1
|
Kawabe H, Manfio L, Magana Pena S, Zhou NA, Bradley KM, Chen C, McLendon C, Benner SA, Levy K, Yang Z, Marchand JA, Fuhrmeister ER. Harnessing Non-standard Nucleic Acids for Highly Sensitive Icosaplex (20-Plex) Detection of Microbial Threats for Environmental Surveillance. ACS Synth Biol 2025; 14:470-484. [PMID: 39898969 PMCID: PMC11854376 DOI: 10.1021/acssynbio.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Environmental surveillance and clinical diagnostics heavily rely on the polymerase chain reaction (PCR) for target detection. A growing list of microbial threats warrants new PCR-based detection methods that are highly sensitive, specific, and multiplexable. Here, we introduce a PCR-based icosaplex (20-plex) assay for detecting 18 enteropathogen and two antimicrobial resistance genes. This multiplexed PCR assay leverages the self-avoiding molecular recognition system (SAMRS) to avoid primer dimer formation, the artificially expanded genetic information system (AEGIS) for amplification specificity, and next-generation sequencing for amplicon identification. Using parallelized multitarget TaqMan Array Cards (TAC) to benchmark performance of the 20-plex assay on wastewater, soil, and human stool samples, we found 90% agreement on positive calls and 89% agreement on negative calls. Additionally, we show how long-read and short-read sequencing information from the 20-plex can be used to further classify allelic variants of genes and distinguish subspecies. The strategy presented offers sensitive, affordable, and robust multiplex detection that can be used to support efforts in wastewater-based epidemiology, environmental monitoring, and human/animal diagnostics.
Collapse
Affiliation(s)
- Hinako Kawabe
- Chemical
Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Luran Manfio
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
| | - Sebastian Magana Pena
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
| | - Nicolette A. Zhou
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Kevin M. Bradley
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Cen Chen
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Chris McLendon
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Karen Levy
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Zunyi Yang
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Jorge A. Marchand
- Chemical
Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Science Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Erica R. Fuhrmeister
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Science Institute, University
of Washington, Seattle, Washington 98195, United States
- Civil and
Environmental Engineering, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Jesser K, Zhou NA, Hemlock C, Miller-Petrie MK, Contreras JD, Ballard A, Sosa-Moreno A, Calvopiña M, Arnold BF, Cevallos W, Trueba G, Lee GO, Eisenberg JN, Levy K. Environmental Exposures Associated with Enteropathogen Infection in Six-Month-Old Children Enrolled in the ECoMiD Cohort along a Rural-Urban Gradient in Northern Ecuador†. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:103-118. [PMID: 39807583 PMCID: PMC11740902 DOI: 10.1021/acs.est.4c07753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
Enteropathogens are major contributors to mortality and morbidity, particularly in settings with limited access to water, sanitation, and hygiene infrastructure. To assess transmission pathways associated with enteropathogen infection, we measured household environmental conditions and assayed 22 enteropathogens using TaqMan Array Cards in stool samples from 276 six-month-old children living in communities along a rural-urban gradient in Northern Ecuador. We utilized multivariable models, risk factor importance, and distance-based statistical methods to test factors associated with infection. Most children (89%) carried at least one pathogen, and 72% carried two or more. Bacterial infections (82% of participants) were more common than viruses (58%) or parasites (9.1%). Infants living in the urban site had decreased infection risks compared to those in rural locations. Improved water and sanitation were most predictive of reduced infection risk. Improved water was associated with decreased enterotoxigenic E. coli prevalence, and improved sanitation was associated with lower prevalence of any infection and specifically norovirus. Animal exposure was associated with increased Salmonella prevalence. Children measured during the rainy season had fewer viral and more bacterial infections. Identifying environmental exposures associated with specific pathogen outcomes provides insights into transmission pathways, which contribute critical information for developing effective strategies to improve child health.
Collapse
Affiliation(s)
- Kelsey
J. Jesser
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Nicolette A. Zhou
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Caitlin Hemlock
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Molly K. Miller-Petrie
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jesse D. Contreras
- Department
of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - April Ballard
- Gangarosa
Department of Environmental Health, Emory
University, Atlanta, Georgia 30329, United States
| | - Andrea Sosa-Moreno
- Department
of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Manuel Calvopiña
- One
Health Research Group, Facultad de Medicina, Universidad De Las Américas (UDLA), Quito 17901, Ecuador
| | - Benjamin F. Arnold
- F.I.
Proctor Foundation and Department of Ophthalmology, University of California at San Francisco, San Francisco, California 94158, United States
| | - William Cevallos
- Centro
de Biomedicina, Universidad Central del
Ecuador, Quito 170136, Ecuador
| | - Gabriel Trueba
- Instituto
de Microbiología Colegio de Ciencias Biológicas
y Ambientales, Universidad San Francisco
de Quito, Quito 170901, Ecuador
| | - Gwenyth O. Lee
- Rutgers
Global Health Institute, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Joseph N.S. Eisenberg
- Department
of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Karen Levy
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Wang X, Ma T, Chen Z, Liu Y, Wang K, Liu G, Li K, Chen T, Zhang G, Zhang W, Zhang B. Review of Methods for Studying Viruses in the Environment and Organisms. Viruses 2025; 17:86. [PMID: 39861875 PMCID: PMC11769461 DOI: 10.3390/v17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Recent decades have seen growing attention on viruses in the environment and their potential impacts as a result of global epidemics. Due to the diversity of viral species along with the complexity of environmental and host factors, virus extraction and detection methods have become key for the study of virus ecology. This review systematically summarises the methods for extracting and detecting pathogens from different environmental samples (e.g., soil, water, faeces, air) and biological samples (e.g., plants, animals) in existing studies, comparing their similarities and differences, applicability, as well as the advantages and disadvantages of each method. Additionally, this review discusses future directions for research in this field. The aim is to provide a theoretical foundation and technical reference for virus ecology research, facilitating further exploration and applications in this field.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tong Ma
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhiyuan Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Kexin Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guangxiu Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
| | - Kesheng Li
- Lanzhou Yahua Biotechnology Company, Lanzhou 730050, China;
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaosen Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (X.W.); (Z.C.); (G.L.); (G.Z.); (W.Z.)
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; (T.M.); (Y.L.); (K.W.); (T.C.)
