1
|
Wang J, Li S, Jiang H, Chang YJ, Zhao X, Jia J, Zhu X, Gong L, Liu X, Yu W, Huang X. Sintilimab plus decitabine for higher-risk treatment-naïve myelodysplastic syndromes: efficacy, safety, and biomarker analysis of a phase II, single-arm trial. J Immunother Cancer 2024; 12:e010355. [PMID: 39577869 PMCID: PMC11590843 DOI: 10.1136/jitc-2024-010355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Immunotherapy combined with azacitidine was feasible in higher-risk myelodysplastic syndromes (MDSs) with limited sample size of treatment-naïve patients, while the optimization of treatment strategies, including the optimal immune checkpoint inhibitor and hypomethylating agent and possible benefiting population, remained undefined. This study first evaluates the efficacy and safety of sintilimab, a PD-1 blockade, plus decitabine in treatment-naïve higher-risk MDS patients and investigates biomarkers for predicting treatment response. METHODS In this phase II, single-arm trial (ChiCTR2100044393), treatment-naïve higher-risk MDS patients with an International Prognostic Scoring System-Revised score >3.5 received sintilimab (200 mg, days 1 and 22) and decitabine (20 mg/m2, day 1-5) over 6-week cycles. The primary endpoint was the overall response rate (ORR), including complete remission (CR), partial remission (PR) or marrow CR. RESULTS A total of 54 eligible patients were enrolled and treated, with 25 (46.3%) having very high-risk MDS. Among 53 evaluable patients, the ORR was 77.4% (n=41), including 26.4% CR (n=14). The overall clinical improvement rate (CR, PR, marrow CR or hematological improvement) reached 81.1%. With a median follow-up of 20.0 months, the median event-free survival was 23 months with 12 progressing to acute myeloid leukemia. Median overall survival was not reached. Treatment was generally well tolerated, with hematologic toxicities being the most common adverse events. Biomarker analysis highlighted a negative correlation between T cell exhaustion markers, particularly TIM-3 and PD-1, with ORR. CONCLUSIONS The combination of sintilimab and decitabine shows promise efficacy for higher-risk MDS, with a favorable safety profile. The potential predictive value of T cell exhaustion biomarkers might help screen the possible benefiting population. TRIAL REGISTRATION NUMBER ChiCTR210044393.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Siqi Li
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Hao Jiang
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Xiaosu Zhao
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Jinsong Jia
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Xiaolu Zhu
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Lizhong Gong
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Xiaohong Liu
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Wenjing Yu
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
| | - Xiaojun Huang
- Peking University Institute of Hematology. National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People’s Hospital, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Shahzad M, Amin MK, Daver NG, Shah MV, Hiwase D, Arber DA, Kharfan-Dabaja MA, Badar T. What have we learned about TP53-mutated acute myeloid leukemia? Blood Cancer J 2024; 14:202. [PMID: 39562552 PMCID: PMC11576745 DOI: 10.1038/s41408-024-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
TP53 is a tumor suppressor gene frequently mutated in human cancers and is generally associated with poor outcomes. TP53 mutations are found in approximately 5% to 10% of patients with de novo acute myeloid leukemia (AML), more frequently observed in elderly patients and those with therapy-related AML. Despite recent advances in molecular profiling and the emergence of targeted therapies, TP53-mutated AML remains a challenge to treat. Current treatment strategies, including conventional chemotherapy, hypomethylating agents, and venetoclax-based therapies, have shown limited efficacy in TP53-mutated AML, with low response rates and poor overall survival. Allogeneic hematopoietic stem cell transplantation is a potentially curative option; however, its efficacy in TP53-mutated AML depends on comorbid conditions and disease status at transplantation. Novel therapeutic modalities, including immune-based therapies, did show promise in early-phase studies but did not translate into effective therapies in randomized controlled trials. This review provides a comprehensive overview of TP53 mutations in AML, outcomes based on allelic burden, clinical implications, and therapeutic challenges.
Collapse
Affiliation(s)
- Moazzam Shahzad
- Division of Hematology and Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Muhammad Kashif Amin
- Division of Hematologic Malignancies & Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Devendra Hiwase
- Department of Hematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Talha Badar
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Feng YD, Du J, Chen HL, Shen Y, Jia YC, Zhang PY, He A, Yang Y. Characterization of stem cell landscape and assessing the stemness degree to aid clinical therapeutics in hematologic malignancies. Sci Rep 2024; 14:23743. [PMID: 39390242 PMCID: PMC11466975 DOI: 10.1038/s41598-024-74806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Hematological malignancies are a group of cancers that affect the blood, bone marrow, and lymphatic system. Cancer stem cells (CSCs) are believed to be responsible for the initiation, progression, and relapse of hematological malignancies. However, identifying and targeting CSCs presents many challenges. We aimed to develop a stemness index (HSCsi) to identify and guide the therapy targeting CSCs in hematological malignancies. We developed a novel one-class logistic regression (OCLR) algorithm to identify transcriptomic feature sets related to stemness in hematologic malignancies. We used the HSCsi to measure the stemness degree of leukemia stem cells (LSCs) and correlate it with clinical outcomes.We analyze the correlation of HSCsi with genes and pathways involved in drug resistance and immune microenvironment of acute myeloid leukemia (AML). HSCsi revealed stemness-related biological mechanisms in hematologic malignancies and effectively identify LSCs. The index also predicted survival and relapse rates of various hematologic malignancies. We also identified potential drugs and interventions targeting cancer stem cells (CSCs) of hematologic malignancies by the index. Moreover, we found a correlation between stemness and bone marrow immune microenvironment in AML. Our study provides a novel method and tool to assess the stemness degree of hematologic malignancies and its implications for clinical outcomes and therapeutic strategies. Our HSC stemness index can facilitate the precise stratification of hematologic malignancies, suggest possible targeted and immunotherapy options, and guide the selection of patients.
Collapse
Affiliation(s)
- Yuan-Dong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Jin Du
- Department of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, 277 West Youyi Road, Xi'an, 710068, China
| | - Hong-Li Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ya-Chun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Peng-Yu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China.
| |
Collapse
|
4
|
Musil J, Ptacek A, Vanikova S. OMIP-106: A 30-color panel for analysis of check-point inhibitory networks in the bone marrow of acute myeloid leukemia patients. Cytometry A 2024; 105:729-736. [PMID: 39192598 DOI: 10.1002/cyto.a.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia diagnosed in adults. Despite advances in medical care, the treatment of AML still faces many challenges, such as treatment-related toxicities, that limit the use of high-intensity chemotherapy, especially in elderly patients. Currently, various immunotherapeutic approaches, that is, CAR-T cells, BiTEs, and immune checkpoint inhibitors, are being tested in clinical trials to prolong remission and improve the overall survival of AML patients. However, early reports show only limited benefits of these interventions and only in a subset of patients, showing the need for better patient stratification based on immunological markers. We have therefore developed and optimized a 30-color panel for evaluation of effector immune cell (NK cells, γδ T cells, NKT-like T cells, and classical T cells) infiltration into the bone marrow and analysis of their phenotype with regard to their differentiation, expression of inhibitory (PD-1, TIGIT, Tim3, NKG2A) and activating receptors (DNAM-1, NKG2D). We also evaluate the immune evasive phenotype of CD33+ myeloid cells, CD34+CD38-, and CD34+CD38+ hematopoietic stem and progenitor cells by analyzing the expression of inhibitory ligands such as PD-L1, CD112, CD155, and CD200. Our panel can be a valuable tool for patient stratification in clinical trials and can also be used to broaden our understanding of check-point inhibitory networks in AML.
Collapse
Affiliation(s)
- Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Antonin Ptacek
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Sarka Vanikova
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Sharifi MJ, Xu L, Nasiri N, Ashja‐Arvan M, Soleimanzadeh H, Ganjalikhani‐Hakemi M. Immune-dysregulation harnessing in myeloid neoplasms. Cancer Med 2024; 13:e70152. [PMID: 39254117 PMCID: PMC11386321 DOI: 10.1002/cam4.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Myeloid malignancies arise in bone marrow microenvironments and shape these microenvironments in favor of malignant development. Immune suppression is one of the most important stages in myeloid leukemia progression. Leukemic clone expansion and immune dysregulation occur simultaneously in bone marrow microenvironments. Complex interactions emerge between normal immune system elements and leukemic clones in the bone marrow. In recent years, researchers have identified several of these pathological interactions. For instance, recent works shows that the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), from bone marrow stromal cells contributes to immune dysregulation and the selective proliferation of JAK2V617F+ clones in myeloproliferative neoplasms. Moreover, inflammasome activation and sterile inflammation result in inflamed microenvironments and the development of myelodysplastic syndromes. Additional immune dysregulations, such as exhaustion of T and NK cells, an increase in regulatory T cells, and impairments in antigen presentation are common findings in myeloid malignancies. In this review, we discuss the role of altered bone marrow microenvironments in the induction of immune dysregulations that accompany myeloid malignancies. We also consider both current and novel therapeutic strategies to restore normal immune system function in the context of myeloid malignancies.
