1
|
Jaing TH, Wang YL, Chiu CC. Antiviral Agents for Preventing Cytomegalovirus Disease in Recipients of Hematopoietic Cell Transplantation. Viruses 2024; 16:1268. [PMID: 39205242 PMCID: PMC11359103 DOI: 10.3390/v16081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review discusses the use of prophylaxis to prevent cytomegalovirus (CMV) infection in recipients who have undergone hematopoietic cell transplantation. It highlights the need for new approaches to control and prevent CMV infection. The approval of the anti-CMV drug letermovir has made antiviral prophylaxis more popular. CMV-specific T cell-mediated immunity tests are effective in identifying patients who have undergone immune reconstitution and predicting disease progression. Maribavir (MBV) has been approved for the treatment of post-transplant CMV infection/disease in adolescents. Adoptive T-cell therapy and the PepVax CMV vaccine show promise in tackling refractory and resistant CMV. However, the effectiveness of PepVax in reducing CMV viremia/disease was not demonstrated in a phase II trial. Cell-mediated immunity assays are valuable for personalized management plans, but more interventional studies are needed. MBV and adoptive T-cell therapy are promising treatments, and trials for CMV vaccines are ongoing.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| |
Collapse
|
2
|
Nakamura R, La Rosa C, Yang D, Hill JA, Rashidi A, Choe H, Zhou Q, Lingaraju CR, Kaltcheva T, Longmate J, Drake J, Slape C, Duarte L, Al Malki MM, Pullarkat VA, Aribi A, Devine S, Verneris MR, Miller JS, Forman SJ, Aldoss I, Diamond DJ. A phase II randomized, placebo-controlled, multicenter trial to evaluate the efficacy of cytomegalovirus PepVax vaccine in preventing cytomegalovirus reactivation and disease after allogeneic hematopoietic stem cell transplant. Haematologica 2024; 109:1994-1999. [PMID: 38328852 PMCID: PMC11141674 DOI: 10.3324/haematol.2023.284544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | - Corinna La Rosa
- Department of Hematology and Hematopoietic Cell Transplantation
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA
| | | | - Armin Rashidi
- Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN
| | - Hannah Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Qiao Zhou
- Department of Hematology and Hematopoietic Cell Transplantation
| | | | | | - Jeffrey Longmate
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA
| | | | - Cynthia Slape
- Department of Clinical Research, City of Hope National Medical Center, Duarte, CA
| | - Lupe Duarte
- Department of Hematology and Hematopoietic Cell Transplantation
| | | | | | - Ahmed Aribi
- Department of Hematology and Hematopoietic Cell Transplantation
| | - Steven Devine
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Michael R Verneris
- University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, CO
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN
| | | | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation
| | - Don J Diamond
- Department of Hematology and Hematopoietic Cell Transplantation.
| |
Collapse
|
3
|
Cohen JI. Therapeutic vaccines for herpesviruses. J Clin Invest 2024; 134:e179483. [PMID: 38690731 PMCID: PMC11060731 DOI: 10.1172/jci179483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Herpesviruses establish latent infections, and most reactivate frequently, resulting in symptoms and virus shedding in healthy individuals. In immunocompromised patients, reactivating virus can cause severe disease. Persistent EBV has been associated with several malignancies in both immunocompromised and nonimmunocompromised persons. Reactivation and shedding occur with most herpesviruses, despite potent virus-specific antibodies and T cell immunity as measured in the blood. The licensure of therapeutic vaccines to reduce zoster indicates that effective therapeutic vaccines for other herpesviruses should be feasible. However, varicella-zoster virus is different from other human herpesviruses in that it is generally only shed during varicella and zoster. Unlike prophylactic vaccines, in which the correlate of immunity is antibody function, T cell immunity is the correlate of immunity for the only effective therapeutic herpesvirus vaccine-zoster vaccine. While most studies of therapeutic vaccines have measured immunity in the blood, cellular immunity at the site of reactivation is likely critical for an effective therapeutic vaccine for certain viruses. This Review summarizes the status of therapeutic vaccines for herpes simplex virus, cytomegalovirus, and Epstein-Barr virus and proposes approaches for future development.
Collapse
|
4
|
Kotton CN, Torre-Cisneros J, Yakoub-Agha I. Slaying the "Troll of Transplantation"-new frontiers in cytomegalovirus management: A report from the CMV International Symposium 2023. Transpl Infect Dis 2024; 26:e14183. [PMID: 37942955 DOI: 10.1111/tid.14183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
The 2023 International CMV Symposium took place in Barcelona in May 2023. During the 2-day meeting, delegates and faculty discussed the ongoing challenge of managing the risk of cytomegalovirus infection (the Troll of Transplantation) after solid organ or hematopoietic cell transplantation. Opportunities to improve outcomes of transplant recipients by applying advances in antiviral prophylaxis or pre-emptive therapy, immunotherapy, and monitoring of cell-mediated immunity to routine clinical practice were debated and relevant educational clinical cases presented. This review summarizes the presentations, cases, and discussions from the meeting and describes how further advances are needed before the Troll of Transplantation is slain.
Collapse
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Torre-Cisneros
- Maimónides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
5
|
Klejmont LM, Mo X, Milner J, Harrison L, Morris E, van de Ven C, Cairo MS. Risk Factors Associated with Survival Following Ganciclovir Prophylaxis through Day +100 in Cytomegalovirus At-Risk Pediatric Allogeneic Stem Cell Transplantation Recipients: Development of Cytomegalovirus Viremia Associated with Significantly Decreased 1-Year Survival. Transplant Cell Ther 2024; 30:103.e1-103.e8. [PMID: 37806447 DOI: 10.1016/j.jtct.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Cytomegalovirus (CMV) reactivation is a major cause of morbidity and nonrelapse mortality (NRM) in pediatric allogeneic stem cell transplantation (alloSCT) recipients. Approximately 80% of CMV seropositive alloHCT recipients will experience CMV reactivation without prophylaxis. The impacts of ganciclovir prophylaxis and subsequent CMV viremia on 1-year survival and 1-year NRM are unknown. The primary objective of this study was to determine the effect of CMV viremia on the probability of 1-year survival and 1-year NRM in pediatric alloSCT recipients receiving 100 days of ganciclovir prophylaxis. The secondary objective was to determine the effect of other risk factors on 1-year survival and 1-year NRM. All patients age 0 to 26 years who underwent alloSCT between June 2011 and May 2020 and received ganciclovir prophylaxis for 100 days at Westchester Medical Center, an academic medical center, were analyzed. Ganciclovir was administered to at-risk alloSCT recipients (donor and or recipient CMV+ serostatus) as 5 mg/kg every 12 hours from the first day of conditioning through day -1 (recipient CMV+ only) followed by 6 mg/kg every 24 hours on Monday through Friday beginning on the day of an absolute neutrophil count >750/mm3 and continuing through day +100. National Cancer Institute Common Terminology Criteria for Adverse Events 5.0 criteria were used to grade toxicity. NRM was analyzed using competing survival analysis with relapse death as a competing event. The log-rank and Gray tests were performed to compare the 1-year survival probabilities and NRM cumulative incidence between patients who experienced CMV viremia post-alloSCT and those who did not. Univariate Cox regression analysis was performed for the following risk factors: CMV viremia, donor source, sex, malignant disease, disease risk index, conditioning intensity, receipt of rabbit antithymocyte globulin (rATG)/alemtuzumab, graft-versus-host disease (GVHD) prophylaxis, CMV donor/recipient serostatus, grade II-IV acute GVHD, and grade 3/4 neutropenia necessitating discontinuation of ganciclovir, treating the last 3 factors as time-dependent covariates. Those with P values < .2 were included in the multivariate Cox regression analysis. Eighty-four alloSCT recipients (41 males, 43 females; median age, 10.8 years [range, .4 to 24.4 years]) were analyzed. Multivariate analysis showed significantly lower 1-year survival and significantly higher 1-year NRM in patients who developed CMV viremia compared to those who did not (P = .0036). No other risk factors were significantly associated with 1-year survival or 1-year NRM. One-year survival was significantly decreased and 1-year NRM was significantly increased in pediatric alloSCT recipients who developed CMV viremia following ganciclovir prophylaxis. No other risk factors were found to be associated with 1-year survival or 1-year NRM. Alternative CMV prophylaxis regimens that reduce CMV viremia should be investigated in pediatric alloSCT recipients at risk for CMV infection.
Collapse
Affiliation(s)
- Liana M Klejmont
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jordan Milner
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Lauren Harrison
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | | | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York; Department of Medicine, New York Medical College, Valhalla, New York; Department of Pathology, New York Medical College, Valhalla, New York; Department of Microbiology & Immunology, New York Medical College, Valhalla, New York; Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York.
| |
Collapse
|
6
|
Schroeder SM, Nelde A, Walz JS. Viral T-cell epitopes - Identification, characterization and clinical application. Semin Immunol 2023; 66:101725. [PMID: 36706520 DOI: 10.1016/j.smim.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.
Collapse
Affiliation(s)
- Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Department for Otorhinolaryngology, Head, and Neck Surgery, University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Sun YQ, Ma R, Huang XJ. Optimizing the treatment of cytomegalovirus infection in allo-HSCT recipients. Expert Rev Clin Immunol 2023; 19:227-235. [PMID: 36541485 DOI: 10.1080/1744666x.2023.2161510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection continues to negatively impact the prognosis after allogeneic hematopoietic stem cell transplantation (allo-HSCT), even with active monitoring and preemptive strategies. Recent progress in pharmacology, immunotherapy, and vaccines has improved the strategy of CMV management. AREAS COVERED We summarized recent advances in managing CMV infection post allo-HSCT, including diagnosis, prophylaxis, and treatment. In this review, we mainly focused on approaches that have optimized or might optimize the management of CMV infection after allo-HSCT. EXPERT OPINION In our opinion, optimized management covers aspects including the serial monitoring of CMV-DNA and CMI, an accurate diagnosis, effective prophylaxis, and a rational preemptive therapy integrating antiviral drugs and cell therapies. Strategies based on the understanding of CMV pathogenesis and CMV-related immune reconstitution after allo-HSCT will be a direction in future studies.