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Cartledge K, Short FL, Hall A, Lambert K, McDonald MJ, Lithgow T. Ethical bioprospecting and microbial assessments for sustainable solutions to the AMR crisis. IUBMB Life 2025; 77:e2931. [PMID: 39718471 DOI: 10.1002/iub.2931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 12/25/2024]
Abstract
Antimicrobial resistance (AMR) has been declared one of the top 10 global public health challenges of our age by the World Health Organization, and the World Bank describes AMR as a crisis affecting the finance, health, and agriculture sectors and a major threat to the attainment of Sustainable Development Goals. But what is AMR? It is a phenotype that evolves in microbes exposed to antimicrobial molecules and causes dangerous infections. This suggests that scientists and healthcare workers should be on the frontline in the search for sustainable solutions to AMR. Yet AMR is also a societal problem to be understood by everyone. This review aims to explore the need to address the problem of AMR through a coherent, international strategy with buy-in from all sectors of society. As reviewed here, the sustainable solutions to AMR will be driven by better understanding of AMR biology but will require more than this alone to succeed. Some advances on the horizon, such as the use of bacteriophage (phage) to treat AMR infections. However, many of the new technologies and new therapeutics to address AMR require access to biodiversity, where the custodians of that biodiversity-and the traditional knowledge required to access it-are needed as key partners in the scientific, clinical, biotechnological, and international ventures that would treat the problem of AMR and ultimately prevent its further evolution. Many of these advances will be built on microbial assessments to understand the extent of AMR in our environments and bioprospecting to identify microbes that may have beneficial uses. Genuine partnerships for access to this biodiversity and sharing of benefits accrued require a consideration of ethical practice and behavior. Behavior change is needed across all sectors of culturally diverse societies so that rapid deployment of solutions can be implemented for maximum effect against the impacts of AMR.
Collapse
Affiliation(s)
- Kayla Cartledge
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - Francesca L Short
- Centre to Impact AMR, Monash University, Melbourne, Australia
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Australia
| | - Alex Hall
- Centre to Impact AMR, Monash University, Melbourne, Australia
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Australia
| | - Karen Lambert
- Centre to Impact AMR, Monash University, Melbourne, Australia
- School of Curriculum, Teaching and Inclusive Education, Monash University, Melbourne, Australia
| | - Michael J McDonald
- Centre to Impact AMR, Monash University, Melbourne, Australia
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, Australia
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Daly SW, Chieng B, Araka S, Mboya J, Imali C, Swarthout JM, Njenga SM, Pickering AJ, Harris AR. Enteric Pathogens in Humans, Domesticated Animals, and Drinking Water in a Low-Income Urban Area of Nairobi, Kenya. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21839-21849. [PMID: 39591504 PMCID: PMC11636211 DOI: 10.1021/acs.est.4c10041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
To explore the sources of and associated risks with drinking water contamination in low-income, densely populated urban areas, we collected human feces, domesticated animal feces, and source and stored drinking water samples in Nairobi, Kenya in 2019; and analyzed them using microbial source tracking (MST) and enteric pathogen TaqMan Array Cards (TACs). We established host-pathogen relationships in this setting, including detecting Shigella and Norovirus─which are typically associated with humans─in dog feces. We evaluated stored and source drinking water quality using indicator Escherichia coli (E. coli), MST markers, and TACs, detecting pathogen targets in drinking water that were also detected in specific animal feces. This work highlights the need for further evaluation of host-pathogen relationships and the directionality of pathogen transmission to prevent the disease burden associated with unsafe drinking water and domestic animal ownership.
Collapse
Affiliation(s)
- Sean W. Daly
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Fitts-Woolard Hall, 915 Partners
Way, Rm 3250, Raleigh, North
Carolina 27695, United States
| | - Benard Chieng
- Kenya
Medical Research Institute, Nairobi 00100, Kenya
| | - Sylvie Araka
- Kenya
Medical Research Institute, Nairobi 00100, Kenya
| | - John Mboya
- Kenya
Medical Research Institute, Nairobi 00100, Kenya
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Jenna M. Swarthout
- Civil
and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | - Amy J. Pickering
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chan
Zuckerberg
Biohub, San Francisco, California 94158, United States
| | - Angela R. Harris
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Fitts-Woolard Hall, 915 Partners
Way, Rm 3250, Raleigh, North
Carolina 27695, United States
| |
Collapse
|
6
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Gutema FD, Okoth B, Agira J, Amondi CS, Busienei PJ, Simiyu S, Mberu B, Sewell D, Baker KK. Spatial-Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1351. [PMID: 39457324 PMCID: PMC11506941 DOI: 10.3390/ijerph21101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Public spaces in countries with limited societal development can be contaminated with feces containing pathogenic microbes from animals and people. Data on contamination levels, spatial distribution, and the diversity of enteric pathogens in the public settings of low- and middle-income neighborhoods are crucial for devising strategies that minimize the enteric infection burden. The objective of this study was to compare spatial-temporal differences in the detection rate and diversity of enteric pathogens in the public spaces of low- and middle-income neighborhoods of Nairobi, Kenya. TaqMan array card (TAC) molecular assays were employed to analyze soil samples for 19 enteropathogens, along with a selective bacterial culture for pathogenic Enterobacteriaceae. An observational assessment was conducted during every site visit to document the hygienic infrastructure and sanitation conditions at the sites. We detected at least one pathogen in 79% (127/160) and ≥2 pathogens in 67.5% (108/160) of the soil samples tested. The four most frequently detected pathogens were EAEC (67.5%), ETEC (59%), EPEC (57.5%), and STEC (31%). The detection rate (91% vs. 66%) and mean number of enteric pathogens (5 vs. 4.7) were higher in low-income Kibera than in middle-income Jericho. The more extensive spatial distribution of pathogens in Kibera resulted in increases in the detection of different enteric pathogens from within-site (area < 50 m2) and across-site (across-neighborhood) movements compared to Jericho. The pathogen detection rates fluctuated seasonally in Jericho but remained at sustained high levels in Kibera. While better neighborhood conditions were linked with lower pathogen detection rates, pathogenic E. coli remained prevalent in the public environment across both neighborhoods. Future studies should focus on identifying how the sources of pathogen contamination are modified by improved environmental sanitation and hygiene and the role of these contaminated public environments in enteric infections in children.