Collapse
Affiliation(s)
- Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan UniversityGuangzhouChina
| | - Nahid Nasiri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Mehnoosh Ashja‐Arvan
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Hadis Soleimanzadeh
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Mazdak Ganjalikhani‐Hakemi
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol UniversityIstanbulTurkey
- Department of Immunology, Faculty of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
6
|
Wang YX, Wang A, Su YF, Wang J, Li YH, Li F, Jing Y, Xu L, Wang YZ, Zheng X, Gao CJ, Hu LD, Gao XN, Liu DH. Anti-PD-1 combined with hypomethylating agent and CAG regimen bridging to allogeneic hematopoietic stem cell transplantation: a novel strategy for relapsed/refractory acute myeloid leukemia. Front Immunol 2024; 15:1409302. [PMID: 39221255 PMCID: PMC11361969 DOI: 10.3389/fimmu.2024.1409302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The prognosis of relapsed/refractory acute myeloid leukemia (r/rAML) is dismal, and allogeneic hematopoietic stem cell transplant (allo-HSCT) is a potential cure. Combining anti-PD-1, hypomethylating agent (HMA), and CAG (cytarabine, aclarubicin/idarubicin, granulocyte colony-stimulating factor) regimen has showed primary efficacy in r/rAML. However, pre-transplant exposure to anti-PD-1 may lead to severe graft-versus-host disease (GVHD). This preliminary study aimed to evaluate the safety and efficacy of allo-HSCT in r/rAML patients receiving the anti-PD-1+HMA+CAG regimen. Methods Fifteen r/rAML patients (12 related haploidentical donors [HIDs], 2 matched siblings, 1 unrelated donor) received this regimen and subsequent peripheral blood HSCT. Results Four patients with HIDs received a GVHD prophylaxis regimen consisted of Anti-thymocyte globulin and a reduced-dose of post-transplant cyclophosphamide. The median follow-up was 20.9 months (range, 1.2-34.2). The cumulative incidences of acute GVHD grade 2-4 and grade 3-4 were 40% and 13.3%, respectively. The 2-year incidence of moderate-to-severe chronic GVHD, non-relapse mortality, and relapse were 10%, 22.3%, and 22.5%, respectively. The 2-year overall survival and GVHD-free/relapse-free survival rates were 54% and 48.6%, respectively. No death or relapse was observed in the PTCy group. Conclusion The anti-PD-1+HMA+CAG regimen bridging to allo-HSCT for r/r AML was tolerable with promising efficacy. GVHD prophylaxis with PTCy for HID-HSCT showed preliminary survival advantage.
Collapse
Affiliation(s)
- Yu-Xin Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - An Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yong-Feng Su
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yu-Hang Li
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Li
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yu Jing
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lei Xu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi-Zhi Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xuan Zheng
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Chun-Ji Gao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Liang-Ding Hu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-Ning Gao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Dai-Hong Liu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
8
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
9
|
Pan S, Cai Q, Wei Y, Tang H, Zhang Y, Zhou W, Deng T, Mo W, Wang S, Wang C, Chen C. Increased co-expression of ICOS and PD-1 predicts poor overall survival in patients with acute myeloid leukemia. Immunobiology 2024; 229:152804. [PMID: 38615511 DOI: 10.1016/j.imbio.2024.152804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Inducible co-stimulatory factor (ICOS) has a dual role: activating cytotoxic T cells against tumors or exacerbating immunosuppression of regulatory T cells (Tregs) to participate in immune evasion. However, the correlation between ICOS and its co-expression with inhibitory immune checkpoints (IICs) and prognosis in acute myeloid leukemia (AML) is little known. METHODS The prognostic importance of ICOS and IICs in 62 bone marrow (BM) samples of de novo AML patients from our clinical center (GZFPH) was explored and then the RNA sequencing data of 155 AML patients from the Cancer Genome Atlas (TCGA) database was used for validation. RESULTS In both GZFPH and TCGA cohorts, high expression of ICOS was significantly associated with poor overall survival (OS) in patients with AML (P < 0.05). Importantly, co-expression of ICOS and PD-1, PD-L1, PD-L2, CTLA-4, and LAG-3 predicted poor OS in AML; among them, ICOS/PD-1 was the optimal combination of immune checkpoints (ICs). The co-expression of ICOS and PD-1 was correlated with poor OS in non-acute promyelocytic leukemia (non-APL) patients following chemotherapy. Additionally, ICOS/PD-1 was an independent OS-predicting factor (P < 0.05). Notably, a nomogram model was constructed by combining ICOS/PD-1, age, European Leukemia Net (ELN) risk stratification, and therapy to visually and personalized predict the 1-, 3-, and 5-year OS of patients with non-APL. CONCLUSION Increased expression of ICOS predicted poor outcomes, and ICOS/PD-1 was the optimal combination of ICs to predict outcomes in patients with AML, which might be a potential immune biomarker for designing novel AML therapy.
Collapse
Affiliation(s)
- Shiyi Pan
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Qinghua Cai
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yiqiong Wei
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Haifeng Tang
- Department of Surgery, The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
10
|
Zhao Y, Chen W, Yu J, Pei S, Zhang Q, Shi J, Huang H, Zhao Y. TP53 in MDS and AML: Biological and clinical advances. Cancer Lett 2024; 588:216767. [PMID: 38417666 DOI: 10.1016/j.canlet.2024.216767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Recently, the WHO-5 and the ICC 2022 criteria have emphasized poor prognosis in AML/MDS patients with multi-hit TP53 mutations, whereas mutated TP53 plays a critical role in tumorigenesis, drawing substantial interest in exploring its biological behaviors. Diverse characteristics of TP53 mutations, including types, VAF, CNVs, allelic status, karyotypes, and concurrent mutations have been extensively studied. Novel potential targets and comprehensive treatment strategies nowadays are under swift development, owing to great advances in technology. However, accurately predicting prognosis of patients with TP53-mutated myeloid neoplasms remains challenging. And there is still a lack of effective treatment for those patients.
Collapse
Affiliation(s)
- Yeqian Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Weihao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Yu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Pei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | | | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
11
|
Santoro N, Salutari P, Di Ianni M, Marra A. Precision Medicine Approaches in Acute Myeloid Leukemia with Adverse Genetics. Int J Mol Sci 2024; 25:4259. [PMID: 38673842 PMCID: PMC11050344 DOI: 10.3390/ijms25084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of acute myeloid leukemia (AML) with adverse genetics remains unsatisfactory, with very low response rates to standard chemotherapy and shorter durations of remission commonly observed in these patients. The complex biology of AML with adverse genetics is continuously evolving. Herein, we discuss recent advances in the field focusing on the contribution of molecular drivers of leukemia biogenesis and evolution and on the alterations of the immune system that can be exploited with immune-based therapeutic strategies. We focus on the biological rationales for combining targeted therapy and immunotherapy, which are currently being investigated in ongoing trials, and could hopefully ameliorate the poor outcomes of patients affected by AML with adverse genetics.
Collapse
Affiliation(s)
- Nicole Santoro
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Prassede Salutari
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Mauro Di Ianni
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
- Department of Medicine and Science of Aging, “G.D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Marra
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00196 Rome, Italy
| |
Collapse
|
12
|
Pereira MP, Herrity E, Kim DDH. TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: biology, treatment challenges, and upcoming approaches. Ann Hematol 2024; 103:1049-1067. [PMID: 37770618 DOI: 10.1007/s00277-023-05462-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Improved understanding of TP53 biology and the clinicopathological features of TP53-mutated myeloid neoplasms has led to the recognition of TP53-mutated acute myeloid leukemia/myelodysplastic syndrome (TP53m AML/MDS) as a unique entity, characterized by dismal outcomes following conventional therapies. Several clinical trials have investigated combinations of emerging therapies for these patients with the poorest molecular prognosis among myeloid neoplasms. Although some emerging therapies have shown improvement in overall response rates, this has not translated into better overall survival, hence the notion that p53 remains an elusive target. New therapeutic strategies, including novel targeted therapies, immune checkpoint inhibitors, and monoclonal antibodies, represent a shift away from cytotoxic and hypomethylating-based therapies, towards approaches combining non-immune and novel immune therapeutic strategies. The triple combination of azacitidine and venetoclax with either magrolimab or eprenetapopt have demonstrated safety in early trials, with phase III trials currently underway, and promising interim clinical results. This review compiles background on TP53 biology, available and emerging therapies along with their mechanisms of action for the TP53m disease entity, current treatment challenges, and recently published data and status of ongoing clinical trials for TP53m AML/MDS.
Collapse
Affiliation(s)
- Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Dennis D H Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada.
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Vakilpour A, Lefebvre B, Lai C, Scherrer-Crosbie M. Heartbreaker: Detection and prevention of cardiotoxicity in hematological malignancies. Blood Rev 2024; 64:101166. [PMID: 38182490 DOI: 10.1016/j.blre.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Cancer survivors are at significant risk of cardiovascular (CV) morbidity and mortality; patients with hematologic malignancies have a higher rate of death due to heart failure compared to all other cancer subtypes. The majority of conventional hematologic cancer treatments is associated with increased risk of acute and long-term CV toxicity. The incidence of cancer therapy induced CV toxicity depends on the combination of patient characteristics and on the type, dose, and duration of the therapy. Early diagnosis of CV toxicity, appropriate referral, more specific cardiac monitoring follow-up and timely interventions in target patients can decrease the risk of CV adverse events, the interruption of oncological therapy, and improve the patient's prognosis. Herein, we summarize the CV effects of conventional treatments used in hematologic malignancies with a focus on definitions and incidence of the most common CV toxicities, guideline recommended early detection approaches, and preventive strategies before and during cancer treatments.