Collapse
Affiliation(s)
- Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Rui Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
8
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
9
|
Dasari V, Beckett K, Horsefield S, Ambalathingal G, Khanna R. A bivalent CMV vaccine formulated with human compatible TLR9 agonist CpG1018 elicits potent cellular and humoral immunity in HLA expressing mice. PLoS Pathog 2022; 18:e1010403. [PMID: 35737741 PMCID: PMC9223316 DOI: 10.1371/journal.ppat.1010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is now convincing evidence that the successful development of an effective CMV vaccine will require improved formulation and adjuvant selection that is capable of inducing both humoral and cellular immune responses. Here, we have designed a novel bivalent subunit vaccine formulation based on CMV-encoded oligomeric glycoprotein B (gB) and polyepitope protein in combination with human compatible TLR9 agonist CpG1018. The polyepitope protein includes multiple minimal HLA class I-restricted CD8+ T cell epitopes from different antigens of CMV. This subunit vaccine generated durable anti-viral antibodies, CMV-specific CD4+ and CD8+ T cell responses in multiple HLA expressing mice. Antibody responses included broad TH1 isotypes (IgG2a, IgG2b and IgG3) and potently neutralized CMV infection in fibroblasts and epithelial cells. Furthermore, polyfunctional antigen-specific T cell immunity and antiviral antibody responses showed long-term memory maintenance. These observations argue that this novel vaccine strategy, if applied to humans, could facilitate the generation of robust humoral and cellular immune responses which may be more effective in preventing CMV-associated complications in various clinical settings. Human Cytomegalovirus (CMV) is a significant human pathogen. Generally, in healthy people CMV causes mild symptomatic disease, but during pregnancy CMV can transmit from mother to foetus (1 out of every 200 live births worldwide) and lead to sensorineural hearing loss, vision impairment and central nervous system damage. In transplant patients, CMV can cause serious complications leading to organ rejection and even death. Currently, there is no licensed vaccine available to prevent CMV-associated complications in pregnant women and transplant patients. Here, we have developed a novel bivalent CMV vaccine formulation consisting of recombinant CMVpoly and gB proteins in combination with human compatible adjuvant CpG1018. Preclinical immunogenicity evaluation in multiple HLA expressing mice demonstrated that bivalent CMV vaccine formulation consistently generated robust CMV-specific neutralising antibodies, CD4+ and CD8+ T cell responses. More importantly, long-term follow-up analysis showed that the CMV vaccine can induce durable CMV-specific humoral and cellular immune responses. Our results support further development of this bivalent subunit CMV vaccine to test safety, immunogenicity and efficacy in humans.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| | - Kirrilee Beckett
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shane Horsefield
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - George Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| |
Collapse
|
10
|
Ullah N, Anwer F, Ishaq Z, Siddique A, Shah MA, Rahman M, Rahman A, Mao X, Jiang T, Lee BL, Bae T, Ali A. In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. J Immunol Methods 2022; 504:113264. [PMID: 35341759 PMCID: PMC9040383 DOI: 10.1016/j.jim.2022.113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The vaccine development strategies have evolved from using an entire organism as an immunogen to a single antigen and further towards an epitope. Since an epitope is a relatively tiny and immunologically relevant part of an antigen, it has the potential to stimulate more robust and specific immune responses while causing minimal adverse effects. As a result, the recent focus of vaccine development has been to develop multi-epitope vaccines that can target multiple virulence mechanisms. Accordingly, we designed multi-epitope vaccine candidates B (multi-B-cell epitope immunogen) and CTB-B (an adjuvant - cholera toxin subunit B (CTB) - attached to immunogen B) against S. aureus by employing immunoinformatics approaches. The designed vaccines are composed of B-cell epitope segments (20-mer) of the eight well-characterized S. aureus virulence factors, namely ClfB, FnbpA, Hla, IsdA, IsdB, LukE, SdrD, and SdrE connected in series. The designed vaccines were expressed, purified, and administered to C57BL/6 mice with Freund adjuvant to evaluate the immunogenicity and protective efficacy. The results revealed that the immunized mice showed high IgG titers for the immunogen, and the antibody titers increased significantly following the second immunization. However, the generated antibodies did not protect the mice from infection. The interaction of anti-B antibodies with source virulence factors showed that the generated antibodies have no binding affinity with any of the corresponding virulence factors. Our results demonstrate the limitation of the in silico designed B-cell multi-epitope vaccine and suggest that a protein domain carrying both linear and conformational B-cell epitopes might be a better choice for developing an effective multi-epitope vaccine against S. aureus.
Collapse
Affiliation(s)
- Nimat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, 3400 Broadway, Gary, Indiana 46408, USA
| | - Farha Anwer
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Zaara Ishaq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Abubakar Siddique
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Majid Ali Shah
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, 3400 Broadway, Gary, Indiana 46408, USA
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Abdur Rahman
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Xinrui Mao
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - TingTing Jiang
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Bok Luel Lee
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, 3400 Broadway, Gary, Indiana 46408, USA.
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan.
| |
Collapse
|
11
|
Common T-Cell-Receptor Motifs and Features in Patients with Cytomegalovirus (CMV)-Seronegative End-Stage Renal Disease Receiving a Peptide Vaccination against CMV. Int J Mol Sci 2022; 23:ijms23031029. [PMID: 35162953 PMCID: PMC8835207 DOI: 10.3390/ijms23031029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
After solid-organ transplantation, reactivation of the cytomegalovirus (CMV) is often observed in seronegative patients and associated with a high risk of disease and mortality. CMV-specific T cells can prevent CMV reactivation. In a phase 1 trial, CMV-seronegative patients with end-stage renal disease listed for kidney transplantation were subjected to CMV phosphoprotein 65 (CMVpp65) peptide vaccination and further investigated for T-cell responses. To this end, CMV-specific CD8+ T cells were characterized by bulk T-cell-receptor (TCR) repertoire sequencing and combined single-cell RNA and TCR sequencing. In patients mounting an immune response to the vaccine, a common SYE(N)E TCR motif known to bind CMVpp65 was detected. CMV-peptide-vaccination-responder patients had TCR features distinct from those of non-responders. In a non-responder patient, a monoclonal inflammatory T-cell response was detected upon CMV reactivation. The identification of vaccine-induced CMV-reactive TCRs motifs might facilitate the development of cellular therapies for patients wait-listed for kidney transplantation.
Collapse
|
12
|
Alonso-Álvarez S, Colado E, Moro-García MA, Alonso-Arias R. Cytomegalovirus in Haematological Tumours. Front Immunol 2021; 12:703256. [PMID: 34733270 PMCID: PMC8558552 DOI: 10.3389/fimmu.2021.703256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
The exquisite coupling between herpesvirus and human beings is the result of millions of years of relationship, coexistence, adaptation, and divergence. It is probably based on the ability to generate a latency that keeps viral activity at a very low level, thereby apparently minimising harm to its host. However, this evolutionary success disappears in immunosuppressed patients, especially in haematological patients. The relevance of infection and reactivation in haematological patients has been a matter of interest, although one fundamentally focused on reactivation in the post-allogeneic stem cell transplant (SCT) patient cohort. Newer transplant modalities have been progressively introduced in clinical settings, with successively more drugs being used to manipulate graft composition and functionality. In addition, new antiviral drugs are available to treat CMV infection. We review the immunological architecture that is key to a favourable outcome in this subset of patients. Less is known about the effects of herpesvirus in terms of mortality or disease progression in patients with other malignant haematological diseases who are treated with immuno-chemotherapy or new molecules, or in patients who receive autologous SCT. The absence of serious consequences in these groups has probably limited the motivation to deepen our knowledge of this aspect. However, the introduction of new therapeutic agents for haematological malignancies has led to a better understanding of how natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, and B lymphocytes interact, and of the role of CMV infection in the context of recently introduced drugs such as Bruton tyrosine kinase (BTK) inhibitors, phosphoinosytol-3-kinase inhibitors, anti-BCL2 drugs, and even CAR-T cells. We analyse the immunological basis and recommendations regarding these scenarios.
Collapse
Affiliation(s)
- Sara Alonso-Álvarez
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Enrique Colado
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Marco A Moro-García
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
13
|
Wang X, Diamond DJ, Forman SJ, Nakamura R. Development of CMV-CD19 bi-specific CAR T cells with post-infusion in vivo boost using an anti-CMV vaccine. Int J Hematol 2021; 114:544-553. [PMID: 34561840 PMCID: PMC8475363 DOI: 10.1007/s12185-021-03215-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Adoptive transfer of in vitro expanded, chimeric antigen receptor (CAR)-redirected CD19-specific T cells can induce dramatic disease regression in patients with leukemia and lymphomas. However, the full potential of this emerging modality is hampered in some cancer settings by a significant rate of therapeutic failure arising from the attenuated engraftment and persistence of CAR-redirected T cells, and tumor relapse following adoptive transfer. Here, we discuss an advanced strategy that facilitates post-infusion in vivo boosting of CAR T cells via CMV vaccination, to mediate durable remission of B cell malignancies by engrafting a CAR molecule onto a CMV-specific T cell. We also discuss a feasible and unique platform for the generation of the CMV-CD19CAR T cells for clinical application. This new approach would overcome multiple challenges in current CAR T cell technology including: short T cell persistence, limited duration of response, and inability to re-stimulate T cells after relapse or persistent disease.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Don J Diamond
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Stephen J Forman
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ryotaro Nakamura
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
14
|
In-depth summary over cytomegalovirus infection in allogeneic hematopoietic stem cell transplantation recipients. Virusdisease 2021; 32:422-434. [PMID: 34631973 DOI: 10.1007/s13337-021-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
In this study, we reviewed various aspects of cytomegalovirus infection, including pathophysiology, diagnosis methods, and antiviral treatments. Background: Infections continue to be a major reason of complications like high non-relapse morbidity and mortality rate after allogenic hematopoietic stem cell transplantation. Cytomegalovirus is the most common infection in immunocompromised patients or those with graft-versus-host disease. The Latent-cytomegalovirus disease could increase the risk of reactivation in allogenic hematopoietic stem cell transplantation patients and lead to profound adverse effects on transplantation outcomes. Cytomegalovirus-specific CD4 + and CD8 + T cells reconstitution is crucial for protection against the virus reactivation. Different prophylactic, pre-emptive, and therapeutic anti-viral drugs are available to prevent cytomegalovirus infection/reactivation and treat resistant infections. Conclusion: Although there has been introduced various CMV antiviral treatment strategies like antiviral drugs, Vaccination, passive immunotherapies and adoptive transfer of CMV-specific T cells, further clinical trials are required to approve current therapies.
