1
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
2
|
Xie A, Zhang Y, Breed MF, An X, Yao H, Huang Q, Su J, Sun X. Terrestrial invertebrate hosts of human pathogens in urban ecosystems. ECO-ENVIRONMENT & HEALTH 2024; 3:369-380. [PMID: 39281069 PMCID: PMC11399638 DOI: 10.1016/j.eehl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 09/18/2024]
Abstract
Terrestrial invertebrates in urban ecosystems are extremely species-rich, have many important roles in material flow and energy circulation, and are host to many human pathogens that pose threats to human health. These invertebrates are widely distributed in urban areas, including both out- and in-door environments. Consequently, humans are frequently in contact with them, which provides many opportunities for them to pose human health risks. However, comprehensive knowledge on human pathogen transfer via invertebrates is lacking, with research to date primarily focused on dipterans (e.g., mosquitoes, flies). Here, we take a broad taxonomic approach and review terrestrial invertebrate hosts (incl. mosquitoes, flies, termites, cockroaches, mites, ticks, earthworms, collembola, fleas, snails, and beetles) of human pathogens, with a focus on transmission pathways. We also discuss how urbanization and global warming are likely to influence the communities of invertebrate hosts and have flow-on risks to human health. Finally, we identify current research gaps and provide perspectives on future directions.
Collapse
Affiliation(s)
- An Xie
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yiyue Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Martin F Breed
- College of Science & Engineering, Flinders University, SA 5042, Australia
| | - Xinli An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
3
|
Mahon MB, Sack A, Aleuy OA, Barbera C, Brown E, Buelow H, Civitello DJ, Cohen JM, de Wit LA, Forstchen M, Halliday FW, Heffernan P, Knutie SA, Korotasz A, Larson JG, Rumschlag SL, Selland E, Shepack A, Vincent N, Rohr JR. A meta-analysis on global change drivers and the risk of infectious disease. Nature 2024; 629:830-836. [PMID: 38720068 DOI: 10.1038/s41586-024-07380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.
Collapse
Affiliation(s)
- Michael B Mahon
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Alexandra Sack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - O Alejandro Aleuy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ethan Brown
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Heather Buelow
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Jeremy M Cohen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Luz A de Wit
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meghan Forstchen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Fletcher W Halliday
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Patrick Heffernan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Alexis Korotasz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Joanna G Larson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Samantha L Rumschlag
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Emily Selland
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Alexander Shepack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nitin Vincent
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA.
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
4
|
Weatherly C, Carag J, Zohdy S, Morrison M. The mental health impacts of human-ecosystem-animal relationships: A systematic scoping review of Eco-, Planetary, and One Health approaches. One Health 2023; 17:100621. [PMID: 38024273 PMCID: PMC10665142 DOI: 10.1016/j.onehlt.2023.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
The threats to human and animal health, biodiversity conservation, and our living planet's future are ever-present and increasingly more severe due to climate change and environmental degradation. There is an emerging discourse exploring the mental health dimensions contained within these changes. To better understand and respond to these impacts requires novel and creative methodological approaches built on conceptual frameworks that integrate perspectives from the social and natural sciences. Three of the most influential interdisciplinary frameworks at the human-animal-ecosystem interface include: One Health, EcoHealth, and Planetary Health. These frameworks report mental health as an integral component within overall health-related outcomes. However, a comprehensive synthesis of the state of the literature that examines how mental health is explored within these approaches does not currently exist. A systematic scoping review was therefore conducted to obtain clear understandings of patterns, gaps, and broad themes, and to highlight future research needs and considerations. Standardized PRISMA guidelines, including explicitly defined inclusion/exclusion criteria and dual screening/extractions, were used. 13 papers were included: seven using the One Health Framework, with Planetary and EcoHealth each represented by three. Trends observed include a predominate focus on companion animals as interventions, "sense of place" used as a component of mental well-being, and non-physical health-related measurements of animal well-being as an outcome within One Health research. The lack in retrieved studies also highlight the dearth in literature on mental health as a pillar of these three well established frameworks. Compiling what is known in the evidence-base as a launching point for scientific engagement, this review describes guidance for investigators on how to conduct mental health research within these framework parameters so that future studies can elucidate mechanisms underpinning the intersections between the biosphere and human mental-health and data-driven interventions and policy recommendations that simultaneously address mental health and global change can be proposed and enacted.