Collapse
Affiliation(s)
- Azin Vakilpour
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Bénédicte Lefebvre
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; The Thalheimer Center for Cardio-oncology, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Catherine Lai
- Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; The Thalheimer Center for Cardio-oncology, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Stafylidis C, Vlachopoulou D, Kontandreopoulou CN, Diamantopoulos PΤ. Unmet Horizons: Assessing the Challenges in the Treatment of TP53-Mutated Acute Myeloid Leukemia. J Clin Med 2024; 13:1082. [PMID: 38398394 PMCID: PMC10889132 DOI: 10.3390/jcm13041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Acute myeloid leukemia (AML) remains a challenging hematologic malignancy. The presence of TP53 mutations in AML poses a therapeutic challenge, considering that standard treatments face significant setbacks in achieving meaningful responses. There is a pressing need for the development of innovative treatment modalities to overcome resistance to conventional treatments attributable to the unique biology of TP53-mutated (TP53mut) AML. This review underscores the role of TP53 mutations in AML, examines the current landscape of treatment options, and highlights novel therapeutic approaches, including targeted therapies, combination regimens, and emerging immunotherapies, as well as agents being explored in preclinical studies according to their potential to address the unique hurdles posed by TP53mut AML.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Τ. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.S.); (D.V.); (C.-N.K.)
| |
Collapse
|
15
|
Verma A, Chi YY, Malvar J, Lamble A, Chaudhury S, Agarwal A, Li HT, Liang G, Leong R, Brown PA, Kaplan J, Schafer ES, Slone T, Pauly M, Chang BH, Stieglitz E, Wayne AS, Hijiya N, Bhojwani D. Nivolumab Plus 5-Azacitidine in Pediatric Relapsed/Refractory Acute Myeloid Leukemia (AML): Phase I/II Trial Results from the Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium. Cancers (Basel) 2024; 16:496. [PMID: 38339248 PMCID: PMC10854518 DOI: 10.3390/cancers16030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Improvements in survival have been made over the past two decades for childhood acute myeloid leukemia (AML), but the approximately 40% of patients who relapse continue to have poor outcomes. A combination of checkpoint-inhibitor nivolumab and azacitidine has demonstrated improvements in median survival in adults with AML. This phase I/II study with nivolumab and azacitidine in children with relapsed/refractory AML (NCT03825367) was conducted through the Therapeutic Advances in Childhood Leukemia & Lymphoma consortium. Thirteen patients, median age 13.7 years, were enrolled. Patients had refractory disease with multiple reinduction attempts. Twelve evaluable patients were treated at the recommended phase II dose (established at dose level 1, 3 mg/kg/dose). Four patients (33%) maintained stable disease. This combination was well tolerated, with no dose-limiting toxicities observed. Grade 3-4 adverse events (AEs) were primarily hematological. Febrile neutropenia was the most common AE ≥ grade 3. A trend to improved quality of life was noted. Increases in CD8+ T cells and reductions in CD4+/CD8+ T cells and demethylation were observed. The combination was well tolerated and had an acceptable safety profile in pediatric patients with relapsed/refractory AML. Future studies might explore this combination for the maintenance of remission in children with AML at high risk of relapse.
Collapse
Affiliation(s)
- Anupam Verma
- Center for Cancer and Blood Disorders, Pediatric Hematology Oncology Branch, Children’s National Hospital, Washington, DC 20010, USA
- Division of Pediatric Hematology Oncology, Primary Children’s Hospital, University of Utah, Salt Lake City, UT 84113, USA
| | - Yueh-Yun Chi
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; (Y.-Y.C.); (A.S.W.); (D.B.)
| | - Jemily Malvar
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (J.M.)
| | - Adam Lamble
- Department of Pediatric Hematology Oncology, Seattle Children’s Hospital, Seattle, WA 98105, USA;
| | - Sonali Chaudhury
- Department of Pediatric Hematology Oncology, Ann and Robert Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Archana Agarwal
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT 84108, USA;
| | - Hong-Tao Li
- Department of Urology, University of Southern California, Los Angeles, CA 90033, USA; (H.-T.L.); (G.L.)
| | - Gangning Liang
- Department of Urology, University of Southern California, Los Angeles, CA 90033, USA; (H.-T.L.); (G.L.)
| | - Roy Leong
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (J.M.)
| | | | - Joel Kaplan
- Department of Pediatric Hematology Oncology, Atrium Health Levine Children’s Hospital, Wake Forrest University, Charlotte, NC 28203, USA;
| | - Eric S. Schafer
- Division of Pediatric Hematology/Oncology, Baylor College of Medicine, Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA;
| | - Tamra Slone
- Department of Pediatric Hematology Oncology, UT Southwestern, Dallas, TX 75235, USA;
| | - Melinda Pauly
- Department of Pediatric Hematology Oncology, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Bill H. Chang
- Division of Pediatric Hematology Oncology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Elliot Stieglitz
- Department of Pediatric Oncology, University of California, San Francisco Benioff Children’s Hospitals, San Francisco, CA 94158, USA;
| | - Alan S. Wayne
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; (Y.-Y.C.); (A.S.W.); (D.B.)
| | - Nobuko Hijiya
- Division of Pediatric Hematology Oncology and Stem Cell Transplant, Columbia University Medical Center, New York, NY 10032, USA;
| | - Deepa Bhojwani
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; (Y.-Y.C.); (A.S.W.); (D.B.)
| |
Collapse
|
16
|
Pophali P, Varela JC, Rosenblatt J. Immune checkpoint blockade in hematological malignancies: current state and future potential. Front Oncol 2024; 14:1323914. [PMID: 38322418 PMCID: PMC10844552 DOI: 10.3389/fonc.2024.1323914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Malignant cells are known to evade immune surveillance by engaging immune checkpoints which are negative regulators of the immune system. By restoring the T-lymphocyte mediated anti-tumor effect, immune checkpoint inhibitors (ICI) have revolutionized the treatment of solid tumors but have met rather modest success in hematological malignancies. Currently, the only FDA approved indications for ICI therapy are in classic hodgkin lymphoma and primary mediastinal B cell lymphoma. Multiple clinical trials have assessed ICI therapy alone and in combination with standard of care treatments in other lymphomas, plasma cell neoplasms and myeloid neoplasms but were noted to have limited efficacy. These trials mostly focused on PD-1/PDL-1 and CTLA-4 inhibitors. Recently, there has been an effort to target other T-lymphocyte checkpoints like LAG-3, TIM-3, TIGIT along with improving strategies of PD-1/PDL-1 and CTLA-4 inhibition. Drugs targeting the macrophage checkpoint, CD47, are also being tested. Long term safety and efficacy data from these ongoing studies are eagerly awaited. In this comprehensive review, we discuss the mechanism of immune checkpoint inhibitors, the key takeaways from the reported results of completed and ongoing studies of these therapies in the context of hematological malignancies.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Hematological Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Juan Carlos Varela
- Division of Hematology and Oncology, Orlando Health Regional Medical Center, Orlando, FL, United States
| | - Jacalyn Rosenblatt
- Division of Hematology and Hematological Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Bołkun Ł, Starosz A, Krętowska-Grunwald A, Wasiluk T, Walewska A, Wierzbowska A, Moniuszko M, Grubczak K. Effects of Combinatory In Vitro Treatment with Immune Checkpoint Inhibitors and Cytarabine on the Anti-Cancer Immune Microenvironment in De Novo AML Patients. Cancers (Basel) 2024; 16:462. [PMID: 38275902 PMCID: PMC10814928 DOI: 10.3390/cancers16020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Despite substantial progress in the diagnostic and therapeutic procedures, acute myeloid leukaemia (AML) still constitutes a significant problem for patients suffering from its relapses. A comprehensive knowledge of the disease's molecular background has led to the development of targeted therapies, including immune checkpoint inhibitors, and demonstrated beneficial effects on several types of cancer. Here, we aimed to assess in vitro the potential of the immune checkpoint blockage for supporting anti-cancer responses to the AML backbone therapy with cytarabine. PBMCs of AML patients were collected at admission and, following the therapy, eight complete remission (CR) and eight non-responders (NR) subjects were selected. We assessed the effects of the in vitro treatment of the cells with cytarabine and the immune checkpoint inhibitors: anti-CTLA-4, anti-PD-1, anti-PD-L1. The study protocol allowed us to evaluate the viability of the cancer and the immune cells, proliferation status, phenotype, and cytokine release. Anti-PD-L1 antibodies were found to exert the most beneficial effect on the activation of T cells, with a concomitant regulation of the immune balance through Treg induction. There was no direct influence on the blast cells; however, the modulation of the PD-1/PD-L1 axis supported the expansion of lymphocytes. Changes in the response between CR and NR patients might result from the differential expression of PD-1 and PD-L1, with lower levels in the latter group. The tested blockers appear to support the anti-cancer immune responses rather than directly improve the effects of cytarabine. In conclusion, checkpoint proteins' modulators might improve the anti-cancer responses in the tumour environment.