Collapse
|
15
|
Hakki M, Aitken SL, Danziger-Isakov L, Michaels MG, Carpenter PA, Chemaly RF, Papanicolaou GA, Boeckh M, Marty FM. American Society for Transplantation and Cellular Therapy Series: #3-Prevention of Cytomegalovirus Infection and Disease After Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:707-719. [PMID: 34452721 DOI: 10.1016/j.jtct.2021.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022]
Abstract
The Practice Guidelines Committee of the American Society for Transplantation and Cellular Therapy partnered with its Transplant Infectious Disease Special Interest Group to update its 2009 compendium-style infectious diseases guidelines for the care of hematopoietic cell transplant (HCT) recipients. A new approach was taken with the goal of better serving clinical providers by publishing each standalone topic in the infectious disease series as a concise format of frequently asked questions (FAQ), tables, and figures. Adult and pediatric infectious disease and HCT content experts developed and answered FAQs. Topics were finalized with harmonized recommendations that were made by assigning an A through E strength of recommendation paired with a level of supporting evidence graded I through III. The third topic in the series focuses on the prevention of cytomegalovirus infection and disease in HCT recipients by reviewing prophylaxis and preemptive therapy approaches; key definitions, relevant risk factors, and diagnostic monitoring considerations are also reviewed.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, Portland, Oregon.
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Marian G Michaels
- Division of Pediatric Infectious Diseases, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michael Boeckh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Vaccine and Infectious Disease Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Francisco M Marty
- Division of Infectious Diseases, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Jakharia N, Howard D, Riedel DJ. CMV Infection in Hematopoietic Stem Cell Transplantation: Prevention and Treatment Strategies. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2021; 13:123-140. [PMID: 34305463 PMCID: PMC8294301 DOI: 10.1007/s40506-021-00253-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Purpose of Review Cytomegalovirus (CMV) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (Allo-HSCT). New strategies and methods for prevention and management of CMV infection are urgently needed. We aim to review the new developments in diagnostics, prevention, and management strategies of CMV infection in Allo-HSCT recipients. Recent Findings The approval of the novel anti-CMV drug letermovir in 2017 has led to an increase in the use of antiviral prophylaxis as a preferred approach for prevention in many centers. Real-world studies have shown efficacy similar to the clinical trial. CMV-specific T cell-mediated immunity assays identify patients with immune reconstitution and predict disease progression. Phase 2 trials of maribavir have shown its efficacy as preemptive therapy and treatment of resistant and refractory CMV infections. Adoptive T cell therapy is an emerging option for treatment of refractory and resistant CMV. Of the different CMV vaccine trials, PepVax has shown promising results in a phase 1 trial. Summary CMV cell-mediated immunity assays have potential to be used as an adjunctive test to develop individualized management plan by identifying the patients who develop immune reconstitution; however, further prospective interventional studies are needed. Maribavir and adoptive T cell therapy are promising new therapies for treatment of CMV infections. CMV vaccine trials for prevention are also under way.
Collapse
Affiliation(s)
- Niyati Jakharia
- Department of Internal Medicine, Section of Infectious Diseases, Stanford University Hospital, 300 Pasteur Dr., Lane L 134, Stanford, CA 94305 USA
| | - Dianna Howard
- Department of Internal Medicine, Section of Hematology-Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC USA
| | - David J Riedel
- Department of Internal Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
17
|
Long X, Qiu Y, Zhang Z, Wu M. Insight for Immunotherapy of HCMV Infection. Int J Biol Sci 2021; 17:2899-2911. [PMID: 34345215 PMCID: PMC8326118 DOI: 10.7150/ijbs.58127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are susceptible to HCMV infection in developing countries, while older individuals are more susceptible in developed countries. Most patients have no obvious symptoms from the primary infection. Studies have indicated that the virus has gradually adapted to the host immune system. Therefore, the control of HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its application to HCMV infections is receiving increasing attention. Here, we discuss the immune response to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and targeted antibodies.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yi Qiu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
| |
Collapse
|
18
|
Immune control of cytomegalovirus reactivation in stem cell transplantation. Blood 2021; 139:1277-1288. [PMID: 34166512 DOI: 10.1182/blood.2020010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
The reactivation of viruses from latency after allogeneic stem cell transplantation (SCT) continues to represent a major clinical challenge requiring sophisticated monitoring strategies in the context of prophylactic and/or pre-emptive antiviral drugs that are associated with significant expense, toxicity, and rates of failure. Accumulating evidence has demonstrated the association of polyfunctional virus-specific T-cells with protection from viral reactivation, affirmed by the ability of adoptively transferred virus-specific T-cells to prevent and treat reactivation and disease. The roles of innate cells (NK cells) in early viral surveillance, and dendritic cells in priming of T-cells have also been delineated. Most recently, a role for strain-specific humoral responses in preventing early cytomegalovirus (CMV) reactivation has been demonstrated in preclinical models. Despite these advances, many unknowns remain: what are the critical innate and adaptive responses over time, is the origin (e.g. recipient versus donor) and localization (e.g. in parenchymal tissue versus lymphoid organs) of these responses important, how does GVHD and the prevention/treatment thereof (e.g. high dose steroids) impact the functionality and relevance of a particular immune axis, do the immune parameters that control latency, reactivation and dissemination differ, and what is the impact of new antiviral drugs on the development of enduring antiviral immunity. Thus, whilst antiviral drugs have provided major improvements over the last two decades, understanding the immunological paradigms underpinning protective antiviral immunity after SCT offers the potential to generate non-toxic immune-based therapeutic approaches for lasting protection from viral reactivation.
Collapse
|
19
|
Scarpini S, Morigi F, Betti L, Dondi A, Biagi C, Lanari M. Development of a Vaccine against Human Cytomegalovirus: Advances, Barriers, and Implications for the Clinical Practice. Vaccines (Basel) 2021; 9:551. [PMID: 34070277 PMCID: PMC8225126 DOI: 10.3390/vaccines9060551] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (hCMV) is one of the most common causes of congenital infection in the post-rubella era, representing a major public health concern. Although most cases are asymptomatic in the neonatal period, congenital CMV (cCMV) disease can result in permanent impairment of cognitive development and represents the leading cause of non-genetic sensorineural hearing loss. Moreover, even if hCMV mostly causes asymptomatic or pauci-symptomatic infections in immunocompetent hosts, it may lead to severe and life-threatening disease in immunocompromised patients. Since immunity reduces the severity of disease, in the last years, the development of an effective and safe hCMV vaccine has been of great interest to pharmacologic researchers. Both hCMV live vaccines-e.g., live-attenuated, chimeric, viral-based-and non-living ones-subunit, RNA-based, virus-like particles, plasmid-based DNA-have been investigated. Encouraging data are emerging from clinical trials, but a hCMV vaccine has not been licensed yet. Major difficulties in the development of a satisfactory vaccine include hCMV's capacity to evade the immune response, unclear immune correlates for protection, low number of available animal models, and insufficient general awareness. Moreover, there is a need to determine which may be the best target populations for vaccine administration. The aim of the present paper is to examine the status of hCMV vaccines undergoing clinical trials and understand barriers limiting their development.
Collapse
Affiliation(s)
- Sara Scarpini
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Francesca Morigi
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Ludovica Betti
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Arianna Dondi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| | - Carlotta Biagi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| |
Collapse
|
20
|
Ljungman P, Bermudez A, Logan AC, Kharfan-Dabaja MA, Chevallier P, Martino R, Wulf G, Selleslag D, Kakihana K, Langston A, Lee DG, Solano C, Okamoto S, Smith LR, Boeckh M, Wingard JR, Cywin B, Fredericks C, Lademacher C, Wang X, Young J, Maertens J. A randomised, placebo-controlled phase 3 study to evaluate the efficacy and safety of ASP0113, a DNA-based CMV vaccine, in seropositive allogeneic haematopoietic cell transplant recipients. EClinicalMedicine 2021; 33:100787. [PMID: 33842870 PMCID: PMC8020145 DOI: 10.1016/j.eclinm.2021.100787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) is a complication of allogeneic haematopoietic cell transplantation (allo-HCT). ASP0113, a DNA-based vaccine, contains two plasmids encoding human CMV glycoprotein B and phosphoprotein 65 (pp65). We assessed ASP0113 in CMV-seropositive allo-HCT recipients. METHODS In this phase 3, randomised, placebo-controlled study, CMV-seropositive allo-HCT recipients were randomly assigned (1:1) via interactive response technology to receive five injections of 1 mL of 5 mg/mL ASP0113 or placebo. The pharmacist and designated staff were unblinded. Masked syringes maintained the blind for patients and study personnel. Efficacy and safety analyses included patients who received ≥1 dose of ASP0113/placebo. The primary efficacy endpoint was the proportion of allo-HCT recipients with composite all-cause mortality and adjudicated CMV end-organ disease (EOD) by 1 year post-transplant. ClinicalTrials.gov: NCT01877655 (not recruiting). FINDINGS Patients were recruited between Sept 11, 2013 and Sept 21, 2016. Overall, 501 patients received ≥1 dose of ASP0113 (n = 246) or placebo (n = 255). The proportion of patients with composite all-cause mortality and adjudicated CMV EOD by 1 year post-transplant was 35.4% (n = 87) with ASP0113 and 30•2% (n = 77) with placebo (odds ratio 1.27; 95% confidence interval: 0.87 to 1.85; p = 0.205). Incidence of injection site-related treatment-emergent adverse events (TEAEs) was higher with ASP0113 than placebo. Overall incidence and severity of other TEAEs was similar between groups. T-cell response to pp65 increased over time and was greater with placebo than ASP0113 (p = 0.027). INTERPRETATION ASP0113 did not reduce overall mortality or CMV EOD by 1 year post-transplant. Safety findings were similar between groups. FUNDING Astellas Pharma Global Development, Inc .