Collapse
Affiliation(s)
- Fanta D. Gutema
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology, Immunology and Veterinary Public Health, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Bonphace Okoth
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - John Agira
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Christine S. Amondi
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Phylis J. Busienei
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Sheillah Simiyu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Blessing Mberu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Daniel Sewell
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Kelly K. Baker
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
8
|
Lappan R, Chown SL, French M, Perlaza-Jiménez L, Macesic N, Davis M, Brown R, Cheng A, Clasen T, Conlan L, Goddard F, Henry R, Knight DR, Li F, Luby S, Lyras D, Ni G, Rice SA, Short F, Song J, Whittaker A, Leder K, Lithgow T, Greening C. Towards integrated cross-sectoral surveillance of pathogens and antimicrobial resistance: Needs, approaches, and considerations for linking surveillance to action. ENVIRONMENT INTERNATIONAL 2024; 192:109046. [PMID: 39378692 DOI: 10.1016/j.envint.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Pathogenic and antimicrobial-resistant (AMR) microorganisms are continually transmitted between human, animal, and environmental reservoirs, contributing to the high burden of infectious disease and driving the growing global AMR crisis. The sheer diversity of pathogens, AMR mechanisms, and transmission pathways connecting these reservoirs create the need for comprehensive cross-sectoral surveillance to effectively monitor risks. Current approaches are often siloed by discipline and sector, focusing independently on parts of the whole. Here we advocate that integrated surveillance approaches, developed through transdisciplinary cross-sector collaboration, are key to addressing the dual crises of infectious diseases and AMR. We first review the areas of need, challenges, and benefits of cross-sectoral surveillance, then summarise and evaluate the major detection methods already available to achieve this (culture, quantitative PCR, and metagenomic sequencing). Finally, we outline how cross-sectoral surveillance initiatives can be fostered at multiple scales of action, and present key considerations for implementation and the development of effective systems to manage and integrate this information for the benefit of multiple sectors. While methods and technologies are increasingly available and affordable for comprehensive pathogen and AMR surveillance across different reservoirs, it is imperative that systems are strengthened to effectively manage and integrate this information.
Collapse
Affiliation(s)
- Rachael Lappan
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Securing Antarctica's Environmental Future, Monash University, Melbourne, Australia.
| | - Steven L Chown
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Securing Antarctica's Environmental Future, Monash University, Melbourne, Australia
| | - Matthew French
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Faculty of Art, Design and Architecture (MADA), Monash University, Melbourne, Australia
| | - Laura Perlaza-Jiménez
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Nenad Macesic
- Centre to Impact AMR, Monash University, Melbourne, Australia; Department of Infectious Diseases, Alfred Health, Melbourne, Australia; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Mark Davis
- Centre to Impact AMR, Monash University, Melbourne, Australia; School of Social Sciences, Monash University, Melbourne, Australia
| | - Rebekah Brown
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Monash Sustainable Development Institute, Melbourne, Australia
| | - Allen Cheng
- Centre to Impact AMR, Monash University, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, Australia
| | - Thomas Clasen
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lindus Conlan
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - Frederick Goddard
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rebekah Henry
- Centre to Impact AMR, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Department of Civil Engineering, Monash University, Melbourne, Australia
| | - Daniel R Knight
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, WA, Australia; School of Biomedical Sciences, The University of Western Australia, WA, Australia
| | - Fuyi Li
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection and Cancer Programs, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Stephen Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Dena Lyras
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Gaofeng Ni
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Scott A Rice
- Microbiomes for One Systems Health, CSIRO Agriculture and Food, Canberra, Australia
| | - Francesca Short
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jiangning Song
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection and Cancer Programs, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Andrea Whittaker
- Centre to Impact AMR, Monash University, Melbourne, Australia; School of Social Sciences, Monash University, Melbourne, Australia
| | - Karin Leder
- Centre to Impact AMR, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Chris Greening
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Securing Antarctica's Environmental Future, Monash University, Melbourne, Australia.
| |
Collapse
|
9
|
Kawabe H, Manfio L, Pena SM, Zhou NA, Bradley KM, Chen C, McLendon C, Benner SA, Levy K, Yang Z, Marchand JA, Fuhrmeister ER. Harnessing non-standard nucleic acids for highly sensitive icosaplex (20-plex) detection of microbial threats. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313328. [PMID: 39314929 PMCID: PMC11419210 DOI: 10.1101/2024.09.09.24313328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Environmental surveillance and clinical diagnostics heavily rely on the polymerase chain reaction (PCR) for target detection. A growing list of microbial threats warrants new PCR-based detection methods that are highly sensitive, specific, and multiplexable. Here, we introduce a PCR-based icosaplex (20-plex) assay for detecting 18 enteropathogen and two antimicrobial resistance genes. This multiplexed PCR assay leverages the self-avoiding molecular recognition system (SAMRS) to avoid primer dimer formation, the artificially expanded genetic information system (AEGIS) for amplification specificity, and next-generation sequencing for amplicon identification. We benchmarked this assay using a low-cost, portable sequencing platform (Oxford Nanopore) on wastewater, soil, and human stool samples. Using parallelized multi-target TaqMan Array Cards (TAC) to benchmark performance of the 20-plex assay, there was 74% agreement on positive calls and 97% agreement on negative calls. Additionally, we show how sequencing information from the 20-plex can be used to further classify allelic variants of genes and distinguish sub-species. The strategy presented offers sensitive, affordable, and robust multiplex detection that can be used to support efforts in wastewater-based epidemiology, environmental monitoring, and human/animal diagnostics.
Collapse
Affiliation(s)
- Hinako Kawabe
- Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Luran Manfio
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
| | - Sebastian Magana Pena
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
| | - Nicolette A. Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Cen Chen
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Chris McLendon
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Jorge A. Marchand
- Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering and Science Institute, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Erica R. Fuhrmeister
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
- Civil and Environmental Engineering, University of Washington, Seattle, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Pajuelo MJ, Noazin S, Cabrera L, Toledo A, Velagic M, Arias L, Ochoa M, Moulton LH, Saito M, Gilman RH, Chakraborty S. Epidemiology of enterotoxigenic Escherichia coli and impact on the growth of children in the first two years of life in Lima, Peru. Front Public Health 2024; 12:1332319. [PMID: 38584932 PMCID: PMC10995271 DOI: 10.3389/fpubh.2024.1332319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Enterotoxigenic E. coli (ETEC) is a leading cause of diarrheal morbidity and mortality in children, although the data on disease burden, epidemiology, and impact on health at the community level are limited. Methods In a longitudinal birth cohort study of 345 children followed until 24 months of age in Lima, Peru, we measured ETEC burden in diarrheal and non-diarrheal samples using quantitative PCR (LT, STh, and STp toxin genes), studied epidemiology and measured anthropometry in children. Results About 70% of children suffered from one or more ETEC diarrhea episodes. Overall, the ETEC incidence rate (IR) was 73 per 100 child-years. ETEC infections began early after birth causing 10% (8.9-11.1) ETEC-attributable diarrheal burden at the population level (PAF) in neonates and most of the infections (58%) were attributed to ST-ETEC [PAF 7.9% (1.9-13.5)] and LT + ST-ETEC (29%) of which all the episodes were associated with diarrhea. ETEC infections increased with age, peaking at 17% PAF (4.6-27.7%; p = 0.026) at 21 to 24 months. ST-ETEC was the most prevalent type (IR 32.1) with frequent serial infections in a child. The common colonization factors in ETEC diarrhea cases were CFA/I, CS12, CS21, CS3, and CS6, while in asymptomatic ETEC cases were CS12, CS6 and CS21. Only few (5.7%) children had repeated infections with the same combination of ETEC toxin(s) and CFs, suggested genotype-specific immunity from each infection. For an average ETEC diarrhea episode of 5 days, reductions of 0.060 weight-for-length z-score (0.007 to 0.114; p = 0.027) and 0.061 weight-for-age z-score (0.015 to 0.108; p = 0.009) were noted in the following 30 days. Conclusion This study showed that ETEC is a significant pathogen in Peruvian children who experience serial infections with multiple age-specific pathotypes, resulting in transitory growth impairment.
