Huo Y, Win S, Than TA, Yin S, Ye M, Hu H, Kaplowitz N. Antcin H Protects Against Acute Liver Injury Through Disruption of the Interaction of c-Jun-N-Terminal Kinase with Mitochondria. Antioxid Redox Signal 2017; 26:207-220. [PMID: 27596680 PMCID: PMC5312552 DOI: 10.1089/ars.2016.6833] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Antrodia Camphorate (AC) is a mushroom that is widely used in Asian countries to prevent and treat various diseases, including liver diseases. However, the active ingredients that contribute to the biological functions remain elusive. The purpose of the present study is to test the hepatoprotective effect of Antcin H, a major triterpenoid chemical isolated from AC, in murine models of acute liver injury. RESULTS We found that Antcin H pretreatment protected against liver injury in both acetaminophen (APAP) and galactosamine/tumor necrosis factor (TNF)α models. More importantly, Antcin H also offered a significant protection against acetaminophen-induced liver injury when it was given 1 h after acetaminophen. The protection was verified in primary mouse hepatocytes. Antcin H prevented sustained c-Jun-N-terminal kinase (JNK) activation in both models. We excluded an effect of Antcin H on acetaminophen metabolism and TNF receptor signaling and excluded a direct effect as a free radical scavenger or JNK inhibitor. Since the sustained JNK activation through its interaction with mitochondrial Sab, leading to increased mitochondrial reactive oxygen species (ROS), is pivotal in both models, we examined the effect of Antcin H on p-JNK binding to mitochondria and impairment of mitochondrial respiration. Antcin H inhibited the direct effect of p-JNK on isolated mitochondrial function and binding to isolated mitochondria. Innovation and Conclusion: Our study has identified Antcin H as a novel active ingredient that contributes to the hepatoprotective effect of AC, and Antcin H protects against liver injury through disruption of the binding of p-JNK to Sab, which interferes with the ROS-dependent self-sustaining activation of MAPK cascade. Antioxid. Redox Signal. 26, 207-220.
Collapse
Affiliation(s)
- Yazhen Huo
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, China .,2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Sanda Win
- 2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Tin Aung Than
- 2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Shutao Yin
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, China
| | - Min Ye
- 3 State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing, China
| | - Hongbo Hu
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, China
| | - Neil Kaplowitz
- 2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
25
|
Kumar KJS, Wang SY. Antioxidant Properties of Antrodia cinnamomea: An Extremely Rare and Coveted Medicinal Mushroom Endemic to Taiwan. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Tsai MY, Hung YC, Chen YH, Chen YH, Huang YC, Kao CW, Su YL, Chiu HHE, Rau KM. A preliminary randomised controlled study of short-term Antrodia cinnamomea treatment combined with chemotherapy for patients with advanced cancer. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:322. [PMID: 27565426 PMCID: PMC5002173 DOI: 10.1186/s12906-016-1312-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
Abstract
Background Antrodia cinnamomea (AC) is a popular medicinal mushroom in Taiwan that has been widely used for treatment of various cancers. Few clinical studies have reported its application and efficiency in therapeutic chemotherapy strategies. We performed a double-blind, randomized clinical study to investigate whether AC given for 30 days had acceptable safety and efficacy in advanced cancer patients receiving chemotherapy. Methods Patients with advanced and/or metastatic adenocarcinoma, performance status (PS) 0–2, and adequate organ function who had previously been treated with standard chemotherapy were randomly assigned to receive routine chemotherapy regimens with AC (20 ml twice daily) orally for 30 days or placebo. The primary endpoint was 6-month overall survival (OS); the secondary endpoints were disease control rate (DCR), quality of life (QoL), adverse event (AE), and biochemical features within 30 days of treatment. Results From August 2010 to July 2012, 37 subjects with gastric, lung, liver, breast, and colorectal cancer (17 in the AC group, 20 in the placebo group) were enrolled in the study. Disease progression was the primary cause of death in 4 (33.3 %) AC and 8 (66.7 %) placebo recipients. Mean OSs were 5.4 months for the AC group and 5.0 months for the placebo group (p = 0.340), and the DCRs were 41.2 and 55 %, respectively (p = 0.33). Most hematologic, liver, or kidney functions did not differ significantly between the two groups, but platelet counts were lower in the AC group than in the placebo group (p = 0.02). QoL assessments were similar in the two groups, except that the AC group showed significant improvements in quality of sleep (p = 0.04). Conclusions Although we found a lower mortality rate and longer mean OS in the AC group than in the control group, A. cinnamomea combined with chemotherapy was not shown to improve the outcome of advanced cancer patients, possibly due to the small sample size. In fact, the combination may present a potential risk of lowered platelet counts. Adequately powered clinical trials will be necessary to address this question. Trial registration ClinicalTrials.gov NCT01287286.