Collapse
Affiliation(s)
- Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital and Division of Hematology, Department of Medicine Huddinge, Karolinska Institutet, SE-14186, Stockholm, Sweden
- Corresponding author.
| | - Arancha Bermudez
- Department of Hematology, Hospital Universitario Marqués de Valdecilla, Instituto de Formación e Investigación Marqués de Valdecilla, 39008, Santander, Spain
| | - Aaron C. Logan
- Division of Hematology and Blood and Marrow Transplantation, Department of Medicine, University of California, San Francisco, 94143, San Francisco, United States
| | - Mohamed A. Kharfan-Dabaja
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute and University of South Florida, 33612, Tampa, United States
| | - Patrice Chevallier
- Service d'Hématologie Clinique, CHU de Nantes, 44093, Nantes, France and CRCINA / INSERM UMR1232 / CNRS ERL6001 IRS UN – 8 Quai Moncousu – BP 70721, 44007 Nantes cedex 1, France
| | - Rodrigo Martino
- Division of Clinical Hematology, Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, Spain
| | - Gerald Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, D-37075, Göttingen, Germany
| | - Dominik Selleslag
- Department of Hematology, AZ Sint-Jan Brugge-Oostende, 8000, Brugge, Belgium
| | - Kazuhiko Kakihana
- Hematology Division, Tokyo Metropolitan Komagome Hospital, 113-8677, Tokyo, Japan
| | - Amelia Langston
- Winship Cancer Institute, Emory University, 30322, Atlanta, United States
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Catholic Hematology Hospital and Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, Institute of Research INCLIVA and University of Valencia, 46010, Valencia, Spain
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Kelo University School of Medicine, 160-8582, Tokyo, Japan
| | | | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center and University of Washington, 98109, Seattle, United States
| | - John R. Wingard
- Division of Hematology & Oncology, Department of Medicine, University of Florida, 32610, Gainesville, United States
| | - Beth Cywin
- Astellas Pharma Global Development, Inc., 60062, Northbrook, United States
| | | | | | - Xuegong Wang
- Astellas Pharma Global Development, Inc., 60062, Northbrook, United States
| | - James Young
- Astellas Pharma Global Development, Inc., 60062, Northbrook, United States
| | - Johan Maertens
- Department of Microbiology and Immunology, K.U. Leuven and Department of Hematology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Sommerer C, Schmitt A, Hückelhoven-Krauss A, Giese T, Bruckner T, Wang L, Schnitzler P, Meuer S, Zeier M, Schmitt M. Peptide Vaccination against Cytomegalovirus Induces Specific T Cell Response in Responses in CMV Seronegative End-Stage Renal Disease Patients. Vaccines (Basel) 2021; 9:vaccines9020133. [PMID: 33562163 PMCID: PMC7915922 DOI: 10.3390/vaccines9020133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Cytomegalovirus (CMV) reactivation occurs in seronegative patients after solid organ transplantation (SOT) particularly from seropositive donors and can be lethal. Generation of CMV-specific T cells helps to prevent CMV reactivation. Therefore, we initiated a clinical phase I CMVpp65 peptide vaccination trial for seronegative end-stage renal disease patients waiting for kidney transplantation. Methods: The highly immunogenic nonamer peptide NLVPMVATV derived from CMV phosphoprotein 65(CMVpp65) in a water-in-oil emulsion (Montanide™) plus imiquimod (Aldara™) as an adjuvant was administered subcutaneously four times biweekly. Clinical course as well as immunological responses were monitored using IFN-γ ELISpot assays and flow cytometry for CMV-specific CD8+ T cells. Results: Peptide vaccination was well tolerated, and no drug-related serious adverse events were detected except for Grade I–II local skin reactions. Five of the 10 patients (50%) mounted any immune response (responders) and 40% of the patients presented CMV-specific CD8+ T cell responses elicited by these prophylactic vaccinations. No responders experienced CMV reactivation in the 18 months post-transplantation, while all non-responders reactivated. Conclusion: CMVpp65 peptide vaccination was safe, well tolerated, and clinically encouraging in seronegative end-stage renal disease patients waiting for kidney transplantation. Further studies with larger patient cohorts are planned.
Collapse
Affiliation(s)
- Claudia Sommerer
- Department of Nephrology, University Hospital Heidelberg, University of Heidelberg, 69117 Heidelberg, Germany;
- German Center for Infection Research DZIF, 69117 Heidelberg, Germany; (T.G.); (S.M.)
- Correspondence: ; Tel.: +49-(0)6221-91120; Fax: +49-(0)6221-9112-990
| | - Anita Schmitt
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany; (A.S.); (A.H.-K.); (L.W.); (M.S.)
| | - Angela Hückelhoven-Krauss
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany; (A.S.); (A.H.-K.); (L.W.); (M.S.)
| | - Thomas Giese
- German Center for Infection Research DZIF, 69117 Heidelberg, Germany; (T.G.); (S.M.)
- Institute of Immunology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Lei Wang
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany; (A.S.); (A.H.-K.); (L.W.); (M.S.)
| | - Paul Schnitzler
- Department of Virology, University Hospital Heidelberg, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Stefan Meuer
- German Center for Infection Research DZIF, 69117 Heidelberg, Germany; (T.G.); (S.M.)
- Institute of Immunology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University Hospital Heidelberg, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Michael Schmitt
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany; (A.S.); (A.H.-K.); (L.W.); (M.S.)
| |
Collapse
|
22
|
Plotkin SA, Wang D, Oualim A, Diamond DJ, Kotton CN, Mossman S, Carfi A, Anderson D, Dormitzer PR. The Status of Vaccine Development Against the Human Cytomegalovirus. J Infect Dis 2021; 221:S113-S122. [PMID: 32134478 DOI: 10.1093/infdis/jiz447] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous candidate vaccines against cytomegalovirus (CMV) infection and disease are in development. Whereas the previous article [1] provides background and opinions about the issues relating to vaccination, this article provides specifics about the vaccines in active development, as reported at a National Institutes of Health-sponsored meeting in Bethesda on September 4-6, 2018. Here, vaccine developers provide synopses of their candidate vaccines to immunize women to protect against congenital CMV disease and to prevent the consequences of CMV disease in recipients of transplanted organs or hematopoietic stem calls. The projects are presented here roughly in the descending order of their stage of development in the opinion of the first author.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania, USA
| | - Dai Wang
- Merck & Co., Kenilworth, New Jersey, USA
| | | | - Don J Diamond
- City of Hope National Medical Center, Duarte, California, USA
| | | | | | - Andrea Carfi
- Moderna Therapeutics, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
23
|
Annaloro C, Serpenti F, Saporiti G, Galassi G, Cavallaro F, Grifoni F, Goldaniga M, Baldini L, Onida F. Viral Infections in HSCT: Detection, Monitoring, Clinical Management, and Immunologic Implications. Front Immunol 2021; 11:569381. [PMID: 33552044 PMCID: PMC7854690 DOI: 10.3389/fimmu.2020.569381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In spite of an increasing array of investigations, the relationships between viral infections and allogeneic hematopoietic stem cell transplantation (HSCT) are still controversial, and almost exclusively regard DNA viruses. Viral infections per se account for a considerable risk of morbidity and mortality among HSCT recipients, and available antiviral agents have proven to be of limited effectiveness. Therefore, an optimal management of viral infection represents a key point in HSCT strategies. On the other hand, viruses bear the potential of shaping immunologic recovery after HSCT, possibly interfering with control of the underlying disease and graft-versus-host disease (GvHD), and eventually with HSCT outcome. Moreover, preliminary data are available about the possible role of some virome components as markers of immunologic recovery after HSCT. Lastly, HSCT may exert an immunotherapeutic effect against some viral infections, notably HIV and HTLV-1, and has been considered as an eradicating approach in these indications.
Collapse
Affiliation(s)
- Claudio Annaloro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Fabio Serpenti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giorgia Saporiti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giulia Galassi
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesca Cavallaro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Federica Grifoni
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Maria Goldaniga
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Luca Baldini
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesco Onida
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| |
Collapse
|
24
|
How I treat CMV reactivation after allogeneic hematopoietic stem cell transplantation. Blood 2020; 135:1619-1629. [PMID: 32202631 DOI: 10.1182/blood.2019000956] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation remains one of the most common and life-threatening infectious complications following allogeneic hematopoietic stem cell transplantation, despite novel diagnostic technologies, several novel prophylactic agents, and further improvements in preemptive therapy and treatment of established CMV disease. Treatment decisions for CMV reactivation are becoming increasingly difficult and must take into account whether the patient has received antiviral prophylaxis, the patient's individual risk profile for CMV disease, CMV-specific T-cell reconstitution, CMV viral load, and the potential drug resistance detected at the time of initiation of antiviral therapy. Thus, we increasingly use personalized treatment strategies for the recipient of an allograft with CMV reactivation based on prior use of anti-CMV prophylaxis, viral load, the assessment of CMV-specific T-cell immunity, and the molecular assessment of resistance to antiviral drugs.
Collapse
|
25
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
26
|
Haidar G, Boeckh M, Singh N. Cytomegalovirus Infection in Solid Organ and Hematopoietic Cell Transplantation: State of the Evidence. J Infect Dis 2020; 221:S23-S31. [PMID: 32134486 PMCID: PMC7057778 DOI: 10.1093/infdis/jiz454] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review focuses on recent advances in the field of cytomegalovirus (CMV). The 2 main strategies for CMV prevention are prophylaxis and preemptive therapy. Prophylaxis effectively prevents CMV infection after solid organ transplantation (SOT) but is associated with high rates of neutropenia and delayed-onset postprophylaxis disease. In contrast, preemptive therapy has the advantage of leading to lower rates of CMV disease and robust humoral and T-cell responses. It is widely used in hematopoietic cell transplant recipients but is infrequently utilized after SOT due to logistical considerations, though these may be overcome by novel methods to monitor CMV viremia using self-testing platforms. We review recent developments in CMV immune monitoring, vaccination, and monoclonal antibodies, all of which have the potential to become part of integrated strategies that rely on viral load monitoring and immune responses. We discuss novel therapeutic options for drug-resistant or refractory CMV infection, including maribavir, letermovir, and adoptive T-cell transfer. We also explore the role of donor factors in transmitting CMV after SOT. Finally, we propose a framework with which to approach CMV prevention in the foreseeable future.