Collapse
Affiliation(s)
- Monica J. Pajuelo
- Laboratorio Microbiología Molecular – Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sassan Noazin
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | | | - Angie Toledo
- Laboratorio Microbiología Molecular – Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mirza Velagic
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Lucero Arias
- Laboratorio Microbiología Molecular – Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mayra Ochoa
- Laboratorio Microbiología Molecular – Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lawrence H. Moulton
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Robert H. Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Subhra Chakraborty
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
Mertens A, Arnold BF, Benjamin-Chung J, Boehm AB, Brown J, Capone D, Clasen T, Fuhrmeister ER, Grembi JA, Holcomb D, Knee J, Kwong LH, Lin A, Luby SP, Nala R, Nelson K, Njenga SM, Null C, Pickering AJ, Rahman M, Reese HE, Steinbaum L, Stewart JR, Thilakaratne R, Cumming O, Colford JM, Ercumen A. Is detection of enteropathogens and human or animal faecal markers in the environment associated with subsequent child enteric infections and growth: an individual participant data meta-analysis. Lancet Glob Health 2024; 12:e433-e444. [PMID: 38365415 PMCID: PMC10882208 DOI: 10.1016/s2214-109x(23)00563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Quantifying contributions of environmental faecal contamination to child diarrhoea and growth faltering can illuminate causal mechanisms behind modest health benefits in recent water, sanitation, and hygiene (WASH) trials. We aimed to assess associations between environmental detection of enteropathogens and human or animal microbial source tracking markers (MSTM) and subsequent child health outcomes. METHODS In this individual participant data meta-analysis we searched we searched PubMed, Embase, CAB Direct Global Health, Agricultural and Environmental Science Database, Web of Science, and Scopus for WASH intervention studies with a prospective design and concurrent control that measured enteropathogens or MSTM in environmental samples, or both, and subsequently measured enteric infections, diarrhoea, or height-for-age Z-scores (HAZ) in children younger than 5 years. We excluded studies that only measured faecal indicator bacteria. The initial search was done on Jan 19, 2021, and updated on March 22, 2023. One reviewer (AM) screened abstracts, and two independent reviewers (AM and RT) examined the full texts of short-listed articles. All included studies include at least one author that also contributed as an author to the present Article. Our primary outcomes were the 7-day prevalence of caregiver-reported diarrhoea and HAZ in children. For specific enteropathogens in the environment, primary outcomes also included subsequent child infection with the same pathogen ascertained by stool testing. We estimated associations using covariate-adjusted regressions and pooled estimates across studies. FINDINGS Data from nine published reports from five interventions studies, which included 8603 children (4302 girls and 4301 boys), were included in the meta-analysis. Environmental pathogen detection was associated with increased infection prevalence with the same pathogen and lower HAZ (ΔHAZ -0·09 [95% CI -0·17 to -0·01]) but not diarrhoea (prevalence ratio 1·22 [95% CI 0·95 to 1·58]), except during wet seasons. Detection of MSTM was not associated with diarrhoea (no pooled estimate) or HAZ (ΔHAZ -0·01 [-0·13 to 0·11] for human markers and ΔHAZ -0·02 [-0·24 to 0·21] for animal markers). Soil, children's hands, and stored drinking water were major transmission pathways. INTERPRETATION Our findings support a causal chain from pathogens in the environment to infection to growth faltering, indicating that the lack of WASH intervention effects on child growth might stem from insufficient reductions in environmental pathogen prevalence. Studies measuring enteropathogens in the environment should subsequently measure the same pathogens in stool to further examine theories of change between WASH, faecal contamination, and health. Given that environmental pathogen detection was predictive of infection, programmes targeting specific pathogens (eg, vaccinations and elimination efforts) can environmentally monitor the pathogens of interest for population-level surveillance instead of collecting individual biospecimens. FUNDING The Bill & Melinda Gates Foundation and the UK Foreign and Commonwealth Development Office.
Collapse
Affiliation(s)
- Andrew Mertens
- Division of Epidemiology, University of California, Berkeley, CA, USA; Division of Biostatistics, University of California, Berkeley, CA, USA.
| | - Benjamin F Arnold
- Francis I Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Joe Brown
- Department of Environmental Science and Engineering, University of North Carolina, Gillings School of Global Public Health, Michael Hooker Research Center, Chapel Hill, NC, USA
| | - Drew Capone
- Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - Thomas Clasen
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Erica R Fuhrmeister
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | - David Holcomb
- Department of Environmental Science and Engineering, University of North Carolina, Gillings School of Global Public Health, Michael Hooker Research Center, Chapel Hill, NC, USA
| | - Jackie Knee
- Department of Disease Control, London School of Tropical Medicine & Hygiene, London, UK
| | - Laura H Kwong
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Audrie Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Rassul Nala
- Ministério da Saúde, Instituto Nacional de Saúde Maputo, Maputo, Mozambique
| | - Kara Nelson
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
| | | | | | - Amy J Pickering
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, Dhaka, Bangladesh
| | - Heather E Reese
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lauren Steinbaum
- California Department of Toxic Substances Control, Sacramento, CA, USA
| | - Jill R Stewart
- Department of Environmental Science and Engineering, University of North Carolina, Gillings School of Global Public Health, Michael Hooker Research Center, Chapel Hill, NC, USA
| | | | - Oliver Cumming
- Department of Disease Control, London School of Tropical Medicine & Hygiene, London, UK
| | - John M Colford
- Division of Epidemiology, University of California, Berkeley, CA, USA
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Choix FJ, Palacios OA, Nevarez-Moorillón GV. Traditional and new proposals for environmental microbial indicators-a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1521. [PMID: 37995003 DOI: 10.1007/s10661-023-12150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The continuous increment in world population coupled with the greatest natural resource consumption and waste generation has an enormous impact on the environment. To date, using biological indicators (bioindicators) to evaluate the biological quality of natural environments is very common. Nonetheless, selecting those suitable for each ecosystem or contaminant is one of the most important issues for environmental sciences. Bacteria and helminths are mainly related to fecal contamination, while antibiotic-resistant bacteria, fungi, viruses, and microalgae are organisms used to determine deteriorated ecosystems by diverse contaminants. Nowadays, each bioindicator is used as a specific agent of different contaminant types, but detecting and quantifying these bioindicator microorganisms can be performed from simple microscopy and culture methods up to a complex procedure based on omic sciences. Developing new techniques based on the metabolism and physiological responses of traditional bioindicators is shown in a fast environmental sensitivity analysis. Therefore, the present review focuses on analyzing different bioindicators to facilitate developing suitable monitoring environmental systems according to different pollutant agents. The traditional and new methods proposed to detect and quantify different bioindicators are also discussed. Their vital role is considered in implementing efficient ecosystem bioprospection, restoration, and conservation strategies directed to natural resource management.