Collapse
Affiliation(s)
- C. Weatherly
- University of Georgia School of Social Work, 279 Williams St, Athens, GA 30602, United States of America
| | - J. Carag
- Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States of America
| | - S. Zohdy
- College of Forestry, Wildlife, and Environment and College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States of America
| | - M. Morrison
- St. Louis University School of Social Work, Tegeler Hall, 3550 Lindell Blvd, St. Louis, MO 63103, United States of America
| |
Collapse
|
5
|
Rohr JR, Sack A, Bakhoum S, Barrett CB, Lopez-Carr D, Chamberlin AJ, Civitello DJ, Diatta C, Doruska MJ, De Leo GA, Haggerty CJE, Jones IJ, Jouanard N, Lund AJ, Ly AT, Ndione RA, Remais JV, Riveau G, Schacht AM, Seck M, Senghor S, Sokolow SH, Wolfe C. A planetary health innovation for disease, food and water challenges in Africa. Nature 2023:10.1038/s41586-023-06313-z. [PMID: 37438520 DOI: 10.1038/s41586-023-06313-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence1-7. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit Schistosoma parasites to more than 200 million people globally8-10. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal Schistosoma infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive-with important public health co-benefits-to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty-disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win-win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions11 to the many and formidable, co-dependent global grand challenges of the twenty-first century.
Collapse
Affiliation(s)
- Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Alexandra Sack
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sidy Bakhoum
- Department of Animal Biology, Université Cheikh Anta Diop, Dakar, Senegal
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - David Lopez-Carr
- Department of Geography, University of California, Santa Barbara, CA, USA
| | - Andrew J Chamberlin
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | | | - Cledor Diatta
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Molly J Doruska
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Giulio A De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Christopher J E Haggerty
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Isabel J Jones
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Nicolas Jouanard
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
- Station d'Innovation Aquacole, Saint-Louis, Senegal
| | - Andrea J Lund
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, USA
- Department of Environmental and Occupational Health, University of Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA
| | - Amadou T Ly
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Raphael A Ndione
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Gilles Riveau
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunité of Lille, Lille, France
| | - Anne-Marie Schacht
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Momy Seck
- Station d'Innovation Aquacole, Saint-Louis, Senegal
| | - Simon Senghor
- Centre de Recherche Biomédicale Espoir pour la Santé, Saint-Louis, Senegal
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Caitlin Wolfe
- College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Buřivalová Z, Yoh N, Butler RA, Chandra Sagar HSS, Game ET. Broadening the focus of forest conservation beyond carbon. Curr Biol 2023; 33:R621-R635. [PMID: 37279693 DOI: 10.1016/j.cub.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two concurrent trends are contributing towards a much broader view of forest conservation. First, the appreciation of the role of forests as a nature-based climate solution has grown rapidly, particularly among governments and the private sector. Second, the spatiotemporal resolution of forest mapping and the ease of tracking forest changes have dramatically improved. As a result, who does and who pays for forest conservation is changing: sectors and people previously considered separate from forest conservation now play an important role and need to be held accountable and motivated or forced to conserve forests. This change requires, and has stimulated, a broader range of forest conservation solutions. The need to assess the outcomes of conservation interventions has motivated the development and application of sophisticated econometric analyses, enabled by high resolution satellite data. At the same time, the focus on climate, together with the nature of available data and evaluation methods, has worked against a more comprehensive view of forest conservation. Instead, it has encouraged a focus on trees as carbon stores, often leaving out other important goals of forest conservation, such as biodiversity and human wellbeing. Even though both are intrinsically connected to climate outcomes, these areas have not kept pace with the scale and diversification of forest conservation. Finding synergies between these 'co-benefits', which play out on a local scale, with the carbon objective, related to the global amount of forests, is a major challenge and area for future advances in forest conservation.