Collapse
Affiliation(s)
- Ghady Haidar
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Nina Singh
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Aldoss I, La Rosa C, Baden LR, Longmate J, Ariza-Heredia EJ, Rida WN, Lingaraju CR, Zhou Q, Martinez J, Kaltcheva T, Dagis A, Hardwick N, Issa NC, Farol L, Nademanee A, Al Malki MM, Forman S, Nakamura R, Diamond DJ. Poxvirus Vectored Cytomegalovirus Vaccine to Prevent Cytomegalovirus Viremia in Transplant Recipients: A Phase 2, Randomized Clinical Trial. Ann Intern Med 2020; 172:306-316. [PMID: 32040960 PMCID: PMC9074089 DOI: 10.7326/m19-2511] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Triplex vaccine was developed to enhance cytomegalovirus (CMV)-specific T cells and prevent CMV reactivation early after hematopoietic stem cell transplant (HCT). Objective To determine the safety and efficacy of Triplex. Design First-in-patient, phase 2 trial. (ClinicalTrials.gov: NCT02506933). Setting 3 U.S. HCT centers. Participants 102 CMV-seropositive HCT recipients at high risk for CMV reactivation. Intervention Intramuscular injections of Triplex or placebo were given on days 28 and 56 after HCT. Triplex is a recombinant attenuated poxvirus (modified vaccinia Ankara) expressing immunodominant CMV antigens. Measurements The primary outcomes were CMV events (CMV DNA level ≥1250 IU/mL, CMV viremia requiring antiviral treatment, or end-organ disease), nonrelapse mortality, and severe (grade 3 or 4) graft-versus-host disease (GVHD), all evaluated through 100 days after HCT, and grade 3 or 4 adverse events (AEs) within 2 weeks after vaccination that were probably or definitely attributable to injection. Results A total of 102 patients (51 per group) received the first vaccination, and 91 (89.2%) received both vaccinations (46 Triplex and 45 placebo). Reactivation of CMV occurred in 5 Triplex (9.8%) and 10 placebo (19.6%) recipients (hazard ratio, 0.46 [95% CI, 0.16 to 1.4]; P = 0.075). No Triplex recipient died of nonrelapse causes during the first 100 days or had serious AEs, and no grade 3 or 4 AEs related to vaccination were observed within 2 weeks after vaccination. Incidence of severe acute GVHD after injection was similar between groups (hazard ratio, 1.1 [CI, 0.53 to 2.4]; P = 0.23). Levels of long-lasting, pp65-specific T cells with effector memory phenotype were significantly higher in Triplex than placebo recipients. Limitation The lower-than-expected incidence of CMV events in the placebo group reduced the power of the trial. Conclusion No vaccine-associated safety concerns were identified. Triplex elicited and amplified CMV-specific immune responses, and fewer Triplex-vaccinated patients had CMV viremia. Primary Funding Source National Cancer Institute and Helocyte.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Corinna La Rosa
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Lindsey R. Baden
- Division of Infectious Disease, Brigham and Women's Hospital & The Dana-Farber Cancer Institute, Boston, MA
| | - Jeffrey Longmate
- Division of Biostatistics of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Ella J. Ariza-Heredia
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Chetan Raj Lingaraju
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Qiao Zhou
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Joy Martinez
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Teodora Kaltcheva
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Andy Dagis
- Division of Biostatistics of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Nicola Hardwick
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Nicolas C. Issa
- Division of Infectious Disease, Brigham and Women's Hospital & The Dana-Farber Cancer Institute, Boston, MA
| | - Len Farol
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Auayporn Nademanee
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Monzr M. Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| | - Don J. Diamond
- Department of Hematology and Hematopoietic Cell Transplantation of the City of Hope Comprehensive Cancer Center and the Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
28
|
Tang L, Wu J, Li CG, Jiang HW, Xu M, Du M, Yin Z, Mei H, Hu Y. Characterization of Immune Dysfunction and Identification of Prognostic Immune-Related Risk Factors in Acute Myeloid Leukemia. Clin Cancer Res 2020; 26:1763-1772. [PMID: 31911547 DOI: 10.1158/1078-0432.ccr-19-3003] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/16/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE This study aims to provide comprehensive insights into longitudinal immune landscape in acute myeloid leukemia (AML) development and treatment, which may contribute to predict prognosis and guide clinical decisions. EXPERIMENTAL DESIGN Periphery blood samples from 79 patients with AML (at diagnosis or/and after chemotherapy or at relapse) and 24 healthy controls were prospectively collected. We performed phenotypic and functional analysis of various lymphocytes through multiparametric flow cytometry and investigated prognostic immune-related risk factors. RESULTS Immune defects in AML were reflected in T and natural killer (NK) cells, whereas B-cell function remained unaffected. Both CD8+ T and CD4+ T cells exhibited features of senescence and exhaustion at diagnosis. NK dysfunction was supported by excessive maturation and downregulation of NKG2D and NKP30. Diseased γδ T cells demonstrated a highly activated or even exhausted state through PD-1 upregulation and NKG2D downregulation. Effective therapeutic response following chemotherapy correlated with T and NK function restoration. Refractory and relapsed patients demonstrated even worse immune impairments, and selective immune signatures apparently correlated clinical outcomes and survival. PD-1 expression in CD8+ T cells was independently predictive of poor overall survival and event-free survival. CONCLUSIONS T-cell senescence and exhaustion, together with impaired NK and γδ T-cell function, are dominant aspects involved in immune dysfunction in AML. Noninvasive immune testing of blood samples could be applied to predict therapeutic reactivity, high risk for relapse, and unfavorable prognosis.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Jianghua Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Cheng-Gong Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Hui-Wen Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Min Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengyi Du
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Transplant recipients are at risk for cytomegalovirus (CMV) infection and associated morbidity and mortality. We summarize recently introduced or currently investigated modalities for prevention and treatment of CMV infection in hematopoietic cell (HCT) and solid organ transplant (SOT) recipients. RECENT FINDINGS Letermovir was recently approved for CMV prevention in HCT recipients. Data from real world studies support its role to improve outcomes in this population. Letermovir is currently under investigation for broader patient populations and indications. Maribavir is in late stages of development for CMV treatment and may provide a safer alternative to currently available anti-CMV drugs. Promising CMV vaccine candidates and adoptive cell therapy approaches are under evaluation. CMV immune monitoring assays are predicted to play a more central role in our clinical decision making. In recent years, major advances have been made in CMV prevention and treatment in transplant recipients. Rigorous research is ongoing and is anticipated to further impact our ability to improve outcomes in this population.
Collapse
Affiliation(s)
- Anat Stern
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, NY1250 1st Avenue, New York, NY, 10065, USA
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, NY1250 1st Avenue, New York, NY, 10065, USA.
| |
Collapse
|
30
|
El Haddad L, Ghantoji SS, Park AK, Batista MV, Schelfhout J, Hachem J, Lobo Y, Jiang Y, Rondon G, Champlin R, Chemaly RF. Clinical and economic burden of pre-emptive therapy of cytomegalovirus infection in hospitalized allogeneic hematopoietic cell transplant recipients. J Med Virol 2019; 92:86-95. [PMID: 31448830 DOI: 10.1002/jmv.25574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
Cytomegalovirus (CMV) infection remains a major complication after allogeneic hematopoietic cell transplantation (allo-HCT). We conducted a retrospective study to determine the clinical and economic burden of pre-emptive therapy (PET) for CMV infection in 100 consecutive hospitalized adult CMV positive serostatus allo-HCT recipients and compared their hospitalization cost with allo-HCT recipients hospitalized with graft vs host disease without CMV infection (control group) and across 19 US cancer centers for hospitalized patients with CMV infection between 2012 and 2015 (Vizient database). A total of 192 CMV episodes of PET for CMV infection occurred within 1 year post-HCT. PET consisted of ganciclovir (41% of episodes), foscarnet (40%), and valganciclovir (38%) with the longest average length of stay in foscarnet-treated patients (41 days). The average direct cost per patient admitted for PET was $116 976 (range: $7866-$641 841) compared with $12 496 (range: $2004-$43 069) in the control group (P < .0001). The total direct cost per encounter was significantly higher in patients treated with foscarnet and had nephrotoxicity ($284 006) compared with those who did not ($112 195). The average cost amongst the 19 US cancer centers, including our institution, was $42 327 with major disparities in cost and clinical outcomes. PET for CMV infection is associated with high economic burden in allo-HCT recipients.
Collapse
Affiliation(s)
- Lynn El Haddad
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shashank S Ghantoji
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne K Park
- Office of Performance Improvement, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marjorie V Batista
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Jack Hachem
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yadira Lobo
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Jiang
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
31
|
Maffini E, Busca A, Costa C, Giaccone L, Cerrano M, Curtoni A, Cavallo R, Bruno B. An update on the treatment of cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2019; 12:937-945. [PMID: 31423858 DOI: 10.1080/17474086.2019.1657399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Human Cytomegalovirus (CMV) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Standard treatment options have for long been limited to a small number of effective drugs with significant toxicities.Areas covered: In this manuscript, the authors update a previous review summarizing recent developments in the virology lab and their possible implications for treatment strategies at bedside. In particular, the authors focused on new antiviral drugs already available and under investigation in clinical trials and innovative immunotherapeutic approaches, including adoptive T-cell therapy and vaccines.Expert opinion: Broader knowledge of CMV biology and its relationship with the host immune system is greatly contributing to the development of novel therapeutic approaches. The availability of new drugs, the improved techniques for virological testing and the more accurate patient risk stratification allow to better individualize treatment, limiting toxicity while sparing antiviral effects. The role of immunotherapy is clearly emerging and will further expand our treatment armamentarium.