Collapse
Affiliation(s)
- Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
| | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | | |
Collapse
|
13
|
Holcomb DA, Monteiro V, Capone D, António V, Chiluvane M, Cumbane V, Ismael N, Knee J, Kowalsky E, Lai A, Linden Y, Mataveia E, Nala R, Rao G, Ribeiro J, Cumming O, Viegas E, Brown J. Long-term impacts of an urban sanitation intervention on enteric pathogens in children in Maputo city, Mozambique: study protocol for a cross-sectional follow-up to the Maputo Sanitation (MapSan) trial 5 years postintervention. BMJ Open 2023; 13:e067941. [PMID: 37290945 PMCID: PMC10254709 DOI: 10.1136/bmjopen-2022-067941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION We previously assessed the effect of an onsite sanitation intervention in informal neighbourhoods of urban Maputo, Mozambique on enteric pathogen detection in children after 2 years of follow-up (Maputo Sanitation (MapSan) trial, ClinicalTrials.gov: NCT02362932). We found significant reductions in Shigella and Trichuris prevalence but only among children born after the intervention was delivered. In this study, we assess the health impacts of the sanitation intervention after 5 years among children born into study households postintervention. METHODS AND ANALYSIS We are conducting a cross-sectional household study of enteric pathogen detection in child stool and the environment at compounds (household clusters sharing sanitation and outdoor living space) that received the pour-flush toilet and septic tank intervention at least 5 years prior or meet the original criteria for trial control sites. We are enrolling at least 400 children (ages 29 days to 60 months) in each treatment arm. Our primary outcome is the prevalence of 22 bacterial, protozoan, and soil transmitted helminth enteric pathogens in child stool using the pooled prevalence ratio across the outcome set to assess the overall intervention effect. Secondary outcomes include the individual pathogen detection prevalence and gene copy density of 27 enteric pathogens (including viruses); mean height-for-age, weight-for-age, and weight-for-height z-scores; prevalence of stunting, underweight, and wasting; and the 7-day period prevalence of caregiver-reported diarrhoea. All analyses are adjusted for prespecified covariates and examined for effect measure modification by age. Environmental samples from study households and the public domain are assessed for pathogens and faecal indicators to explore environmental exposures and monitor disease transmission. ETHICS AND DISSEMINATION Study protocols have been reviewed and approved by human subjects review boards at the Ministry of Health, Republic of Mozambique and the University of North Carolina at Chapel Hill. Deidentified study data will be deposited at https://osf.io/e7pvk/. TRIAL REGISTRATION NUMBER ISRCTN86084138.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vanessa Monteiro
- Centro de Investigação e Treino em Saúde da Polana Caniço, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Drew Capone
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Virgílio António
- Division of Biotechnology and Genetics, Instituto Nacional de Saúde, Marracuene, Mozambique
| | - Márcia Chiluvane
- Centro de Investigação e Treino em Saúde da Polana Caniço, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Victória Cumbane
- Centro de Investigação e Treino em Saúde da Polana Caniço, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Nália Ismael
- Division of Biotechnology and Genetics, Instituto Nacional de Saúde, Marracuene, Mozambique
| | - Jackie Knee
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Erin Kowalsky
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amanda Lai
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yarrow Linden
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elly Mataveia
- Centro de Investigação e Treino em Saúde da Polana Caniço, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Rassul Nala
- Division of Parasitology, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jorge Ribeiro
- Centro de Investigação e Treino em Saúde da Polana Caniço, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Oliver Cumming
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Edna Viegas
- Centro de Investigação e Treino em Saúde da Polana Caniço, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Osman M, Kassem II, Dabboussi F, Cummings KJ, Hamze M. The indelible toll of enteric pathogens: Prevalence, clinical characterization, and seasonal trends in patients with acute community-acquired diarrhea in disenfranchised communities. PLoS One 2023; 18:e0282844. [PMID: 36913372 PMCID: PMC10010529 DOI: 10.1371/journal.pone.0282844] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND There is little information on the epidemiology of enteric pathogens in Lebanon, a low- and middle-income country that suffers from a myriad of public health challenges. To address this knowledge gap, we aimed to assess the prevalence of enteric pathogens, identify risk factors and seasonal variations, and describe associations between pathogens among diarrheic patients in the Lebanese community. METHODOLOGY AND PRINCIPAL FINDINGS A multicenter cross-sectional community-based study was conducted in the north of Lebanon. Stool samples were collected from 360 outpatients suffering from acute diarrhea. Based on fecal examination using the BioFire® FilmArray® Gastrointestinal Panel assay, the overall prevalence of enteric infections was 86.1%. Enteroaggregative Escherichia coli (EAEC) was the most frequently identified (41.7%), followed by enteropathogenic E. coli (EPEC) (40.8%) and rotavirus A (27.5%). Notably, two cases of Vibrio cholerae were identified, while Cryptosporidium spp. (6.9%) was the most common parasitic agent. Overall, 27.7% (86/310) of the cases were single infections, and the majority, 73.3% (224/310), were mixed infections. Multivariable logistic regression models showed that enterotoxigenic E. coli (ETEC) and rotavirus A infections were significantly more likely to occur in the fall and winter compared to the summer. Rotavirus A infections significantly decreased with age but increased in patients living in rural areas or suffering from vomiting. We identified strong associations in the co-occurrence of EAEC, EPEC, and ETEC infections and a higher percentage of rotavirus A and norovirus GI/GII infections among EAEC-positive cases. CONCLUSIONS Several of the enteric pathogens reported in this study are not routinely tested in Lebanese clinical laboratories. However, anecdotal evidence suggests that diarrheal diseases are on the rise due to widespread pollution and the deterioration of the economy. Therefore, this study is of paramount importance to identify circulating etiologic agents and prioritize dwindling resources to control them and limit outbreaks in the future.