Collapse
Affiliation(s)
- Zuzana Buřivalová
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Natalie Yoh
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - H S Sathya Chandra Sagar
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward T Game
- The Nature Conservancy, South Brisbane, QLD 4101, Australia; School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Mumford EL, Martinez DJ, Tyance-Hassell K, Cook A, Hansen GR, Labonté R, Mazet JAK, Mumford EC, Rizzo DM, Togami E, Vreedzaam A, Parrish-Sprowl J. Evolution and expansion of the One Health approach to promote sustainable and resilient health and well-being: A call to action. Front Public Health 2023; 10:1056459. [PMID: 36711411 PMCID: PMC9880335 DOI: 10.3389/fpubh.2022.1056459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
One Health is a transdisciplinary approach used to address complex concerns related to human, animal, plant, and ecosystem health. One Health frameworks and operational tools are available to support countries and communities, particularly for the prevention and control of zoonotic diseases and antimicrobial resistance and the protection of food safety. However, One Health has yet to be implemented in a manner that fully considers the complexities and interconnectedness of the diverse influences that have impacts at a larger system level. This lack of consideration can undermine the sustainability of any positive outcomes. To ensure the One Health approach can function effectively within the new global context of converging and escalating health, social, economic, and ecological crises, it must evolve and expand in three overlapping dimensions: (1) Scope: the partners, knowledge, and knowledge systems included, (2) Approach: the techniques, methodologies, and scholarship considered, and (3) Worldview inclusivity: the interweaving of other worldviews together with the mainstream scientific worldview that currently predominates. Diverse partners and knowledge from outside the mainstream health and scientific sectors, including Indigenous peoples and representatives of local communities, and traditionally generated knowledge, must be included. These systems of knowledge can then be braided together with mainstream science to comprise a holistic framework for decision-making. Scholarship and methodologies being applied in other fields and contexts to solve complex challenges and manage uncertainty, such as collaborative governance, social-ecologic systems theory, and complexity science, must be recognized and incorporated. The spectrum of considered worldviews must also expand to authentically integrate the expanded scope and approach into action and sustainable impact. By increasing community and social engagement and by recognizing and entwining different worldviews, the plurality of disciplines, and traditional and scientific ways of knowing to address community concerns in the contexts in which they exist, we can ensure that One Health remains effective and true to its paradigm in our rapidly changing and complex world.
Collapse
Affiliation(s)
- Elizabeth L. Mumford
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom,*Correspondence: Elizabeth L. Mumford ✉
| | - Deniss J. Martinez
- Graduate Group in Ecology, University of California, Davis, Davis, CA, United States
| | - Karli Tyance-Hassell
- (Anishinaabe) Office of Research and Community Engagement, Alaska Pacific University, Anchorage, AK, United States
| | - Alasdair Cook
- Department of Veterinary Epidemiology and Public Health, University of Surrey, Guildford, United Kingdom
| | | | - Ronald Labonté
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Jonna A. K. Mazet
- Grand Challenges, University of California, Davis, Davis, CA, United States
| | | | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Eri Togami
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | | | - John Parrish-Sprowl
- Department of Communication Studies, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
8
|
Sokolow SH, Nova N, Jones IJ, Wood CL, Lafferty KD, Garchitorena A, Hopkins SR, Lund AJ, MacDonald AJ, LeBoa C, Peel AJ, Mordecai EA, Howard ME, Buck JC, Lopez-Carr D, Barry M, Bonds MH, De Leo GA. Ecological and socioeconomic factors associated with the human burden of environmentally mediated pathogens: a global analysis. Lancet Planet Health 2022; 6:e870-e879. [PMID: 36370725 PMCID: PMC9669458 DOI: 10.1016/s2542-5196(22)00248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone. METHODS We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries. FINDINGS We found that around 80% (455 of 560) of WHO-tracked pathogen species known to infect humans are environmentally mediated, causing about 40% (129 488 of 359 341 disability-adjusted life years) of contemporary infectious disease burden (global loss of 130 million years of healthy life annually). The majority of this environmentally mediated disease burden occurs in tropical countries, and the poorest countries carry the highest burdens across all latitudes. We found weak associations between disease burden and biodiversity or agricultural land use at the global scale. In contrast, the proportion of people with rural poor livelihoods in a country was a strong proximate indicator of environmentally mediated infectious disease burden. Political stability and wealth were associated with improved sanitation, better health care, and lower proportions of rural poverty, indirectly resulting in lower burdens of environmentally mediated infections. Rarely, environmentally mediated pathogens can evolve into global pandemics (eg, HIV, COVID-19) affecting even the wealthiest communities. INTERPRETATION The high and uneven burden of environmentally mediated infections highlights the need for innovative social and ecological interventions to complement biomedical advances in the pursuit of global health and sustainability goals. FUNDING Bill & Melinda Gates Foundation, National Institutes of Health, National Science Foundation, Alfred P. Sloan Foundation, National Institute for Mathematical and Biological Synthesis, Stanford University, and the US Defense Advanced Research Projects Agency.
Collapse
Affiliation(s)
- Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| | - Isabel J Jones
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Kevin D Lafferty
- US Geological Survey, Western Ecological Research Center, c/o Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Andres Garchitorena
- MIVEGEC, Université Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France; PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Andrea J Lund
- Emmett Interdisciplinary Program in Environment and Resources (E-IPER), Stanford University, Stanford, CA, USA
| | - Andrew J MacDonald
- Department of Biology, Stanford University, Stanford, CA, USA; Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Meghan E Howard
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Julia C Buck
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - David Lopez-Carr
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Michele Barry
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA; Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
| | - Matthew H Bonds
- PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA; Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA
| | - Giulio A De Leo
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|