Collapse
Affiliation(s)
- Enrico Maffini
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandro Busca
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Costa
- SC Microbiology and Virology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luisa Giaccone
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marco Cerrano
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Antonio Curtoni
- SC Microbiology and Virology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Rossana Cavallo
- SC Microbiology and Virology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Department of Oncology, SSCVD Trapianto di Cellule Staminali, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
32
|
Behzadi MA, Stein KR, Bermúdez-González MC, Simon V, Nachbagauer R, Tortorella D. An Influenza Virus Hemagglutinin-Based Vaccine Platform Enables the Generation of Epitope Specific Human Cytomegalovirus Antibodies. Vaccines (Basel) 2019; 7:vaccines7020051. [PMID: 31207917 PMCID: PMC6630953 DOI: 10.3390/vaccines7020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent pathogen with ~60%–90% seropositivity in adults. CMV can contribute to organ rejection in transplant recipients and is a major cause of birth defects in newborns. Currently, there are no approved vaccines against CMV. The epitope of a CMV neutralizing monoclonal antibody against a conserved region of the envelope protein gH provided the basis for a new CMV vaccine design. We exploited the influenza A virus as a vaccine platform due to the highly immunogenic head domain of its hemagglutinin envelope protein. Influenza A variants were engineered by reverse genetics to express the epitope of an anti-CMV gH neutralizing antibody that recognizes native gH into the hemagglutinin antigenic Sa site. We determined that the recombinant influenza variants expressing 7, 10, or 13 residues of the anti-gH neutralizing antibody epitope were recognized and neutralized by the anti-gH antibody 10C10. Mice vaccinated with the influenza/CMV chimeric viruses induced CMV-specific antibodies that recognized the native gH protein and inhibited virus infection. In fact, the influenza variants expressing 7–13 gH residues neutralized a CMV infection at ~60% following two immunizations with variants expressing the 13 residue gH peptide produced the highest levels of neutralization. Collectively, our study demonstrates that a variant influenza virus inserted with a gH peptide can generate a humoral response that limits a CMV infection.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Maria Carolina Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
33
|
Cairo MS, Beishuizen A. Childhood, adolescent and young adult non-Hodgkin lymphoma: current perspectives. Br J Haematol 2019; 185:1021-1042. [PMID: 30729513 PMCID: PMC6897376 DOI: 10.1111/bjh.15764] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 6th International Symposium on Childhood, Adolescent and Young Adult (CAYA) Non-Hodgkin Lymphoma (NHL) was held in Rotterdam, Netherlands, 26-29 September, 2018. This summary manuscript is a perspective on the presentations from the plenary scientific sessions, including wellness and survivorship, B-cell NHL, AYA lymphoma, translational NHL biology, lymphoma immunology, bone marrow transplantation and cell therapy, T/Natural Killer cell lymphoma, anaplastic large cell lymphoma, lymphoblastic lymphoma, novel lymphoma therapeutics and Hodgkin lymphoma. The symposium was attended by over 260 registrants from 42 different countries and included young, middle and senior investigators. Finally, the Angelo Rosolen, MD, Memorial Lecture was delivered by Alfred Reiter, MD.
Collapse
Affiliation(s)
- Mitchell S. Cairo
- Departments of Pediatrics, Medicine, Pathology, Microbiology& Immunology, and Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Auke Beishuizen
- Division of Paediatric Haemato-Oncology, Princess Maxima Centre for Paediatric Oncology, Utrecht
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Antiviral prophylaxis for cytomegalovirus infection in allogeneic hematopoietic cell transplantation. Blood Adv 2019; 2:2159-2175. [PMID: 30154125 DOI: 10.1182/bloodadvances.2018016493] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 01/07/2023] Open
Abstract
Patients treated with allogeneic hematopoietic cell transplantation (HCT) are at risk of cytomegalovirus (CMV) reactivation and disease, which results in increased morbidity and mortality. Although universal antiviral prophylaxis against CMV improves outcomes in solid organ transplant recipients, data have been conflicting regarding such prophylaxis in patients undergoing allogeneic HCT. We conducted a systematic review of randomized trials of prophylactic antivirals against CMV after allogeneic HCT to summarize the evolution of the field over the last 35 years and evaluate the prophylactic potential of antiviral agents against CMV after allogeneic HCT. Electronic databases were queried from database inception through 31 December 2017. For included studies, incidence of CMV infection and all-cause mortality were collected as primary outcomes; CMV disease incidence, use of preemptive therapy, and drug toxicities were collected as secondary outcomes. Nineteen clinical trials conducted between 1981 and 2017 involving a total of 4173 patients were included for review. Prophylactic strategies included use of acyclovir, valacyclovir, ganciclovir, maribavir, brincidofovir, and letermovir compared with placebo or a comparator antiviral. Fourteen trials that compared antiviral prophylaxis with placebo demonstrated overall effectiveness in reducing incidence of CMV infection (odds ratio [OR], 0.49; 95% confidence interval [CI], 0.42-0.58), CMV disease (OR, 0.56; 95% CI, 0.40-0.80), and use of preemptive therapy (OR, 0.51; 95% CI, 0.42-0.62; 6 trials); however, none demonstrated reduction in all-cause mortality (OR, 0.96; 95% CI, 0.78-1.18) except the phase 3 trial of letermovir (week-24 OR, 0.59; 95% CI, 0.38-0.98). Additional research is warranted to determine patient groups most likely to benefit from antiviral prophylaxis and its optimal deployment after allogeneic HCT.
Collapse
|
35
|
Delayed immune reconstitution after allogeneic transplantation increases the risks of mortality and chronic GVHD. Blood Adv 2019; 2:909-922. [PMID: 29678809 DOI: 10.1182/bloodadvances.2017014464] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Slow immune reconstitution is a major obstacle to the successful use of allogeneic hematopoietic cell transplantation (allo-HCT). As matched sibling donor (MSD) allo-HCT is regarded as the gold standard, we evaluated the pace of immune reconstitution in 157 adult recipients of reduced-intensity conditioning followed by MSD peripheral blood HCT (n = 68) and compared these to recipients of umbilical cord blood (UCB; n = 89). At day 28, UCB recipients had fewer natural killer (NK) cells than MSD recipients, but thereafter, NK cell numbers (and their subsets) were higher in UCB recipients. During the first 6 months to 1 year after transplant, UCB recipients had slower T-cell subset recovery, with lower numbers of CD3+, CD8+, CD8+ naive, CD4+ naive, CD4+ effector memory T, regulatory T, and CD3+CD56+ T cells than MSD recipients. Notably, B-cell numbers were higher in UCB recipients from day 60 to 1 year. Bacterial and viral infections were more frequent in UCB recipients, yet donor type had no influence on treatment-related mortality or survival. Considering all patients at day 28, lower numbers of total CD4+ T cells and naive CD4+ T cells were significantly associated with increased infection risk, treatment-related mortality, and chronic graft-versus-host disease (GVHD). Patients with these characteristics may benefit from enhanced or prolonged infection surveillance and prophylaxis as well as immune reconstitution-accelerating strategies.
Collapse
|
36
|
The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2019; 102:900-931. [PMID: 29596116 DOI: 10.1097/tp.0000000000002191] [Citation(s) in RCA: 770] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite recent advances, cytomegalovirus (CMV) infections remain one of the most common complications affecting solid organ transplant recipients, conveying higher risks of complications, graft loss, morbidity, and mortality. Research in the field and development of prior consensus guidelines supported by The Transplantation Society has allowed a more standardized approach to CMV management. An international multidisciplinary panel of experts was convened to expand and revise evidence and expert opinion-based consensus guidelines on CMV management including prevention, treatment, diagnostics, immunology, drug resistance, and pediatric issues. Highlights include advances in molecular and immunologic diagnostics, improved understanding of diagnostic thresholds, optimized methods of prevention, advances in the use of novel antiviral therapies and certain immunosuppressive agents, and more savvy approaches to treatment resistant/refractory disease. The following report summarizes the updated recommendations.
Collapse
|
37
|
La Rosa C, Longmate J, Lingaraju CR, Zhou Q, Kaltcheva T, Hardwick N, Aldoss I, Nakamura R, Diamond DJ. Rapid Acquisition of Cytomegalovirus-Specific T Cells with a Differentiated Phenotype, in Nonviremic Hematopoietic Stem Transplant Recipients Vaccinated with CMVPepVax. Biol Blood Marrow Transplant 2018; 25:771-784. [PMID: 30562587 DOI: 10.1016/j.bbmt.2018.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Early cytomegalovirus (CMV) reactivation remains a significant cause of morbidity and mortality in allogeneic hematopoietic cell transplant (HCT) recipients. CMVPepVax is an investigational peptide vaccine designed to control CMV infection in HCT recipients seropositive for CMV by stimulating the expansion of T cell subsets that target the CMV tegument protein pp65. In a randomized Phase Ib pilot trial (ClinicalTrials.gov NCT01588015), two injections of CMVPepVax (at days 28 and 56 post-HCT) demonstrated safety, immunogenicity, increased relapse-free survival, and reduced CMV reactivation and use of antivirals. In the present study, we assessed the phenotypes and time courses of the pp65-specific CD8 T cell subsets that expanded in response to CMVPepVax vaccination. The functionality and antiviral role of CMV-specific T cells have been linked to immune reconstitution profiles characterized predominantly by differentiated effector memory T (TEM) subsets that have lost membrane expression of the costimulatory molecule CD28 and often reexpress the RA isoform of CD45 (TEMRA). Major histocompatibility complex class I pp65495-503 multimers, as well as CD28 and CD45 memory markers, were used to detect immune reconstitution in blood specimens from HCT recipients enrolled in the Phase Ib clinical trial. Specimens from the 10 (out of 18) vaccinated patients who had adequate (≥.2%) multimer binding to allow for memory analysis showed highly differentiated TEM and TEMRA phenotypes for pp65495-503-specific CD8 T cells during the first 100days post-transplantation. In particular, by day 70, during the period of highest risk for CMV reactivation, combined TEM and TEMRA phenotypes constituted a median of 90% of pp65495-503-specific CD8 T cells in these vaccinated patients. CMV viremia was not detectable in the patients who received CMVPepVax, although their pp65495-503-specific CD8 T cell profiles were strikingly similar to those observed in viremic patients who did not receive the vaccine. Collectively, our findings indicate that in the absence of clinically relevant viremia, CMVPepVax reconstituted significant levels of differentiated pp65495-503-specific CD8 TEMs early post-HCT. Our data indicate that the rapid reconstitution of CMV-specific T cells with marked levels of effector phenotypes may have been key to the favorable outcomes of the CMVPepVax clinical trial.