Collapse
Affiliation(s)
- Łukasz Bołkun
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| | - Anna Krętowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland
| | - Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950 Bialystok, Poland;
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland;
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
- Department of Allergology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, J. Waszyngtona 13, 15-269 Bialystok, Poland; (A.S.); (A.K.-G.); (A.W.); (M.M.)
| |
Collapse
|
18
|
Huang S, Zhao Y, Lai W, Tan J, Zheng X, Zha X, Li Y, Chen S. Higher PD-1/Tim-3 expression on IFN-γ+ T cells is associated with poor prognosis in patients with acute myeloid leukemia. Cancer Biol Ther 2023; 24:2278229. [PMID: 37962843 PMCID: PMC10903599 DOI: 10.1080/15384047.2023.2278229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
With the success of immune checkpoint inhibitors (ICI), such as anti- programmed death-1 (PD-1) antibody for solid tumors and lymphoma immunotherapy, a number of clinical trials with ICIs have been attempted for acute myeloid leukemia (AML) immunotherapy; however, limited clinical efficacy has been reported. This may be due to the heterogeneity of immune microenvironments and various degrees of T cell exhaustion in patients and may be involved in the IFN-γ pathway. In this study, we first characterized the percentage of PD-1+ and T cell immunoglobulin mucin-domain-containing-3 (Tim-3) +IFN-γ+ T cells in peripheral blood (PB) in AML compared with healthy individuals (HIs) by flow cytometry and further discussed the possibility of the reversal of T cell exhaustion to restore the secretion capacity of cytokines in T cells in AML based on blockade of PD-1 or Tim-3 (anti-PD-1 and anti-Tim-3 antibody) in vitro using a cytokine protein chip. A significantly increased percentage of PD-1+, Tim-3+, and PD-1+Tim-3+ IFN-γ+ T cells was observed in PB from patients with AML in comparison with HIs. Moreover, higher PD-1+IFN-γ+CD3+/CD8+ T cell levels were associated with poor overall survival in AML patients. Regarding leukemia cells, the percentage of Tim-3 in CD117+CD34+ AML cells was positively correlated with PD-1 in IFN-γ+CD4+ T cells. Furthermore, blocking PD-1 and Tim-3 may involve multiple cytokines and helper T cell subsets, mainly Th1 and Treg cells. Blockade of PD-1 or Tim-3 tends to restore cytokine secretion to a certain extent, a synergistic effect shown by the co-blockade of PD-1 and Tim-3. However, we also demonstrated the heterogeneity of secretory cytokines in ICI-treated T cells in AML patients.
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yujie Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Wenpu Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zheng
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Li XP, Dai Y, Zhang WN, Pan MM, Mao J, Zhao B, Jiang L, Gao Y. Single-cell RNA-seq reveals novel immune-associated biomarkers for predicting prognosis in AML patients with RUNX1::RUNX1T1. Int Immunopharmacol 2023; 125:111178. [PMID: 37951201 DOI: 10.1016/j.intimp.2023.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22);(RUNX1::RUNX1T1) is highly heterogeneous and malignant. It has a relapse rate of nearly 40 %, resulting in clinical resistance or refractoriness to chemotherapy. Immune cells, particularly CD4(+) T and CD8(+) T lymphocytes, have been discovered to be dysfunctional in this condition, and functional recovery shows promising efficiency in preclinical trials. Here, with single-cell transcriptomic data from de novo AML patients with RUNX1::RUNX1T1 and at various stages following disease progression, we investigated the genes correlated with T-cell proliferation and activation. In leukemia cells, ADA, AHCY, GPN3 and LTBR were markedly highly expressed compared to those in T-cell at diagnosis, and they tended to increase with disease progression. Additionally, we discovered that AHCY was an effective biomarker to predict the overall survival as well as relapse-free survival of AML patients with RUNX1::RUNX1T1. The correlation of AHCY with infiltrated immune cells and immune checkpoints was also investigated. AML cohorts from two other independent studies, TCGA LAML (n = 145) and the GEO dataset (n = 104), also demonstrated an inferior outcome for AML patients with high AHCY expression. In conclusion, our research revealed that AHCY might function as a novel indicator to predict the prognosis and efficiency of T-cell proliferation and activation in AML patients with RUNX1::RUNX1T1.
Collapse
Affiliation(s)
- Xue-Ping Li
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Na Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng-Meng Pan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Baitian Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Ke P, Xie J, Xu T, Chen M, Guo Y, Wang Y, Qiu H, Wu D, Zeng Z, Chen S, Bao X. Identification of a venetoclax-resistance prognostic signature base on 6-senescence genes and its clinical significance for acute myeloid leukemia. Front Oncol 2023; 13:1302356. [PMID: 38098504 PMCID: PMC10720639 DOI: 10.3389/fonc.2023.1302356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Satisfactory responses can be obtained for acute myeloid leukemia (AML) treated by Venetoclax (VEN)-based therapy. However, there are still quite a few AML patients (AMLs) resistant to VEN, and it is critical to understand whether VEN-resistance is regulated by senescence. Methods Here, we established and validated a signature for predicting AML prognosis based on VEN resistance-related senescence genes (VRSGs). In this study, 51 senescence genes were identified with VEN-resistance in AML. Using LASSO algorithms and multiple AML cohorts, a VEN-resistance senescence prognostic model (VRSP-M) was developed and validated based on 6-senescence genes. Results According to the median score of the signature, AMLs were classified into two subtypes. A worse prognosis and more adverse features occurred in the high-risk subtype, including older patients, non-de novo AML, poor cytogenetics, adverse risk of European LeukemiaNet (ELN) 2017 recommendation, and TP53 mutation. Patients in the high-risk subtype were mainly involved in monocyte differentiation, senescence, NADPH oxidases, and PD1 signaling pathway. The model's risk score was significantly associated with VEN-resistance, immune features, and immunotherapy response in AML. In vitro, the IC50 values of ABT-199 (VEN) rose progressively with increasing expression of G6PD and BAG3 in AML cell lines. Conclusions The 6-senescence genes prognostic model has significant meaning for the prediction of VEN-resistance, guiding personalized molecularly targeted therapies, and improving AML prognosis.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jundan Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ting Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meiyu Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yusha Guo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Chen Y, Zheng J, Qiu Y, Wu Z, Luo X, Zhu L, Wu Y, Lin Y. Pulmonary infection associated with immune dysfunction is associated with poor prognosis in patients with myelodysplastic syndrome accompanied by TP53 abnormalities. Front Oncol 2023; 13:1294037. [PMID: 38098502 PMCID: PMC10720429 DOI: 10.3389/fonc.2023.1294037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
The aim of this study was to examine the characteristics and prognosis of patients with myelodysplastic syndrome (MDS) accompanied by TP53 abnormalities and explore potential prognostic factors and treatment responses. This retrospective analysis included 95 patients with MDS and TP53 abnormalities and 173 patients with MDS without TP53 abnormalities at the Fujian Medical University Union Hospital between January 2016 and June 2023. Among patients with TP53 abnormalities, 26 (27.4%) developed AML during the disease course, with a median transformation time of 5.7 months. Complex karyotypes were observed in 73.1% of patients, and the proportions of -5 or del(5q), -7 or del(7q), +8, and -20 or del(20q) were 81.8%, 54.5%, 30.7%, and 25.0%, respectively. These patients exhibited poor survival, with a median overall survival (OS) of 7.3 months, and had 1- and 2-year OS rates of 42.2% and 21.5%, respectively. The complete response rates for azacitidine monotherapy, venetoclax combined with azacitidine, decitabine monotherapy, and decitabine combined with low-dose chemotherapy were 9.1%, 41.7%, 37.5%, and 33.3%, respectively. Long-term survival was similar among the four treatment groups. Patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) had a median OS of 21.3 months, which trended to be longer than that of patients who did not undergo allo-HSCT (5.6 months; P = 0.1449). Patients with pulmonary infection at diagnosis experienced worse OS than those without pulmonary infection (2.3 months vs. 15.4 months; P < 0.0001). Moreover, 61.9% of patients with pulmonary infection had immune dysfunction, with a ratio of CD4+ to CD8+ T lymphocytes below two. Pulmonary infections and complex karyotypes were independent adverse prognostic factors for OS. In conclusion, TP53 abnormalities in patients with MDS were frequently accompanied by complex karyotypes, and treatments based on hypomethylating agents or venetoclax have limited efficacy. Pulmonary infections associated with immune dysfunction is associated with poor prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Wu
- Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian, China
| | - Yanjuan Lin
- Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Guarnera L, Bravo-Perez C, Visconte V. Immunotherapy in Acute Myeloid Leukemia: A Literature Review of Emerging Strategies. Bioengineering (Basel) 2023; 10:1228. [PMID: 37892958 PMCID: PMC10604866 DOI: 10.3390/bioengineering10101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
In the last twenty years, we have witnessed a paradigm shift in the treatment and prognosis of acute myeloid leukemia (AML), thanks to the introduction of new efficient drugs or approaches to refine old therapies, such as Gemtuzumab Ozogamicin, CPX 3-5-1, hypomethylating agents, and Venetoclax, the optimization of conditioning regimens in allogeneic hematopoietic stem cell transplantation and the improvement of supportive care. However, the long-term survival of non-M3 and non-core binding factor-AML is still dismal. For this reason, the expectations for the recently developed immunotherapies, such as antibody-based therapy, checkpoint inhibitors, and chimeric antigen receptor strategies, successfully tested in other hematologic malignancies, were very high. The inherent characteristics of AML blasts hampered the development of these treatments, and the path of immunotherapy in AML has been bumpy. Herein, we provide a detailed review of potential antigenic targets, available data from pre-clinical and clinical trials, and future directions of immunotherapies in AML.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER—Instituto de Salud Carlos III, 30005 Murcia, Spain
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
| |
Collapse
|
23
|
Molica M, Perrone S, Andriola C, Rossi M. Immunotherapy with Monoclonal Antibodies for Acute Myeloid Leukemia: A Work in Progress. Cancers (Basel) 2023; 15:5060. [PMID: 37894427 PMCID: PMC10605302 DOI: 10.3390/cancers15205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In the last few years, molecularly targeted agents and immune-based treatments (ITs) have significantly changed the landscape of anti-cancer therapy. Indeed, ITs have been proven to be very effective when used against metastatic solid tumors, for which outcomes are extremely poor when using standard approaches. Such a scenario has only been partially reproduced in hematologic malignancies. In the context of acute myeloid leukemia (AML), as innovative drugs are eagerly awaited in the relapsed/refractory setting, different ITs have been explored, but the results are still unsatisfactory. In this work, we will discuss the most important clinical studies to date that adopt ITs in AML, providing the basis to understand how this approach, although still in its infancy, may represent a promising therapeutic tool for the future treatment of AML patients.