Collapse
|
27
|
Antrodia cinnamomea alleviates cisplatin-induced hepatotoxicity and enhances chemo-sensitivity of line-1 lung carcinoma xenografted in BALB/cByJ mice. Oncotarget 2016; 6:25741-54. [PMID: 26325335 PMCID: PMC4694863 DOI: 10.18632/oncotarget.4348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023] Open
Abstract
Whereas cisplatin (cis-diamminedichloroplatinum II) is a first-line medicine to treat solid cancerous tumors, it often causes serious side effects. New medicines that have an equivalent or even better therapeutic effect but with free or less side effects than cisplatin are highly anticipated in cancer therapy. Recent reports revealed that Antrodia cinnamomea (AC) possesses hepatoprotective activity in addition to anticancer. In this study, we wanted to know whether AC enhances chemo-sensitivity of cisplatin and/or alleviates cisplatin-induced hepatotoxicity, as well as the underlying mechanisms thereof. Our results indicated that AC inhibited proliferation of line-1 lung carcinoma cells and rescued hepatic HepG2 cells from cisplatin-induced cell death in vitro. The fact is that AC and cisplatin synergized to constrain growth of line-1 lung carcinoma cells in BALB/cByJ mice. Quantitative real-time PCR further revealed that AC promoted expression of apoptosis-related genes, while it decreased expression of NF-κB and VEGF in tumor tissues. In liver, AC reduced cisplatin-induced liver dysfunctions, liver inflammation and hepatic apoptosis in addition to body weight restoration. In summary, AC is able to increase cisplatin efficacy by triggering expression of apoptosis-related genes in line-1 lung cancer cells as well as to protect liver from tissue damage by avoiding cisplatin-induced hepatic inflammation and cell death.
Collapse
|
28
|
Osteoporosis Recovery by Antrodia camphorata Alcohol Extracts through Bone Regeneration in SAMP8 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2617868. [PMID: 27143981 PMCID: PMC4842042 DOI: 10.1155/2016/2617868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 01/19/2023]
Abstract
Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE) for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1) and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8). Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 μg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN) was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health.
Collapse
|
29
|
Chiu HW, Hua KF. Hepatoprotective Effect of Wheat-Based Solid-State Fermented Antrodia cinnamomea in Carbon Tetrachloride-Induced Liver Injury in Rat. PLoS One 2016; 11:e0153087. [PMID: 27046059 PMCID: PMC4821531 DOI: 10.1371/journal.pone.0153087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Antrodia cinnamomea (A. cinnamomea) is an indigenous medical fungus in Taiwan and has multiple biological functions, including hepatoprotective and immune-modulatory effects. Currently, the commercially available A. cinnamomea are mainly liquid- and solid-state fermented A. cinnamomea. However, the hepatoprotective effect of solid-state fermented A. cinnamomea has never been reported. Here we evaluate the ability of air-dried, ground and non-extracted wheat-based solid-state fermented A. cinnamomea (WFAC) to protect against carbon tetrachloride (CCl4)-induced hepatic injury in vivo. The results showed that oral administration of WFAC dose dependently (180, 540 and 1080 mg/kg) ameliorated the increase in plasma aspartate aminotransferase and alanine aminotransferase levels caused by chronic repeated CCl4 intoxication in rats. WFAC significantly reduced the CCl4-induced increase in hepatic lipid peroxidation levels and hydroxyproline contents, as well as reducing the spleen weight and water content of the liver. WFAC also restored the hepatic soluble protein synthesis and plasma albumin concentration in CCl4-intoxicated rats, but it did not affect the activities of superoxide dismutase, catalase, or glutathione peroxidase. In addition, a hepatic morphological analysis showed that the hepatic fibrosis and necrosis induced by CCl4 were significantly ameliorated by WFAC. Furthermore, the body weights of control rats and WFAC-administered rats were not significantly different, and no adverse effects were observed in WFAC-administered rats. These results indicate that WFAC is a nontoxic hepatoprotective agent against chronic CCl4-induced hepatic injury.