Collapse
Affiliation(s)
- Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, United States of America
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Issmat I. Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, United States of America
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
15
|
Mertens A, Arnold BF, Benjamin-Chung J, Boehm AB, Brown J, Capone D, Clasen T, Fuhrmeister E, Grembi JA, Holcomb D, Knee J, Kwong LH, Lin A, Luby SP, Nala R, Nelson K, Njenga SM, Null C, Pickering AJ, Rahman M, Reese HE, Steinbaum L, Stewart J, Thilakaratne R, Cumming O, Colford JM, Ercumen A. Effects of water, sanitation, and hygiene interventions on detection of enteropathogens and host-specific faecal markers in the environment: a systematic review and individual participant data meta-analysis. Lancet Planet Health 2023; 7:e197-e208. [PMID: 36889861 PMCID: PMC10009758 DOI: 10.1016/s2542-5196(23)00028-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Water, sanitation, and hygiene (WASH) improvements are promoted to reduce diarrhoea in low-income countries. However, trials from the past 5 years have found mixed effects of household-level and community-level WASH interventions on child health. Measuring pathogens and host-specific faecal markers in the environment can help investigate causal pathways between WASH and health by quantifying whether and by how much interventions reduce environmental exposure to enteric pathogens and faecal contamination from human and different animal sources. We aimed to assess the effects of WASH interventions on enteropathogens and microbial source tracking (MST) markers in environmental samples. METHODS We did a systematic review and individual participant data meta-analysis, which included searches from Jan 1, 2000, to Jan 5, 2023, from PubMed, Embase, CAB Direct Global Health, Agricultural and Environmental Science Database, Web of Science, and Scopus, of prospective studies with water, sanitation, or hygiene interventions and concurrent control group that measured pathogens or MST markers in environmental samples and measured child anthropometry, diarrhoea, or pathogen-specific infections. We used covariate-adjusted regression models with robust standard errors to estimate study-specific intervention effects and pooled effect estimates across studies using random-effects models. FINDINGS Few trials have measured the effect of sanitation interventions on pathogens and MST markers in the environment and they mostly focused on onsite sanitation. We extracted individual participant data on nine environmental assessments from five eligible trials. Environmental sampling included drinking water, hand rinses, soil, and flies. Interventions were consistently associated with reduced pathogen detection in the environment but effect estimates in most individual studies could not be distinguished from chance. Pooled across studies, we found a small reduction in the prevalence of any pathogen in any sample type (pooled prevalence ratio [PR] 0·94 [95% CI 0·90-0·99]). Interventions had no effect on the prevalence of MST markers from humans (pooled PR 1·00 [95% CI 0·88-1·13]) or animals (pooled PR 1·00 [95% CI 0·97-1·03]). INTERPRETATION The small effect of these sanitation interventions on pathogen detection and absence of effects on human or animal faecal markers are consistent with the small or null health effects previously reported in these trials. Our findings suggest that the basic sanitation interventions implemented in these studies did not contain human waste and did not adequately reduce exposure to enteropathogens in the environment. FUNDING Bill and Melinda Gates Foundation and the UK Foreign and Commonwealth Development Office.
Collapse
Affiliation(s)
- Andrew Mertens
- Division of Epidemiology and Biostatistics, University of California, Berkeley, CA, USA.
| | - Benjamin F Arnold
- Francis I Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Joe Brown
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, Michael Hooker Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Drew Capone
- Department of Environmental and Occupational Health, Indiana University Bloomington, Bloomington, IN, USA
| | - Thomas Clasen
- Department of Environmental Health, Rollins School of Public Health, Emory University, NE, Atlanta, GA, USA
| | - Erica Fuhrmeister
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | - David Holcomb
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, Michael Hooker Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jackie Knee
- Department of Disease Control, London School of Tropical Medicine & Hygiene, London, UK
| | - Laura H Kwong
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Audrie Lin
- Department of Biobehavioral Health, Pennsylvania State University, PA, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Rassul Nala
- Ministério da Saúde, Instituto Nacional de Saúde Maputo, Maputo, Mozambique
| | - Kara Nelson
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
| | | | | | - Amy J Pickering
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, Dhaka, Bangladesh
| | - Heather E Reese
- Department of Environmental Health, Rollins School of Public Health, Emory University, NE, Atlanta, GA, USA
| | - Lauren Steinbaum
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jill Stewart
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, Michael Hooker Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ruwan Thilakaratne
- Division of Epidemiology and Biostatistics, University of California, Berkeley, CA, USA
| | - Oliver Cumming
- Department of Disease Control, London School of Tropical Medicine & Hygiene, London, UK
| | - John M Colford
- Division of Epidemiology and Biostatistics, University of California, Berkeley, CA, USA
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
16
|
Li C, Zhong H, Xie Y, Bai T, Yan B, Sonne C. Speed up multi-pathogen surveillance. Lancet 2023; 401:345-346. [PMID: 36739134 PMCID: PMC9894607 DOI: 10.1016/s0140-6736(23)00134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Huan Zhong
- School of Environment, Nanjing University, Nanjing, China
| | - Yuwei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Tian Bai
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde 4000, Denmark.
| |
Collapse
|
17
|
Capone D, Adriano Z, Cumming O, Irish SR, Knee J, Nala R, Brown J. Urban Onsite Sanitation Upgrades and Synanthropic Flies in Maputo, Mozambique: Effects on Enteric Pathogen Infection Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:549-560. [PMID: 36516327 PMCID: PMC9835884 DOI: 10.1021/acs.est.2c06864] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Synanthropic filth flies transport enteric pathogens from feces to food, which upon consumption poses an infection risk. We evaluated the effect of an onsite sanitation intervention─including fly control measures─in Maputo, Mozambique, on the risk of infection from consuming fly-contaminated food. After enumerating flies at intervention and control sites, we cultured fecal indicator bacteria, quantified gene copies for 22 enteric pathogens via reverse transcription quantitative polymerase chain reaction (RT-qPCR), and developed quantitative microbial risk assessment (QMRA) models to estimate annual risks of infection attributable to fly-contaminated foods. We found that the intervention reduced fly counts at latrine entrances by 69% (aRR = 0.31, [0.13, 0.75]) but not at food preparation areas (aRR = 0.92, [0.33, 2.6]). Half of (23/46) of individual flies were positive for culturable Escherichia coli, and we detected ≥1 pathogen gene from 45% (79/176) of flies, including enteropathogenic E. coli (37/176), adenovirus (25/176), Giardia spp. (13/176), and Trichuris trichiura (12/176). We detected ≥1 pathogen gene from half the flies caught in control (54%, 30/56) and intervention compounds (50%, 17/34) at baseline, which decreased 12 months post-intervention to 43% (23/53) at control compounds and 27% (9/33) for intervention compounds. These data indicate flies as a potentially important mechanical vector for enteric pathogen transmission in this setting. The intervention may have reduced the risk of fly-mediated enteric infection for some pathogens, but infrequent detection resulted in wide confidence intervals; we observed no apparent difference in infection risk between groups in a pooled estimate of all pathogens assessed (aRR = 0.84, [0.61, 1.2]). The infection risks posed by flies suggest that the design of sanitation systems and service delivery should include fly control measures to prevent enteric pathogen transmission.