Collapse
Affiliation(s)
- Corinna La Rosa
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Jeffrey Longmate
- Division of Biostatistics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Chetan Raj Lingaraju
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Qiao Zhou
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Teodora Kaltcheva
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Nicola Hardwick
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Don J Diamond
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
38
|
Huang YT, Su Y, Kim SJ, Nichols P, Burack D, Maloy M, Giralt S, Perales MA, Jakubowski AA, Papanicolaou GA. Cytomegalovirus Infection in Allogeneic Hematopoietic Cell Transplantation Managed by the Preemptive Approach: Estimating the Impact on Healthcare Resource Utilization and Outcomes. Biol Blood Marrow Transplant 2018; 25:791-799. [PMID: 30476551 DOI: 10.1016/j.bbmt.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
We quantified cytomegalovirus (CMV) antiviral use and hospital length of stay (LOS) associated with CMV infection in a contemporary cohort of conventional (CONV) and CD34-selected (T cell-depleted) hematopoietic cell transplantation (HCT) recipients managed by preemptive therapy (PET) in a single US center. Adults who received first allogeneic HCT at Memorial Sloan Kettering Cancer Center from June 2010 through December 2014 were analyzed. Days on PET, number of readmissions, and readmission LOS by day 180 post-HCT were summarized. Estimated unit value (EUV) was defined as the expected number of PET days for a cohort of 100 HCT with characteristics as the analyzed cohort. Standardized incidence ratio was calculated as the ratio of observed outcomes of patients with CMV viremia over the outcomes of patients without CMV viremia. Of 318 patients, 88 received CONV and 230 CD34-selected HCT. Rates of CMV viremia were 26.3% for CONV and 41.9% for CD34-selected (P = .003). Among patients with viremia 68.2% CONV and 97.9% CD34-selected received PET. EUV for PET was 852 days and 2821 days for CONV and CD34-selected, respectively. The standardized incidence ratios for number of readmission and readmission LOS were 1.7 (95% confidence interval [CI], 1.4 to 2.1) and 1.2 (95% CI, 1.1 to 1.3), respectively, for CONV HCT and 1.7 (95% CI, 1.3 to 2.1) and 1.6 (95% CI, 1.5 to 1.7), respectively, for CD34-selected HCT. Overall survival was similar between patients with and without CMV viremia by HCT type. CMV end-organ disease was associated with lower overall survival only in CD34-selected HCT (P = .0007). CMV infection managed by PET requires substantial antiviral use and is associated with longer readmission LOS more, particularly among CD34-selected HCT.
Collapse
Affiliation(s)
- Yao-Ting Huang
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yiqi Su
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Seong Jin Kim
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paige Nichols
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Burack
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Molly Maloy
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sergio Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ann A Jakubowski
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
39
|
Diamond DJ, LaRosa C, Chiuppesi F, Contreras H, Dadwal S, Wussow F, Bautista S, Nakamura R, Zaia JA. A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection. Expert Rev Vaccines 2018; 17:889-911. [PMID: 30246580 PMCID: PMC6343505 DOI: 10.1080/14760584.2018.1526085] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION It has been almost fifty years since the Towne strain was used by Plotkin and collaborators as the first vaccine candidate for cytomegalovirus (CMV). While that approach showed partial efficacy, there have been a multitude of challenges to improve on the promise of a CMV vaccine. Efforts have been dichotomized into a therapeutic vaccine for patients with CMV-infected allografts, either stem cells or solid organ, and a prophylactic vaccine for congenital infection. AREAS COVERED This review will evaluate research prospects for a therapeutic vaccine for transplant recipients that recognizes CMV utilizing primarily T cell responses. Similarly, we will provide an extensive discussion on attempts to develop a vaccine to prevent the manifestations of congenital infection, based on eliciting a humoral anti-CMV protective response. The review will also describe newer developments that have upended the efforts toward such a vaccine through the discovery of a second pathway of CMV infection that utilizes an alternative receptor for entry using a series of antigens that have been determined to be important for prevention of infection. EXPERT COMMENTARY There is a concerted effort to unify separate therapeutic and prophylactic vaccine strategies into a single delivery agent that would be effective for both transplant-related and congenital infection.
Collapse
Affiliation(s)
- Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Corinna LaRosa
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Sanjeet Dadwal
- Department of Medical Specialties, City of Hope National
Medical Center, Duarte, CA
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Supriya Bautista
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoetic Cell
Transplantation, City of Hope National Medical Center, Duarte, CA
| | - John A. Zaia
- Center for Gene Therapy, Hematological Malignancy and Stem
Cell Transplantation Institute, City of Hope, Duarte, CA
| |
Collapse
|
40
|
Plotkin SA, Boppana SB. Vaccination against the human cytomegalovirus. Vaccine 2018; 37:7437-7442. [PMID: 29622379 PMCID: PMC6892274 DOI: 10.1016/j.vaccine.2018.02.089] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
Abstract
The human cytomegalovirus (HCMV) is the most important infectious cause of congenital abnormalities and also of infectious complications of transplantation. The biology of the infection is complex and acquired immunity does not always prevent reinfection. Nevertheless, vaccine development is far advanced, with numerous candidate vaccines being tested, both live and inactivated. This article summarizes the status of the candidate vaccines.
Collapse
Affiliation(s)
- Stanley A Plotkin
- University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| | - Suresh B Boppana
- UAB School of Medicine, CHB 114, 1600 7th Avenue South, Birmingham, AL 35233, United States.
| |
Collapse
|
41
|
Advancing Our Understanding of Protective Maternal Immunity as a Guide for Development of Vaccines To Reduce Congenital Cytomegalovirus Infections. J Virol 2018; 92:JVI.00030-18. [PMID: 29343580 DOI: 10.1128/jvi.00030-18] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenitally transmitted pathogen worldwide, impacting an estimated 1 million newborns annually. Congenital HCMV (cCMV) infection is a major global contributor to long-term neurologic deficits, including deafness, microcephaly, and neurodevelopmental delay, as well as to fetal loss and occasional infant mortality. Accordingly, design of a maternal vaccine to prevent cCMV continues to be a top public health priority. Nevertheless, we remain without a licensed vaccine. Maternal immunity provides partial protection, as the risk of vertical HCMV transmission from chronically infected mothers is reduced compared to settings in which the mother is newly infected during pregnancy. Therefore, an understanding of the maternal immune correlates of protection against cCMV is critical to informing design of an efficacious maternal vaccine. Although vaccine development is being assiduously pursued by a large number of pharmaceutical manufacturers, biotechnology organizations, and academic researchers, some pessimism has been expressed regarding the issue of whether a vaccine to protect against cCMV is possible. This pessimism is based on observations that natural immunity is not completely protective against maternal reinfection and congenital transmission. However, we assert that optimism regarding vaccine development is indeed justified, on the basis of accruing evidence of immune correlates of protection-readily achievable by vaccination-that are associated with reduced transmission of HCMV to the fetus in seronegative women. In light of the substantial burden on society conferred by cCMV infection, even a modest reduction in the occurrence of this fetal disease is an important public health goal and justifies aggressive clinical evaluation of vaccines currently in the pipeline.
Collapse
|
42
|
Hill JA, Mayer BT, Xie H, Leisenring WM, Huang ML, Stevens-Ayers T, Milano F, Delaney C, Jerome KR, Zerr DM, Nichols G, Boeckh M, Schiffer JT. Kinetics of Double-Stranded DNA Viremia After Allogeneic Hematopoietic Cell Transplantation. Clin Infect Dis 2018; 66:368-375. [PMID: 29020348 PMCID: PMC5850428 DOI: 10.1093/cid/cix804] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022] Open
Abstract
Background Improved understanding of double-stranded DNA (dsDNA) virus kinetics after hematopoietic cell transplantation (HCT) would facilitate development of therapeutic strategies. Methods We tested weekly plasma samples from 404 patients through day 100 after allogeneic HCT for cytomegalovirus (CMV), human herpesvirus (HHV) 6A and 6B, BK polyomavirus (BKV), adenovirus (AdV), and Epstein-Barr virus (EBV) using quantitative polymerase chain reaction. Episodes lasting ≤1 week were defined as blips and >1 week as persistent. We described virus-specific kinetics, analyzed the association of virus area under the curve (AUC) with overall mortality, and identified risk factors for persistent episodes. Results We identified 428 episodes of CMV, 292 of BKV, 224 of HHV-6B, 46 of AdV, and 53 of EBV. CMV and BKV had the highest proportions of persistent episodes (68% and 80%, respectively). Detection and kinetics varied by virus. HHV-6B episodes reached maximum levels fastest and had the shortest intervals between detection and end-organ disease. End-organ disease occurred within 14 days of viremia in 68% of cases, generally during persistent episodes. For all viruses, higher viral load AUC increased risk for overall mortality through day 365, persistent episodes had higher viral load than blips, and higher first positive viral load significantly increased risk for persistent episodes. First viral load >2 log10 copies/mL (range, 2.04-3.06 per virus) had high specificity for persistent episodes. Conclusions Persistent high viral load dsDNA viremia episodes after allogeneic HCT predict mortality. Virus-specific kinetics can guide timing and thresholds for early intervention in studies of novel agents.
Collapse
Affiliation(s)
- Joshua A Hill
- Division of Allergy and Infectious Diseases, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | | | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Colleen Delaney
- Clinical Research Division, Fred Hutchinson Cancer Research Center
- Seattle Children’s Research Institute, Washington
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- Department of Laboratory Medicine, University of Washington
| | - Danielle M Zerr
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- Seattle Children’s Research Institute, Washington
| | | | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Joshua T Schiffer
- Division of Allergy and Infectious Diseases, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| |
Collapse
|
43
|
Abstract
The development of a cytomegalovirus (CMV) vaccine has become a top priority due to its potential cost-effectiveness and associated public health benefits. However, there are a number of challenges facing vaccine development including the following: (1) CMV has many mechanisms for evading immune responses , and natural immunity is not perfect, (2) the immune correlates for protection are unclear, (3) a narrow range of CMV hosts limits the value of animal models, and (4) the placenta is a specialized organ formed transiently and its immunological status changes with time. In spite of these limitations, several types of CMV vaccine candidate, including live-attenuated, DISC , subunit, DNA, vectored, and peptide vaccines, have been developed or are currently under development. The recognition of the pentameric complex as the major neutralization target and identification of various strategies to block viral immune response evasion mechanisms have opened new avenues to CMV vaccine development. Here, we discuss the immune correlates for protection, the characteristics of the various vaccine candidates and their clinical trials, and the relevant animal models.