Collapse
Affiliation(s)
- Huan-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
30
|
Lin YH, Senthil Kumar K, Gokila Vani M, Liao JW, Lin CC, Kuo JT, Wang SY. In vitro and in vivo toxicological assessments of Antrodia cinnamomea health food product (Leader Antrodia cinnamomea Capsule). ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yu-Hsing Lin
- Taiwan Leader Biotech Corp, Taiwan
- Department of Biological Science and Technology, China University of Science and Techology, Taiwan
| | | | - M. Gokila Vani
- Department of Forestry, National Chung Hsing University, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taiwan
| | | | - Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Techology, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taiwan
- Agricultural Biotechnology Center, National Chung-Hsing University, Taiwan
- Agricultural Biotechnology Research Institute, Taiwan
| |
Collapse
|
31
|
Lin CC, Kumar KJS, Liao JW, Kuo YH, Wang SY. Genotoxic, teratotoxic and oral toxic assessments of Antrodia cinnamomea health food product (Leader Deluxe Antrodia cinnamomea®). Toxicol Rep 2015; 2:1409-1417. [PMID: 28962482 PMCID: PMC5598227 DOI: 10.1016/j.toxrep.2015.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 01/19/2023] Open
Abstract
Antrodia cinnamomea is a rare and endemic medicinal mushroom native to Taiwan. The pharmacological effects of A. cinnamomea have been extensively studied. The aim of the present study was to assess the genotoxic, oral toxic and teratotoxic effects of A. cinnamomea health food product Leader Deluxe Antrodia cinnamomea (LDAC) using in vitro and in vivo tests. The Ames test with 5 strains of Salmonella typhimurium showed no signs of increased reverse mutation upon exposure to LDAC up to concentration of 5 mg/plate. Exposure of Chinese Hamster Ovary cells (CHO-K1) to LDAC did not produce an increase in the frequency of chromosomal aberration in vitro. In addition, LDAC treatment did not affect the proportions of immature to total erythrocytes and the number of micronuclei in the immature erythrocytes of ICR mice. Moreover, 14-days single-dose acute toxicity and 90-days repeated oral dose toxicity tests with rats showed that no observable adverse effects were found. Furthermore, after treatment with LDAC (7002800 mg/kg/day) there was no evidence of observable segment II reproductive and developmental toxic effects in pregnant SD rats and their fetuses. These toxicological assessments support the safety of LDAC for human consumption.
Collapse
Affiliation(s)
| | - K J Senthil Kumar
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Graduate Institute of Chinese Pharmaceutical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Research Institute, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Chatterjee A, Acharya K. Include mushroom in daily diet—A strategy for better hepatic health. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1057839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Lu KH, Tseng HC, Liu CT, Huang CJ, Chyuan JH, Sheen LY. Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food Funct 2014; 5:1027-37. [PMID: 24664243 DOI: 10.1039/c3fo60449g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bitter gourd (Momordica charantia L.) is a common vegetable grown widely in Asia that is used as a traditional medicine. The objective of this study was to investigate whether wild bitter gourd possessed protective effects against chronic alcohol-induced liver injury in mice. C57BL/6 mice were fed an alcohol-containing liquid diet for 4 weeks to induce alcoholic fatty liver. Meanwhile, mice were treated with ethanol extracts from four different wild bitter gourd cultivars: Hualien No. 1', Hualien No. 2', Hualien No. 3' and Hualien No. 4'. The results indicated that the daily administration of 500 mg kg body weight(-1) of a Hualien No. 3' extract (H3E) or a Hualien No. 4' extract (H4E) markedly reduced the steatotic alternation of liver histopathology. In addition, the activation of serum aminotransferases (AST and ALT) and the accumulation of hepatic TG content caused by alcohol were ameliorated. The hepatoprotective effects of H3E and H4E involved the enhancement of the antioxidant defence system (GSH, GPx, GRd, CAT and SOD), inhibition of lipid peroxidation (MDA) and reduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in the liver. Moreover, H3E and H4E supplementation suppressed the alcohol-induced elevation of CYP2E1, SREBP-1, FAS and ACC protein expression. These results demonstrated that ethanol extracts of Hualien No. 3' and Hualien No. 4' have beneficial effects against alcoholic fatty liver, in which they attenuate oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Kuan-Hung Lu
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 10617.
| | | | | | | | | | | |
Collapse
|