Collapse
Affiliation(s)
- Drew Capone
- Department
of Environmental and Occupational Health, School of Public Health, Indiana University, 2719 E 10th St, Bloomington, Indiana47401, United States
| | - Zaida Adriano
- WE
Consult ltd, 177 Rua
Tomas Ribeiro, Maputo1102, Mozambique
| | - Oliver Cumming
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, United
Kingdom
| | - Seth R. Irish
- Epidemiology
and Public Health Department, Swiss Tropical
and Public Health Institute, Kreuzstrasse 2, Allschwil4123, Switzerland
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, United
Kingdom
| | - Rassul Nala
- Ministério
da Saúde, Instituto Nacional de Saúde
Maputo, Maputo1102, Mozambique
| | - Joe Brown
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| |
Collapse
|
18
|
Salim A, Madhavan A, Subhash S, Prasad M, Nair BG, Pal S. Escherichia coli ST155 as a production-host of three different polyvalent phages and their characterisation with a prospect for wastewater disinfection. Sci Rep 2022; 12:19406. [PMID: 36371482 PMCID: PMC9653416 DOI: 10.1038/s41598-022-24134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteriophages are generally specific, and a cocktail of phages is needed to combat different bacterial targets. Their production usually requires pathogenic isolation hosts. We identified a novel strain, Escherichia coli ST155, that could serve as a production host for three different polyvalent phages (ϕPh_SE03, ϕPh_SD01, and ϕPh_EC01), thus superseding the use of individual isolation hosts. Upon propagation in E. coli ST155, the phages demonstrated differential intergeneric infectivity against Salmonella enterica, E. coli OP50, Shigella dysenteriae, E. coli MDR, and Acinetobacter baumannii. Phages were characterised based on morphology, latent period, burst size, the efficiency of plating, and restriction enzyme profile. Survival assay on Caenorhabditis elegans, the absence of Shiga toxin, and enterotoxigenic E. coli virulence genes indicated that E. coli ST155 could be non-pathogenic. Lack of antibiotic resistance and absence of functional prophages rendered the host suitable for environmental applications. As a proof-of-concept, phage ϕPh_SE03 was produced in ST155 by employing a unique Bacteriophage Amplification Reactor-Lytics Broadcasting System and was simultaneously disseminated into S. enterica augmented wastewater, which resulted in a 3-log reduction in 24 h. The study establishes the potential of E. coli ST155 as a phage production host thereby minimising the possibility of accidental release of pathogenic hosts into wastewater.
Collapse
Affiliation(s)
- Amrita Salim
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| | - Suja Subhash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Megha Prasad
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| |
Collapse
|
19
|
Lowe J, Ercumen A, Prottas C, Harris AR. Exploring the determinants and indicators of poultry feces management behaviors in rural Western Uganda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155202. [PMID: 35421491 DOI: 10.1016/j.scitotenv.2022.155202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Animal ownership has reported financial and nutritional benefits but has also been associated with enteric and respiratory infections, and inadequate sanitation and hygiene can lead to children touching and ingesting animal fecal matter. We identified key indicators for poultry feces management and investigated their social determinants using data from a baseline survey of a randomized-controlled trial of a poultry management training program in rural Western Uganda. The baseline survey was conducted in the Masindi and Kiryandongo districts of Uganda in September 2019, and data collected from 609 households were used. We evaluated indicators for poultry feces management behaviors using scale development methods, including descriptive statistics, bivariate correlation analyses, and Factor Analysis of Mixed Data. We also investigated social determinants of key poultry feces management behaviors using logistic and multinomial logistic regression models. A significant increase in odds of having free-roaming poultry was found for each additional poultry owned (OR = 1.18, P < 0.001). The odds of a household having an observed enclosure for poultry increased by 5% with each incremental poultry owned (OR = 1.05, P < 0.001), and by 4% with increasing wealth with each additional point on the poverty probability index score (OR = 1.04, P < 0.001). Our results also suggest enclosures are intermittently used and constructing them without further intervention likely will not be sufficient for effectively managing animal fecal contamination. We recommend that future studies on animal feces management measure indicators for corralling and feces disposal practices and evaluate their relationship to enteric pathogen exposure and health outcomes. Insights from this work can inform the development of robust indicators of poultry feces management behaviors that can be used for monitoring and evaluation purposes.
Collapse
Affiliation(s)
- Jeremy Lowe
- Department of Civil, Construction, and Environmental Engineering, NC State University, Raleigh, NC, United States.
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, NC State University, Raleigh, NC, United States.
| | | | - Angela R Harris
- Department of Civil, Construction, and Environmental Engineering, NC State University, Raleigh, NC, United States.
| |
Collapse
|
20
|
Vieira CB, Araújo IT, Ferreira FC, Liu J, Feitosa RC, Miagostovich MP. Fast screening of enteropathogens in marine water samples. Braz J Microbiol 2022; 53:1439-1446. [PMID: 35596892 DOI: 10.1007/s42770-022-00770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
This study aimed to fast screen the microbiological contamination of recreational waters using a TaqMan Array Card (TAC), a multiplexed platform designed for the simultaneous detection of 35 enteropathogens. Surface and deep marine water samples were concentrated by skimmed milk flocculation and processed for nucleic acid extraction protocol using QIAamp Fast DNA Stool Mini Kit. Twelve microorganisms and parasites, including bacteria (n = 6), protozoa (4), and viruses (2), were detected in 85.7% (24/28) of samples. Campylobacter (82.1%), Cryptosporidium (39.3%), and adenovirus (14.3%) were the most detected pathogens. Neither fungi nor helminths were detected. A spatial pollution profile of microbiological contamination was observed in the area. Methodologies for simultaneous detection of multiple pathogens, such as TAC, can assist decision-makers by providing a quick assessment of the microbiological water quality in areas used for recreational purposes, which in many cases are in accordance with the bacteriological indicators.