Collapse
|
44
|
Yoshikawa T. Betaherpesvirus Complications and Management During Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:251-270. [PMID: 29896671 DOI: 10.1007/978-981-10-7230-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two of the four betaherpesviruses, Cytomegalovirus (CMV) and human herpesvirus 6B (HHV-6B), play an important role in opportunistic infections in hematopoietic stem cell transplant (HSCT) recipients. These viruses are ubiquitous in humans and can latently infect mononuclear lymphocytes, complicating the diagnosis of the diseases they cause. Although the detection of viral DNA in a patient's peripheral blood by real-time PCR is widely used for monitoring viral infection, it is insufficient for the diagnosis of virus-associated disease. Theoretically, end-organ disease should be confirmed by detecting either viral antigen or significant amounts of viral DNA in a tissue sample obtained from the involved organ; however, this is often difficult to perform in clinical practice. The frequency of CMV-associated diseases has decreased gradually as a result of the introduction of preemptive or prophylactic treatments; however, CMV and HHV-6B infections remain a major problem in HSCT recipients. Measurement of viral DNA load in peripheral blood or plasma using real-time PCR is commonly used for monitoring these infections. Additionally, recent data suggest that an assessment of host immune response, particularly cytotoxic T-cell response, may be a reliable tool for predicting these viral infections. The antiviral drugs ganciclovir and foscarnet are used as first-line treatments; however, it is well known that these drugs have side effects, such as bone marrow suppression and nephrotoxicity. Further research is required to develop less-toxic antiviral drugs.
Collapse
Affiliation(s)
- Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
45
|
Robin C, Hémery F, Dindorf C, Thillard J, Cabanne L, Redjoul R, Beckerich F, Rodriguez C, Pautas C, Toma A, Maury S, Durand-Zaleski I, Cordonnier C. Economic burden of preemptive treatment of CMV infection after allogeneic stem cell transplantation: a retrospective study of 208 consecutive patients. BMC Infect Dis 2017; 17:747. [PMID: 29207952 PMCID: PMC5717816 DOI: 10.1186/s12879-017-2854-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection and disease (CMV episodes) are global concerns after allogeneic hematopoietic stem cell transplantation (HSCT). They affect survival, both by direct and indirect effects. Due to safety issues of current anti-CMV antivirals, long-term CMV prophylaxis is poorly tolerated and the most common strategy to decrease the incidence of CMV disease is preemptive. New, less toxic, molecules are currently being assessed for CMV prophylaxis which should replace or considerably decrease the preemptive approach. The aim of this study was to assess the economic burden of CMV episodes after HSCT with a preemptive approach. METHODS We analyzed data from 208 consecutive adults transplanted in our institution, between 2008 and 2013. Hospital resource utilization was retrieved via the linked hospital admissions and Diagnostic Related Groups for the period of conditioning to 12 months after transplant. RESULTS CMV episodes occurred in 70 patients (34%) over the first 12 months following HSCT, after a mean of 75 days (median: 46 (7-334)). The mean total length of stay was significantly associated with the occurrence of a CMV episode (113.9 vs. 87.5 days, p = 0.0002) but was associated neither with the pre-transplant CMV serology of donors/recipients nor with survival. The mean cost of transplant was €104,016 (SD = €37,281) after 12 months. Bivariate and multivariate analyses indicated that the occurrence of >1 CMV episode increased the costs of allogeneic HSCT by 25-30% (p < 0.0001). CONCLUSION Our study, which is the largest, single-institution cost study of allogeneic HSCT in Europe, shows that two or more CMV episodes significantly increased the transplant cost. New prophylactic strategies to prevent CMV infection and disease should decrease transplant costs.
Collapse
Affiliation(s)
- Christine Robin
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
- University Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - François Hémery
- Department of Medical Information, APHP, Henri Mondor Teaching Hospital, Créteil, France
| | | | | | - Ludovic Cabanne
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
| | - Rabah Redjoul
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
| | - Florence Beckerich
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
- University Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Christophe Rodriguez
- University Paris-Est Créteil (UPEC), 94000 Créteil, France
- Department of Virology, and INSERM U955 Team 18, APHP, Henri Mondor Teaching Hospital, 94000 Créteil, France
| | - Cécile Pautas
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
| | - Andrea Toma
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
| | - Sébastien Maury
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
- University Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Isabelle Durand-Zaleski
- University Paris-Est Créteil (UPEC), 94000 Créteil, France
- Department of Public Health, APHP, Henri Mondor Teaching Hospital, 94000- Créteil, France
| | - Catherine Cordonnier
- Department of Hematology, Assistance Publique-Hopitaux de Paris (APHP), Henri Mondor Teaching Hospital, 94010 Créteil, France
- University Paris-Est Créteil (UPEC), 94000 Créteil, France
| |
Collapse
|
46
|
Schleiss MR, Permar SR, Plotkin SA. Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00268-17. [PMID: 29046308 PMCID: PMC5717185 DOI: 10.1128/cvi.00268-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Minneapolis, Minnesota, USA
| | - Sallie R Permar
- Duke University Medical School, Human Vaccine Institute, Department of Pediatrics, Durham, North Carolina, USA
| | - Stanley A Plotkin
- University of Pennsylvania, Vaxconsult, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
de Witte MA, Kuball J, Miller JS. NK Cells and γδT Cells for Relapse Protection After Allogeneic Hematopoietic Cell Transplantation (HCT). CURRENT STEM CELL REPORTS 2017; 3:301-311. [PMID: 29399441 DOI: 10.1007/s40778-017-0106-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of review The outcome of allogeneic stem cell transplantation (allo-HCT) is still compromised by relapse and complications. NK cells and γδT cells, effectors which both function through MHC-unrestricted mechanisms, can target transformed and infected cells without inducing Graft-versus-Host Disease (GVHD). Allo-HCT platforms based on CD34+ selection or αβ-TCR depletion result in low grades of GVHD, early immune reconstitution (IR) of NK and γδT cells and minimal usage of GVHD prophylaxis. In this review we will discuss strategies to retain and expand the quantity, diversity and functionality of these reconstituting innate cell types. Recent findings Bisphosphonates, IL-15 cytokine administration, specific antibodies, checkpoint inhibitors and (CMV based) vaccination are currently being evaluated to enhance IR. All these approaches have shown to potentially enhance both NK and γδT cell immuno-repertoires. Summary Rapidly accumulating data linking innate biology to proposed clinical immune interventions, will give unique opportunities to unravel shared pathways which determine the Graft-versus-Tumor effects of NK and γδT cells.
Collapse
Affiliation(s)
- Moniek A de Witte
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN.,Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey S Miller
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| |
Collapse
|
48
|
|
49
|
Gu Y, Sun X, Li B, Huang J, Zhan B, Zhu X. Vaccination with a Paramyosin-Based Multi-Epitope Vaccine Elicits Significant Protective Immunity against Trichinella spiralis Infection in Mice. Front Microbiol 2017; 8:1475. [PMID: 28824599 PMCID: PMC5540943 DOI: 10.3389/fmicb.2017.01475] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Trichinellosis is a worldwide zoonosis and remains a serious public health problem. Interrupting parasite transmission via vaccination of livestocks with a potent vaccine is a practical approach to prevent human Trichinellosis. Our previous studies have identified that paramyosin of Trichinella spiralis (Ts-Pmy) is a good vaccine candidate against Trichinellosis. In this study, a novel multi-epitope vaccine (MEP) was constructed by using four CD4+ T cell epitopes (P2, P3, P4, and P5) and one B cell epitope (YX1) from Ts-Pmy and expressed as a soluble recombinant protein (rMEP) in Escherichia coli. Mice immunized with rMEP vaccine produced significant higher muscle larval reduction (55.4%) than that induced by immunization of parental rTs-Pmy (34.4%) against T. spiralis infection. The better protection is associated with rMEP induced high levels of anti-rMEP specific IgG and subclass IgG1/IgG2a, elevated T cell proliferation of splenocytes and secretion of IFN-γ, IL-4 and IL-5. The cellular response to individual T cell epitope also showed that splenocytes from mice immunized with rMEP strongly response to the stimulation of synthetic epitope peptide P2, P3, and P4, but not to P5, suggesting that most of T cell epitopes are exposed and processed well during immunization that may contribute to the high protection induced by the immunization of rMEP. This study implies that epitope vaccine is a promising approach for the development of vaccines against Trichinellosis.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Bo Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Bin Zhan
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| |
Collapse
|
50
|
Lilleri D, Gerna G. Strategies to control human cytomegalovirus infection in adult hematopoietic stem cell transplant recipients. Immunotherapy 2017; 8:1135-49. [PMID: 27485084 DOI: 10.2217/imt-2015-0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) represents the major viral complication after hematopoietic stem cell transplantation. HCMV infection may be controlled by the reconstituting immune system and remain subclinical or can lead to severe systemic and/or organ disease (mainly pneumonia and gastroenteritis) when immune reconstitution is delayed or impaired. In order to prevent the occurrence of HCMV disease, a prompt diagnosis of HCMV infection is mandatory. The adoption of pre-emptive therapy strategies guided by virological monitoring dramatically reduced the occurrence of HCMV disease. However, late-onset end-organ disease may occur in some patients with apparent immune reconstitution. In the near future, introduction of immunological monitoring and immunotherapies could markedly improve management of HCMV infection.
Collapse
Affiliation(s)
- Daniele Lilleri
- Laboratori Sperimentali di Ricerca-Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.,Università della Svizzera Italiana, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Giuseppe Gerna
- Laboratori Sperimentali di Ricerca-Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|