Collapse
Affiliation(s)
- Matteo Molica
- Department of Hematology-Oncology, Azienda Universitaria Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| | - Salvatore Perrone
- Department of Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, 04100 Latina, Italy;
| | - Costanza Andriola
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy;
| | - Marco Rossi
- Department of Hematology-Oncology, Azienda Universitaria Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| |
Collapse
|
24
|
Apostolova P, Kreutmair S, Toffalori C, Punta M, Unger S, Burk AC, Wehr C, Maas-Bauer K, Melchinger W, Haring E, Hoefflin R, Shoumariyeh K, Hupfer V, Lauer EM, Duquesne S, Lowinus T, Gonzalo Núñez N, Alberti C, da Costa Pereira S, Merten CH, Power L, Weiss M, Böke C, Pfeifer D, Marks R, Bertz H, Wäsch R, Ihorst G, Gentner B, Duyster J, Boerries M, Andrieux G, Finke J, Becher B, Vago L, Zeiser R. Phase II trial of hypomethylating agent combined with nivolumab for acute myeloid leukaemia relapse after allogeneic haematopoietic cell transplantation-Immune signature correlates with response. Br J Haematol 2023; 203:264-281. [PMID: 37539479 DOI: 10.1111/bjh.19007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Acute myeloid leukaemia (AML) relapse after allogeneic haematopoietic cell transplantation (allo-HCT) is often driven by immune-related mechanisms and associated with poor prognosis. Immune checkpoint inhibitors combined with hypomethylating agents (HMA) may restore or enhance the graft-versus-leukaemia effect. Still, data about using this combination regimen after allo-HCT are limited. We conducted a prospective, phase II, open-label, single-arm study in which we treated patients with haematological AML relapse after allo-HCT with HMA plus the anti-PD-1 antibody nivolumab. The response was correlated with DNA-, RNA- and protein-based single-cell technology assessments to identify biomarkers associated with therapeutic efficacy. Sixteen patients received a median number of 2 (range 1-7) nivolumab applications. The overall response rate (CR/PR) at day 42 was 25%, and another 25% of the patients achieved stable disease. The median overall survival was 15.6 months. High-parametric cytometry documented a higher frequency of activated (ICOS+ , HLA-DR+ ), low senescence (KLRG1- , CD57- ) CD8+ effector T cells in responders. We confirmed these findings in a preclinical model. Single-cell transcriptomics revealed a pro-inflammatory rewiring of the expression profile of T and myeloid cells in responders. In summary, the study indicates that the post-allo-HCT HMA/nivolumab combination induces anti-AML immune responses in selected patients and could be considered as a bridging approach to a second allo-HCT. Trial-registration: EudraCT-No. 2017-002194-18.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Kreutmair
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Punta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ann-Cathrin Burk
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Wehr
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristina Maas-Bauer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eileen Haring
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouven Hoefflin
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valerie Hupfer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eliza Maria Lauer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Carla Helena Merten
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Matthias Weiss
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Böke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Gentner
- Translational Stem Cell and Leukemia Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Finke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Cao H, Wu T, Zhou X, Xie S, Sun H, Sun Y, Li Y. Progress of research on PD-1/PD-L1 in leukemia. Front Immunol 2023; 14:1265299. [PMID: 37822924 PMCID: PMC10562551 DOI: 10.3389/fimmu.2023.1265299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.
Collapse
Affiliation(s)
- Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tianyu Wu
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
26
|
Bolkun L, Tynecka M, Walewska A, Bernatowicz M, Piszcz J, Cichocka E, Wandtke T, Czemerska M, Wierzbowska A, Moniuszko M, Grubczak K, Eljaszewicz A. The Association between Immune Checkpoint Proteins and Therapy Outcomes in Acute Myeloid Leukaemia Patients. Cancers (Basel) 2023; 15:4487. [PMID: 37760457 PMCID: PMC10526931 DOI: 10.3390/cancers15184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel drugs with different mechanisms of action has dramatically changed the treatment landscape of AML patients in recent years. Considering a significant dysregulation of the immune system, inhibitors of immune checkpoint (ICI) proteins provide a substantial therapeutic option for those subjects. However, use of ICI in haematological malignancies remains very limited, in contrast to their wide use in solid tumours. Here, we analysed expression patterns of the most promising selected checkpoint-based therapeutic targets in AML patients. Peripheral blood of 72 untreated AML patients was used for flow cytometric analysis. Expression of PD-1, PD-L1, CTLA-4, and B7-H3 was assessed within CD4+ (Th) lymphocytes and CD33+ blast cells. Patients were stratified based on therapy outcome and cytogenetic molecular risk. AML non-responders (NR) showed a higher frequency of PD-1 in Th cells compared to those with complete remission (CR). Reduced blast cell level of CTLA-4 was another factor differentiating CR from NR subjects. Elevated levels of PD-1 were associated with a trend for poorer patients' survival. Additionally, prognosis for AML patients was worse in case of a higher frequency of B7-H3 in Th lymphocytes. In summary, we showed the significance of selected ICI as outcome predictors in AML management. Further, multicentre studies are required for validation of those data.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland (J.P.)
| | - Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
| | - Malgorzata Bernatowicz
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland (J.P.)
| | - Jaroslaw Piszcz
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland (J.P.)
| | - Edyta Cichocka
- Department of Haematology, Rydygiera Hospital in Torun, 87-100 Torun, Poland;
| | - Tomasz Wandtke
- Department of Lung Diseases, Neoplasms and Tuberculosis, Nicolaus Copernicus University in Torun, 85-326 Bydgoszcz, Poland;
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland (A.W.)
| | | | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
- Tissue and Cell Bank, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
27
|
Chen EC, Garcia JS. Immunotherapy for Acute Myeloid Leukemia: Current Trends, Challenges, and Strategies. Acta Haematol 2023; 147:198-218. [PMID: 37673048 DOI: 10.1159/000533990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND In the past decade, there have been significant breakthroughs in immunotherapies for B-cell lymphoid malignancies and multiple myeloma, but progress has been much less for acute myeloid leukemia (AML). Nevertheless, challenge begets innovation and several therapeutic strategies are under investigation. SUMMARY In this review, we review the state of the art in AML immunotherapy including CD33- and CD123-targeted agents, immune checkpoint inhibition, and adoptive cell therapy strategies. We also share conceptual frameworks for approaching the growing catalog of investigational AML immunotherapies and propose future directions for the field. KEY MESSAGES Immunotherapies for AML face significant challenges but novel strategies are in development.
Collapse
Affiliation(s)
- Evan C Chen
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Tosic N, Marjanovic I, Lazic J. Pediatric acute myeloid leukemia: Insight into genetic landscape and novel targeted approaches. Biochem Pharmacol 2023; 215:115705. [PMID: 37532055 DOI: 10.1016/j.bcp.2023.115705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous hematological malignancy that accounts for approximately 20% of all pediatric leukemia cases. The outcome of pediatric AML has improved over the last decades, with overall survival rates reaching up to 70%. Still, AML is among the leading types of pediatric cancers by its high mortality rate. Modulation of standard therapy, like chemotherapy intensification, hematopoietic stem cell transplantation and optimized supportive care, could only get this far, but for the significant improvement of the outcome in pediatric AML, development of novel targeted therapy approaches is necessary. In recent years the advances in genomic techniques have greatly expanded our knowledge of the AML biology, revealing molecular landscape and complexity of the disease, which in turn have led to the identification of novel therapeutic targets. This review provides a brief overview of the genetic landscape of pediatric AML, and how it's used for precise molecular characterization and risk stratification of the patients, and also for the development of effective targeted therapy. Furthermore, this review presents recent advances in molecular targeted therapy and immunotherapy with an emphasis on the therapeutic approaches with significant clinical benefits for pediatric AML.
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia.