Collapse
Affiliation(s)
- Carmen Baur Vieira
- Department of Microbiology and Parasitology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Irene Trigueiros Araújo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando César Ferreira
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Renato Castiglia Feitosa
- Department of Sanitation and Environmental Health, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Lappan R, Jirapanjawat T, Williamson DA, Lange S, Chown SL, Greening C. Simultaneous detection of multiple pathogens with the TaqMan Array Card. MethodsX 2022; 9:101707. [PMID: 35518918 PMCID: PMC9062751 DOI: 10.1016/j.mex.2022.101707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Quantitative polymerase chain reaction (qPCR) is a gold standard method for the detection and quantification of pathogenic organisms. Standard qPCR is inexpensive, sensitive and highly specific to the pathogen of interest. While qPCR assays can be multiplexed to allow the detection of multiple organisms in one reaction, it is prohibitively labour intensive to screen large numbers of samples for several pathogens at the same time. The TaqMan Array Card (TAC) is a cost-effective and accurate technique that expands the number of assays that can be simultaneously performed on a sample, with no increase in set-up time and only small reductions in sensitivity. This approach is highly beneficial in settings where there is a need to monitor a large panel of pathogens. We illustrate the application of TAC to the monitoring of gastrointestinal pathogens, which span viral, bacterial, protist and helminth taxa. This protocol outlines the laboratory set-up of a TaqMan Array Card, and some recommended data processing steps to aid in accurate interpretation of the results. A video protocol is additionally provided to assist in the use of the technique.•The TAC is designed primarily for gene expression assays, but has recently been utilised in several studies for pathogen detection in human clinical samples.•We expand the use of TAC for pathogen detection across human, animal and environmental sample types, and have developed a protocol and guidelines for the processing and interpretation of results that circumvents issues with the automated outputs.•This technique is applicable to pathogen or organism detection in any context, if quality nucleic acid extracts can be obtained from the sample type of interest.
Collapse
Affiliation(s)
- Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thanavit Jirapanjawat
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Deborah A Williamson
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sigrid Lange
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
22
|
Colston JM, Zaitchik BF, Badr HS, Burnett E, Ali SA, Rayamajhi A, Satter SM, Eibach D, Krumkamp R, May J, Chilengi R, Howard LM, Sow SO, Jahangir Hossain M, Saha D, Imran Nisar M, Zaidi AKM, Kanungo S, Mandomando I, Faruque ASG, Kotloff KL, Levine MM, Breiman RF, Omore R, Page N, Platts‐Mills JA, Ashorn U, Fan Y, Shrestha PS, Ahmed T, Mduma E, Yori PP, Bhutta Z, Bessong P, Olortegui MP, Lima AAM, Kang G, Humphrey J, Prendergast AJ, Ntozini R, Okada K, Wongboot W, Gaensbauer J, Melgar MT, Pelkonen T, Freitas CM, Kosek MN. Associations Between Eight Earth Observation-Derived Climate Variables and Enteropathogen Infection: An Independent Participant Data Meta-Analysis of Surveillance Studies With Broad Spectrum Nucleic Acid Diagnostics. GEOHEALTH 2022; 6:e2021GH000452. [PMID: 35024531 PMCID: PMC8729196 DOI: 10.1029/2021gh000452] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 05/10/2023]
Abstract
Diarrheal disease, still a major cause of childhood illness, is caused by numerous, diverse infectious microorganisms, which are differentially sensitive to environmental conditions. Enteropathogen-specific impacts of climate remain underexplored. Results from 15 studies that diagnosed enteropathogens in 64,788 stool samples from 20,760 children in 19 countries were combined. Infection status for 10 common enteropathogens-adenovirus, astrovirus, norovirus, rotavirus, sapovirus, Campylobacter, ETEC, Shigella, Cryptosporidium and Giardia-was matched by date with hydrometeorological variables from a global Earth observation dataset-precipitation and runoff volume, humidity, soil moisture, solar radiation, air pressure, temperature, and wind speed. Models were fitted for each pathogen, accounting for lags, nonlinearity, confounders, and threshold effects. Different variables showed complex, non-linear associations with infection risk varying in magnitude and direction depending on pathogen species. Rotavirus infection decreased markedly following increasing 7-day average temperatures-a relative risk of 0.76 (95% confidence interval: 0.69-0.85) above 28°C-while ETEC risk increased by almost half, 1.43 (1.36-1.50), in the 20-35°C range. Risk for all pathogens was highest following soil moistures in the upper range. Humidity was associated with increases in bacterial infections and decreases in most viral infections. Several virus species' risk increased following lower-than-average rainfall, while rotavirus and ETEC increased with heavier runoff. Temperature, soil moisture, and humidity are particularly influential parameters across all enteropathogens, likely impacting pathogen survival outside the host. Precipitation and runoff have divergent associations with different enteric viruses. These effects may engender shifts in the relative burden of diarrhea-causing agents as the global climate changes.
Collapse
|
23
|
Hasan H, Nasirudeen NA, Ruzlan MAF, Mohd Jamil MA, Ismail NAS, Wahab AA, Ali A. Acute Infectious Gastroenteritis: The Causative Agents, Omics-Based Detection of Antigens and Novel Biomarkers. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1112. [PMID: 34943308 PMCID: PMC8700514 DOI: 10.3390/children8121112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022]
Abstract
Acute infectious gastroenteritis (AGE) is among the leading causes of mortality in children less than 5 years of age worldwide. There are many causative agents that lead to this infection, with rotavirus being the commonest pathogen in the past decade. However, this trend is now being progressively replaced by another agent, which is the norovirus. Apart from the viruses, bacteria such as Salmonella and Escherichia coli and parasites such as Entamoeba histolytica also contribute to AGE. These agents can be recognised by their respective biological markers, which are mainly the specific antigens or genes to determine the causative pathogen. In conjunction to that, omics technologies are currently providing crucial insights into the diagnosis of acute infectious gastroenteritis at the molecular level. Recent advancement in omics technologies could be an important tool to further elucidate the potential causative agents for AGE. This review will explore the current available biomarkers and antigens available for the diagnosis and management of the different causative agents of AGE. Despite the high-priced multi-omics approaches, the idea for utilization of these technologies is to allow more robust discovery of novel antigens and biomarkers related to management AGE, which eventually can be developed using easier and cheaper detection methods for future clinical setting. Thus, prediction of prognosis, virulence and drug susceptibility for active infections can be obtained. Case management, risk prediction for hospital-acquired infections, outbreak detection, and antimicrobial accountability are aimed for further improvement by integrating these capabilities into a new clinical workflow.
Collapse
Affiliation(s)
- Haziqah Hasan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Nor Ashika Nasirudeen
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Alif Farhan Ruzlan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Aiman Mohd Jamil
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Asrul Abdul Wahab
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| |
Collapse
|
24
|
MALATYALİ E, YILDIZ İ, TİLEKLİOGLU E, ERTABAKLAR H, ERTUĞ S. The high co-existence rate of Blastocystis and Dientamoeba fragilis in human faecal samples and the analysis of demographic and clinical findings. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2021. [DOI: 10.32322/jhsm.904858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|