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia
| | - Jelena Lazic
- University Children's Hospital, Department for Hematology and Oncology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
29
|
Senapati J, Kadia TM, Ravandi F. Maintenance therapy in acute myeloid leukemia: advances and controversies. Haematologica 2023; 108:2289-2304. [PMID: 37139599 PMCID: PMC10483353 DOI: 10.3324/haematol.2022.281810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
The last decade has seen steadfast progress in drug development in acute myeloid leukemia (AML) which has moved progressively towards genomic-based therapy. With these advances, outcomes in AML have improved but remains far from satisfactory. One approach towards preventing relapse in AML is to use maintenance therapy in patients, after attaining remission. Allogeneic hematopoietic stem cell transplantation (HSCT) is an effective post-remission therapy that has been proven to reduce the risk of relapse. However, in patients who are ineligible for HSCT or have a high risk of relapse, other effective measures to prevent relapse are needed. There is also a need for post-HSCT maintenance to reduce relapse in high-risk subsets. Over the last 3 decades maintenance therapy in AML has evolved from the use of chemotherapeutic agents to more targeted therapies and better modulation of the immune system. Unfortunately, improvements in survival outcomes as a result of using these agents have not been consistently demonstrated in clinical trials. To derive the optimum benefit from maintenance therapy the time points of therapy initiation need to be defined and therapy must be selected precisely with respect to the AML genetics and risk stratification, prior treatment exposure, transplant eligibility, expected toxicity and the patient's clinical profile and desires. The far-reaching goal is to facilitate patients with AML in remission to achieve a normal quality of life while improving remission duration and overall survival. The QUAZAR trial was a welcome step towards a safe maintenance drug that is easy to administer and showed survival benefit but leaves many open issues for discussion. In this review we will discuss these issues, highlighting the development of AML maintenance therapies over the last 3 decades.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center.
| |
Collapse
|
30
|
Chergui A, Reagan JL. Immunotherapy in Acute Leukemias: Past Success Paves the Way for Future Progress. Cancers (Basel) 2023; 15:4137. [PMID: 37627165 PMCID: PMC10453133 DOI: 10.3390/cancers15164137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy as a cancer treatment modality has undergone recent widespread proliferation across all cancer types, especially amongst patients with solid tumors. However, the longest tenured immunotherapy approach to cancer is allogeneic stem cell transplantation (allo-SCT) for two hematologic malignancies: acute myeloid and acute lymphoid leukemia (AML and ALL, respectively). While allo-SCT remains a standard of care for eligible patients, recent advances/applications of monoclonal antibodies, immune checkpoint inhibitors, bispecific T-cell engagers (BiTEs), and CAR T-cell therapy are changing the treatment landscape for these acute leukemias by either direct to tumor immune targeting or through decreased toxicities that expand patient eligibility. Pre-clinical data and clinical trials have shown promising results for novel immunotherapies in acute leukemia, and multiple ongoing trials are investigating these novel approaches. While there have been promising results with these approaches, particularly in the relapsed/refractory setting, there remain challenges in optimizing the use of these therapies, such as managing cytokine release syndrome and other immune-related toxicities. Immunotherapy is a rapidly evolving field in the treatment of acute leukemia and has the potential to significantly impact the management of both AML and ALL. This review highlights the history of immunotherapy in the treatment of acute leukemias, the evolution of immunotherapy into more targeted approaches, the potential benefits and limitations of different immune targeting approaches, and ongoing research and development in the field.
Collapse
Affiliation(s)
| | - John L. Reagan
- Division of Hematology and Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA;
| |
Collapse
|
31
|
Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, Wang QQ. The landscape of novel strategies for acute myeloid leukemia treatment: Therapeutic trends, challenges, and future directions. Toxicol Appl Pharmacol 2023; 473:116585. [PMID: 37302559 DOI: 10.1016/j.taap.2023.116585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous subtype of hematological malignancies with a wide spectrum of cytogenetic and molecular abnormalities, which makes it difficult to manage and cure. Along with the deeper understanding of the molecular mechanisms underlying AML pathogenesis, a large cohort of novel targeted therapeutic approaches has emerged, which considerably expands the medical options and changes the therapeutic landscape of AML. Despite that, resistant and refractory cases caused by genomic mutations or bypass signalling activation remain a great challenge. Therefore, discovery of novel treatment targets, optimization of combination strategies, and development of efficient therapeutics are urgently required. This review provides a detailed and comprehensive discussion on the advantages and limitations of targeted therapies as a single agent or in combination with others. Furthermore, the innovative therapeutic approaches including hyperthermia, monoclonal antibody-based therapy, and CAR-T cell therapy are also introduced, which may provide safe and viable options for the treatment of patients with AML.
Collapse
Affiliation(s)
- Ri Han Wu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Chen Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yafang Ma
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
32
|
Testa U, Castelli G, Pelosi E. TP53-Mutated Myelodysplasia and Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023038. [PMID: 37435040 PMCID: PMC10332352 DOI: 10.4084/mjhid.2023.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct and heterogeneous group of myeloid malignancies associated with poor outcomes. Studies carried out in the last years have in part elucidated the complex role played by TP53 mutations in the pathogenesis of these myeloid disorders and in the mechanisms of drug resistance. A consistent number of studies has shown that some molecular parameters, such as the presence of a single or multiple TP53 mutations, the presence of concomitant TP53 deletions, the association with co-occurring mutations, the clonal size of TP53 mutations, the involvement of a single (monoallelic) or of both TP53 alleles (biallelic) and the cytogenetic architecture of concomitant chromosome abnormalities are major determinants of outcomes of patients. The limited response of these patients to standard treatments, including induction chemotherapy, hypomethylating agents and venetoclax-based therapies and the discovery of an immune dysregulation have induced a shift to new emerging therapies, some of which being associated with promising efficacy. The main aim of these novel immune and nonimmune strategies consists in improving survival and in increasing the number of TP53-mutated MDS/AML patients in remission amenable to allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| |
Collapse
|
33
|
Spillane DR, Assouline S. Immunotherapy for myelodysplastic syndrome and acute myeloid leukemia: where do we stand? Expert Rev Hematol 2023; 16:819-834. [PMID: 37819154 DOI: 10.1080/17474086.2023.2268273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are generally characterized by a poor prognosis with currently available therapies. Immunotherapies have already seen success in treating a variety of malignant disorders, and their role in managing myeloid cancers is evolving rapidly. AREAS COVERED This is a review of the immunotherapies tested in MDS and AML, including immune checkpoint inhibitors, bispecific antibodies, and cell therapies such as chimeric antigen receptor (CAR) T cell therapy, T cell receptor (TCR) engineered T cells, and natural killer (NK) cells, with a focus on clinical trials conducted to date and future directions. EXPERT OPINION Initial clinical trials exploring checkpoint inhibitors in MDS and AML have demonstrated high toxicity and disappointing efficacy. However, ongoing trials adding novel checkpoint inhibitors to standard therapy are more promising. Technological advances are improving the outlook for bispecific antibodies, and cellular therapies like adoptive NK cell infusion have favorable efficacy and tolerability in early trials. As our understanding of the immune microenvironment in MDS and AML improves, the role for immunotherapy in the treatment of these diseases will become clearer.
Collapse
Affiliation(s)
- David R Spillane
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Sarit Assouline
- Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
34
|
Ke P, Zhu Q, Xu T, Yang X, Wang Y, Qiu H, Wu D, Bao X, Chen S. Identification and validation of a 7-genes prognostic signature for adult acute myeloid leukemia based on aging-related genes. Aging (Albany NY) 2023; 15:5826-5853. [PMID: 37367950 PMCID: PMC10333094 DOI: 10.18632/aging.204843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
To explore effects of aging-related genes (ARGs) on the prognosis of Acute Myeloid Leukemia (AML), a seven-ARGs signature was developed and validated in AML patients. The numbers of seven-ARG sequences were selected to construct the survival prognostic signature in TCGA-LAML cohort, and two GEO datasets were used independently to verify the prognostic values of signature. According to seven-ARGs signature, patients were categorized into two subgroups. Patients with high-risk prognostic score were defined as HRPS-group/high-risk group, while others were set as LRPS-group/low-risk group. HRPS-group presented adverse overall survival (OS) than LRPS-group in TCGA-AML cohort (HR=3.39, P<0.001). In validation, the results emphasized a satisfactory discrimination in different time points, and confirmed the poor OS of HRPS-group both in GSE37642 (HR=1.96, P=0.001) and GSE106291 (HR=1.88, P<0.001). Many signal pathways, including immune- and tumor-related processes, especially NF-κB signaling, were highly enriched in HRPS-group. Coupled with high immune-inflamed infiltration, the HRPS-group was highly associated with the driver gene and oncogenic signaling pathway of TP53. Prediction of blockade therapy targeting immune checkpoint indicated varied benefits base on the different ARGs signature score, and the results of predicted drug response suggested that Pevonedistat, an inhibitor of NEDD8-activating enzyme, targeting NF-κB signaling, may have potential therapeutic value for HRPS-group. Compared with clinical factors alone, the signature had an independent value and more predictive power of AML prognosis. The 7-ARGs signature may help to guide clinical-decision making to predict drug response, and survival in AML patients.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qian Zhu
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Ting Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Turkalj S, Radtke FA, Vyas P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. Hemasphere 2023; 7:e914. [PMID: 37304938 PMCID: PMC10256410 DOI: 10.1097/hs9.0000000000000914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Felix A. Radtke
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
36
|
Yao K, Zhou E, Schaafsma E, Zhang B, Cheng C. Immune checkpoint gene VSIR predicts patient prognosis in acute myeloid leukemia and myelodysplastic syndromes. Cancer Med 2023; 12:5590-5602. [PMID: 36394080 PMCID: PMC10028170 DOI: 10.1002/cam4.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Immune checkpoint proteins play critical functions during the immune response to cancer and have been targeted by immune checkpoint blockade therapy. V-domain Ig suppressor of T cell activation (VSIR) is one of these immune checkpoint genes and has been investigated extensively in recent years due to its conflicting roles in cancer immunity. Specifically, in acute myeloid leukemia (AML), the prognostic value of VSIR is debated. RESULTS In both patient tumor samples and cancer cell lines we find that VSIR has the highest expression in AML out of all cancer types and, in AML, has the highest expression out of all other immune checkpoint genes. Survival analysis indicated that AML patients with higher VSIR expression have significantly shorter survival than those patients with lower expression, even within established AML subgroups (e.g., FAB subtypes). Importantly, VSIR expression is predictive of progression from myelodysplastic syndromes (MDS) patients into AML, suggesting its potential role during the very early stage of AML development and progression. In addition to AML, VSIR also demonstrates prognostic values in other cancer types, including multiple myeloma and mesothelioma. CONCLUSION In summary, our analyses revealed the prognostic value of VSIR and its potential as a target for immunotherapy, especially in AML.
Collapse
Affiliation(s)
- Kevin Yao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Emily Zhou
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Evelien Schaafsma
- Department of Molecular and Systems Biology, Dartmouth College, Lebanon, New Hampshire, USA
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire, USA
| | - Baoyi Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Transcriptional Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
37
|
High Co-Expression of PDCD1/ TIGIT/ CD47/ KIR3DL2 in Bone Marrow Is Associated with Poor Prognosis for Patients with Myelodysplastic Syndrome. JOURNAL OF ONCOLOGY 2023; 2023:1972127. [PMID: 36816361 PMCID: PMC9931467 DOI: 10.1155/2023/1972127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
Cellular immune disorder is a common characteristic of myelodysplastic syndrome (MDS). Abnormal natural killer (NK) cell function has been reported in MDS patients, and this is closely related to disease progression and poor prognosis. However, little is known about the association between the abnormal immune checkpoint (IC) that results in abnormal immune NK cell function and the prognosis of MDS. In this study, RNA-sequencing data from 80 patients in the GSE114922 dataset and bone marrow (BM) samples from 46 patients with MDS in our clinical center were used for overall survival (OS) analysis and validation. We found that the NK cell-related IC genes PDCD1, TIGIT, CD47, and KIR3DL2 had higher expression and correlated with poor OS for MDS patients. High expression of PDCD1 or TIGIT was significantly associated with poor OS for MDS patients younger than 60 years of age. Moreover, co-expression of PDCD1 and TIGIT had the greatest contribution to OS prediction. Interestingly, PDCD1, TIGIT, CD47, and KIR3DL2 and risk stratification based on the Revised International Prognostic Scoring System were used to construct a nomogram model, which could visually predict the 1-, 2-, and 3-year survival rates of MDS patients. In summary, high expression of IC receptors in the BM of MDS patients was associated with poor OS. The co-expression patterns of PDCD1, TIGIT, CD47, and KIR3DL2 might provide novel insights into designing combined targeted therapies for MDS.
Collapse
|
38
|
Ciotti G, Marconi G, Sperotto A, Giannini MB, Gottardi M, Martinelli G. Biological therapy in elderly patients with acute myeloid leukemia. Expert Opin Biol Ther 2023; 23:175-194. [PMID: 36715330 DOI: 10.1080/14712598.2023.2174015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The introduction of target molecules and immunological therapies is changing the treatment landscape of acute myeloid leukemia (AML). AREAS COVERED We recapitulate the biological therapies that can be employed in the treatment of elderly patients with AML. Alongside small molecules inhibitors that target specific gene mutations, antibodies, tumor microenvironment modulators, and cellular therapies are being developed for the cure of the disease. Here, we report the biological activities, the efficacy and toxicities of humanized antibodies and antibody-drug conjugates that targets surface antigens as CD33 (gemtuzumab ozogamicine) or CD123 (pivekimab sunirine). We further explore mechanisms and effectiveness of medications that modify the microenvironment, such as glasdegib, or that harness the immune system against leukemia, such as CD47 antibody magrolimab, PD1/PDL1 inhibitors pembrolizumab and nivolumab, TIM3 inhibitor sabatolimab, T-cell and NK-cell engagers. Cellular therapies are considered, even if a large trial is still pending for the feasibility of the approach. In this scenario, a brief overview of the mechanism of action of target agents is provided, particularly with respect to their biological mechanisms. EXPERT OPINION Overall, this therapeutic armamentarium will constitute the basis for multimodal and personalized combinations that, in the idea of precision medicine, will enormously benefit elderly AML patients.
Collapse
Affiliation(s)
- Giulia Ciotti
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandra Sperotto
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Maria B Giannini
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
39
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Chen Y, Wang J, Zhang F, Liu P. A perspective of immunotherapy for acute myeloid leukemia: Current advances and challenges. Front Pharmacol 2023; 14:1151032. [PMID: 37153761 PMCID: PMC10154606 DOI: 10.3389/fphar.2023.1151032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
During the last decade, the underlying pathogenic mechanisms of acute myeloid leukemia (AML) have been the subject of extensive study which has considerably increased our understanding of the disease. However, both resistance to chemotherapy and disease relapse remain the principal obstacles to successful treatment. Because of acute and chronic undesirable effects frequently associated with conventional cytotoxic chemotherapy, consolidation chemotherapy is not feasible, especially for elderly patients, which has attracted a growing body of research to attempt to tackle this problem. Immunotherapies for acute myeloid leukemia, including immune checkpoint inhibitors, monoclonal antibodies, dendritic cell (DC) vaccines, together with T-cell therapy based on engineered antigen receptor have been developed recently. Our review presents the recent progress in immunotherapy for the treatment of AML and discusses effective therapies that have the most potential and major challenges.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- *Correspondence: Jishi Wang,
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| |
Collapse
|
41
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
42
|
Abstract
Although complete remission could be achieved in about 60%-70% of acute myeloid leukemia (AML) patients after conventional chemotherapy, relapse and the state of being refractory to treatment remain the main cause of death. In addition, there is a great need for less intensive regimens for all medically frail patients (both due to age/comorbidity and treatment-related). Immune therapy anticipates improved prognosis and reduced toxicities, which may offer novel therapeutic rationales. However, one of the major difficulties in developing immune therapies against AML is that the target antigens are also significantly expressed on healthy hematopoietic stem cells; B-cell malignancies are different because CD20/CD19/healthy B-cells are readily replaceable. Only the anti-CD33 antibody-drug conjugate gemtuzumab-ozogamicin is approved by the FDA for AML. Thus, drug development remains extremely active, although it is still in its infancy. This review summarizes the clinical results of immune therapeutic agents for AML, such as antibody-based drugs, chimeric antigen receptor therapy, checkpoint inhibitors, and vaccines.
Collapse
|
43
|
TP53 Mutant Acute Myeloid Leukemia: The Immune and Metabolic Perspective. HEMATO 2022. [DOI: 10.3390/hemato3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TP53 mutated/deleted acute myeloid leukemia (AML) stands out as one of the poorest prognosis forms of acute leukemia with a median overall survival not reaching one year in most cases, even in selected cases when allogenic stem-cell transplantation is performed. This aggressive behavior relies on intrinsic chemoresistance of blast cells and on high rates of relapse. New insights into the biology of the disease have shown strong linkage between TP53 mutant AML, altered metabolic features and immunoregulation uncovering new scenarios and leading to possibilities beyond current treatment approaches. Furthermore, new targeted therapies acting on misfolded/dysfunctional p53 protein are under current investigation with the aim to improve outcomes. In this review, we sought to offer an insight into TP53 mutant AML current biology and treatment approaches, with a special focus on leukemia-associated immune and metabolic changes.
Collapse
|
44
|
Daver NG, Maiti A, Kadia TM, Vyas P, Majeti R, Wei AH, Garcia-Manero G, Craddock C, Sallman DA, Kantarjian HM. TP53-Mutated Myelodysplastic Syndrome and Acute Myeloid Leukemia: Biology, Current Therapy, and Future Directions. Cancer Discov 2022; 12:2516-2529. [PMID: 36218325 PMCID: PMC9627130 DOI: 10.1158/2159-8290.cd-22-0332] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct group of myeloid disorders with dismal outcomes. TP53-mutated MDS and AML have lower response rates to either induction chemotherapy, hypomethylating agent-based regimens, or venetoclax-based therapies compared with non-TP53-mutated counterparts and a poor median overall survival of 5 to 10 months. Recent advances have identified novel pathogenic mechanisms in TP53-mutated myeloid malignancies, which have the potential to improve treatment strategies in this distinct clinical subgroup. In this review, we discuss recent insights into the biology of TP53-mutated MDS/AML, current treatments, and emerging therapies, including immunotherapeutic and nonimmune-based approaches for this entity. SIGNIFICANCE Emerging data on the impact of cytogenetic aberrations, TP53 allelic burden, immunobiology, and tumor microenvironment of TP53-mutated MDS and AML are further unraveling the complexity of this disease. An improved understanding of the functional consequences of TP53 mutations and immune dysregulation in TP53-mutated AML/MDS coupled with dismal outcomes has resulted in a shift from the use of cytotoxic and hypomethylating agent-based therapies to novel immune and nonimmune strategies for the treatment of this entity. It is hoped that these novel, rationally designed combinations will improve outcomes in this area of significant unmet need.
Collapse
Affiliation(s)
- Naval G. Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M. Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, California
| | - Andrew H. Wei
- Peter MacCallum Centre, Royal Melbourne Hospital and Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | - Charles Craddock
- Blood and Marrow Transplant Unit, Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
| | - David A. Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
46
|
Lin MS, Zhong HY, Yim RLH, Chen QY, Du HL, He HQ, Lin K, Zhao P, Gao R, Gao F, Zhang MY. Pan-cancer analysis of oncogenic TNFAIP2 identifying its prognostic value and immunological function in acute myeloid leukemia. BMC Cancer 2022; 22:1068. [PMID: 36243694 PMCID: PMC9571470 DOI: 10.1186/s12885-022-10155-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor necrosis factor alpha-induced protein 2 (TNFAIP2), a TNFα-inducible gene, appears to participate in inflammation, immune response, hematopoiesis, and carcinogenesis. However, the potential role of TNFAIP2 in the development of acute myeloid leukemia (AML) remains unknow yet. Therefore, we aimed to study the biological role of TNFAIP2 in leukemogenesis. METHODS TNFAIP2 mRNA level, prognostic value, co-expressed genes, differentially expressed genes, DNA methylation, and functional enrichment analysis in AML patients were explored via multiple public databases, including UALCAN, GTEx portal, Timer 2.0, LinkedOmics, SMART, MethSurv, Metascape, GSEA and String databases. Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Beat AML database were used to determine the associations between TNFAIP2 expression and various clinical or genetic parameters of AML patients. Moreover, the biological functions of TNFAIP2 in AML were investigated through in vitro experiments. RESULTS By large-scale data mining, our study indicated that TNFAIP2 was differentially expressed across different normal and tumor tissues. TNFAIP2 expression was significantly increased in AML, particularly in French-American-British (FAB) classification M4/M5 patients, compared with corresponding control tissues. Overexpression of TNFAIP2 was an independent poor prognostic factor of overall survival (OS) and was associated with unfavorable cytogenetic risk and gene mutations in AML patients. DNA hypermethylation of TNFAIP2 at gene body linked to upregulation of TNFAIP2 and inferior OS in AML. Functional enrichment analysis indicated immunomodulation function and inflammation response of TNFAIP2 in leukemogenesis. Finally, the suppression of TNFAIP resulted in inhibition of proliferation by altering cell-cycle progression and increase of cell death by promoting early and late apoptosis in THP-1 and U937AML cells. CONCLUSION Collectively, the oncogenic TNFAIP2 can function as a novel biomarker and prognostic factor in AML patients. The immunoregulation function of TNFAIP2 warrants further validation in AML.
Collapse
Affiliation(s)
- Mei-Si Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China
| | - Hui-Yun Zhong
- Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Rita Lok-Hay Yim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Qi-Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China
| | - Hong-Ling Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China
| | - Hao-Qi He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China
| | - Ke Lin
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China
| | - Peng Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China
| | - Ru Gao
- Department of Nursing, Chengdu Wenjiang People's Hospital, Chengdu, 611100, Sichuan, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China.
| | - Min-Yue Zhang
- Division of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
47
|
Nogami A, Sasaki K. Therapeutic Advances in Immunotherapies for Hematological Malignancies. Int J Mol Sci 2022; 23:11526. [PMID: 36232824 PMCID: PMC9569660 DOI: 10.3390/ijms231911526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Following the success of immunotherapies such as chimeric antigen receptor transgenic T-cell (CAR-T) therapy, bispecific T-cell engager therapy, and immune checkpoint inhibitors in the treatment of hematologic malignancies, further studies are underway to improve the efficacy of these immunotherapies and to reduce the complications associated with their use in combination with other immune checkpoint inhibitors and conventional chemotherapy. Studies of novel therapeutic strategies such as bispecific (tandem or dual) CAR-T, bispecific killer cell engager, trispecific killer cell engager, and dual affinity retargeting therapies are also underway. Because of these studies and the discovery of novel immunotherapeutic target molecules, the use of immunotherapy for diseases initially thought to be less promising to treat with this treatment method, such as acute myeloid leukemia and T-cell hematologic tumors, has become a reality. Thus, in this coming era of new transplantation- and chemotherapy-free treatment strategies, it is imperative for both scientists and clinicians to understand the molecular immunity of hematologic malignancies. In this review, we focus on the remarkable development of immunotherapies that could change the prognosis of hematologic diseases. We also review the molecular mechanisms, development processes, clinical efficacies, and problems of new agents.
Collapse
Affiliation(s)
- Ayako Nogami
- Department of Laboratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 1138510, Japan
- Department of Hematology, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyoku, Tokyo 1138510, Japan
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030, USA
| |
Collapse
|
48
|
A Focus on Intermediate-Risk Acute Myeloid Leukemia: Sub-Classification Updates and Therapeutic Challenges. Cancers (Basel) 2022; 14:cancers14174166. [PMID: 36077703 PMCID: PMC9454629 DOI: 10.3390/cancers14174166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) represents a heterogeneous group of hematopoietic neoplasms deriving from the abnormal proliferation of myeloid progenitors in the bone marrow. Patients with AML may have highly variable outcomes, which are generally dictated by individual clinical and genomic characteristics. As such, the European LeukemiaNet 2017 and 2022 guidelines categorize newly diagnosed AML into favorable-, intermediate-, and adverse-risk groups, based on their molecular and cytogenetic profiles. Nevertheless, the intermediate-risk category remains poorly defined, as many patients fall into this group as a result of their exclusion from the other two. Moreover, further genomic data with potential prognostic and therapeutic influences continue to emerge, though they are yet to be integrated into the diagnostic and prognostic models of AML. This review highlights the latest therapeutic advances and challenges that warrant refining the prognostic classification of intermediate-risk AML.
Collapse
|
49
|
Gao Y, Li JY, Mao JY, Zhou JF, Jiang L, Li XP. Comprehensive Analysis of CRIP1 Expression in Acute Myeloid Leukemia. Front Genet 2022; 13:923568. [PMID: 35938037 PMCID: PMC9354089 DOI: 10.3389/fgene.2022.923568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy that imposes great challenges in terms of drug resistance and relapse. Previous studies revealed heterogeneous leukemia cells and their relevant gene markers, such as CRIP1 as clinically prognostic in t (8;21) AML patients. However, the expression and role of CRIP1 in AML are poorly understood. We used the single-cell RNA sequencing and gene expression data from t (8;21) AML patients to analyze the immune and regulation networks of CRIP1. Two independent cohorts from GSE37642 and The Cancer Genome Atlas (TCGA) datasets were employed as validation cohorts. In addition, the methylation data from TCGA were used to analyze the methylation effect of the CRIP1 expression. Gene expression profile from t (8;21) AML patients showed that the CRIP1-high group exhibited an enrichment of immune-related pathways, including tumor necrosis factor (TNF)α signaling via nuclear factor kappa B (NFκB) pathways. Further studies using CIBERSORT showed that the CRIP1-high group had a significantly higher infiltration of exhausted CD8 T cells and activated mast cells. The CRIP1 expression was validated in the GSE37642-GPL96, GSE37642-GPL570, and TCGA datasets. In addition, with the methylation data, four CpG probes of CRIP1 (cg07065217, cg04411625, cg25682097, and 11763800) were identified as negatively associated with the CRIP1 gene expression in AML patients. Our data provide a comprehensive overview of the regulation of CRIP1 expression in AML patients. The evaluation of the TNFα-NFκB signaling pathway as well as the immune heterogeneity might provide new insights for exploring improvements in AML treatment.
Collapse
Affiliation(s)
- Yan Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jin-Yuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Ying Mao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Fan Zhou
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Lu Jiang, ; Xue-Ping Li,
| | - Xue-Ping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Lu Jiang, ; Xue-Ping Li,
| |
Collapse
|
50
|
Abaza Y, Zeidan AM. Immune Checkpoint Inhibition in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cells 2022; 11:cells11142249. [PMID: 35883692 PMCID: PMC9318025 DOI: 10.3390/cells11142249] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors, with limited progress made in the area of myeloid malignancies. The low mutational burden of acute myeloid leukemia (AML) is one potential reason behind the lack of activity of T-cell harnessing ICIs, particularly CTLA-4 and PD-1 inhibitors. Innate immune checkpoints play a critical role in the immune escape of AML and myelodysplastic syndromes (MDS). The CD47 targeting agent, magrolimab, has shown promising activity when combined with azacitidine in early phase trials conducted in AML and higher-risk MDS, especially among patients harboring a TP53 mutation. Similarly, sabatolimab (an anti-TIM-3 monoclonal antibody) plus hypomethylating agents have shown durable responses in higher-risk MDS and AML in early clinical trials. Randomized trials are currently ongoing to confirm the efficacy of these agents. In this review, we will present the current progress and future directions of immune checkpoint inhibition in AML and MDS.
Collapse
Affiliation(s)
- Yasmin Abaza
- Department of Hematology and Oncology, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA;
| | - Amer M. Zeidan
- Section of Hematology, Department of Medicine, Smilow Cancer Center, Yale University, New Haven, CT 06511, USA
- Correspondence:
| |
Collapse
|